
www.rexygen.com

Function Blocks of REXYGEN

Reference manual

REX Controls s.r.o.

Version 3.0
2023-12-15

Plze¬ (Pilsen), Czech Republic

www.rexygen.com

2

Contents

1 Introduction 15
1.1 How to use this manual . 15
1.2 The function block description format . 17
1.3 Conventions for variables, blocks and subsystems naming 18
1.4 The signal quality corresponding with OPC 19

2 EXEC � Real-time executive con�guration 21
ALARMS � Alarms De�nition Con�guration 22
ARC � The REXYGEN system archive . 25
EXEC � Real-time executive . 27
HMI � Human-Machine Interface Con�guration 30
INFO � Description of Algorithm . 32
IODRV � The REXYGEN system input/output driver 33
IOTASK � Driver-triggered task of the REXYGEN system 35
LPBRK � Loop break . 36
MODULE � Extension module of the REXYGEN system 37
OSCALL � Operating system calls . 38
PROJECT � Additional Project Settings . 39
QTASK � Quick task of the REXYGEN system 40
SLEEP � Timing in Simulink . 41
SRTF � Set run-time �ags . 42
STATELOAD � Load multiple block states and parameters 44
STATESAVE � Save multiple block states and parameters 46
SYSEVENT � ∗ Read system log . 48
SYSLOG � Write system log . 49
TASK � Standard task of the REXYGEN system 50
TIODRV � The REXYGEN system input/output driver with tasks 52
WWW � Internal Web Server Content . 54

3 INOUT � Input and output blocks 55
Display � Numeric display of input values 56
From, INSTD � Signal connection or input 58
Goto, OUTSTD � Signal source or output . 60

3

4 CONTENTS

GotoTagVisibility � Visibility of the signal source 62
Inport, Outport � Input and output port 63
SubSystem � Subsystem block . 65
INQUAD, INOCT, INHEXD � Multi-input blocks 67
OUTQUAD, OUTOCT, OUTHEXD � Multi-output blocks 68
OUTRQUAD, OUTROCT, OUTRHEXD � Multi-output blocks with veri�cation . . . 70
OUTRSTD � Output block with veri�cation 71
QFC � Quality �ags coding . 72
QFD � Quality �ags decoding . 73
VIN � Validation of the input signal . 74
VOUT � Validation of the output signal . 75

4 MATH � Math blocks 77
ABS � Absolute value . 79
ADD � Addition of two signals . 80
ADDQUAD, ADDOCT, ADDHEXD � Multi-input addition 81
CNB � Boolean (logic) constant . 82
CNE � Enumeration constant . 83
CNI � Integer constant . 84
CNR � Real constant . 85
DIF � Di�erence . 86
DIV � Division of two signals . 87
EAS � Extended addition and subtraction 88
EMD � Extended multiplication and division 89
FNX � Evaluation of single-variable function 90
FNXY � Evaluation of two-variables function 92
GAIN � Multiplication by a constant . 94
GRADS � Gradient search optimization . 95
IADD � Integer addition . 97
ISUB � Integer subtraction . 99
IMUL � Integer multiplication . 101
IDIV � Integer division . 103
IMOD � Remainder after integer division 104
LIN � Linear interpolation . 105
MUL � Multiplication of two signals . 106
POL � Polynomial evaluation . 107
REC � Reciprocal value . 108
REL � Relational operator . 109
RTOI � Real to integer number conversion 110
SQR � Square value . 112
SQRT � Square root . 113
SUB � Subtraction of two signals . 114
UTOI � Unsigned to signed integer number conversion 115

CONTENTS 5

5 ANALOG � Analog signal processing 117

ABSROT � Processing data from absolute position sensor 119
ASW � Switch with automatic selection of input 121
AVG � Moving average �lter . 123
AVS � Motion control unit . 124
BPF � Band-pass �lter . 125
CMP � Comparator with hysteresis . 126
CNDR � Nonlinear conditioner . 127
DEL � Delay with initialization . 129
DELM � Time delay . 130
DER � Derivation, �ltering and prediction from the last n+1 samples . . . 131
EVAR � Moving mean value and standard deviation 133
INTE � Controlled integrator . 134
KDER � Derivation and �ltering of the input signal 136
LPF � Low-pass �lter . 138
MINMAX � Running minimum and maximum 140
NSCL � Nonlinear scaling factor . 141
OSD � One step delay . 142
RDFT � Running discrete Fourier transform 143
RLIM � Rate limiter . 145
S1OF2 � One of two analog signals selector 146
SAI � Safety analog input . 149
SEL � Selector switch for analog signals . 152
SELQUAD, SELOCT, SELHEXD � Selector switch for analog signals 153
SHIFTOCT � Data shift register . 155
SHLD � Sample and hold . 157
SINT � Simple integrator . 158
SPIKE � Spike �lter . 159
SSW � Simple switch . 161
SWR � Selector with ramp . 162
VDEL � Variable time delay . 163
ZV4IS � Zero vibration input shaper . 164

6 GEN � Signal generators 169

ANLS � Controlled generator of piecewise linear function 170
BINS � Controlled binary sequence generator 172
BIS � Binary sequence generator . 174
BISR � Binary sequence generator with reset 176
MP � Manual pulse generator . 178
PRBS � Pseudo-random binary sequence generator 179
SG, SGI � Signal generators . 181

6 CONTENTS

7 REG � Function blocks for control 183
ARLY � Advance relay . 185
FLCU � Fuzzy logic controller unit . 186
FRID � ∗ Frequency response identi�cation 188
I3PM � Identi�cation of a three parameter model 190
LC � Lead compensator . 192
LLC � Lead-lag compensator . 193
MCU � Manual control unit . 194
PIDAT � PID controller with relay autotuner 196
PIDE � PID controller with de�ned static error 199
PIDGS � PID controller with gain scheduling 201
PIDMA � PID controller with moment autotuner 203
PIDU � PID controller unit . 209
PIDUI � PID controller unit with variable parameters 212
POUT � Pulse output . 214
PRGM � Setpoint programmer . 215
PSMPC � Pulse-step model predictive controller 217
PWM � Pulse width modulation . 221
RLY � Relay with hysteresis . 223
SAT � Saturation with variable limits . 224
SC2FA � State controller for 2nd order system with frequency autotuner . . 226
SCU � Step controller with position feedback 233
SCUV � Step controller unit with velocity input 236
SELU � Controller selector unit . 239
SMHCC � Sliding mode heating/cooling controller 240
SMHCCA � Sliding mode heating/cooling controller with autotuner 244
SWU � Switch unit . 251
TSE � Three-state element . 252

8 LOGIC � Logic control 253
AND � Logical product of two signals . 254
ANDQUAD, ANDOCT, ANDHEXD � Logical product of multiple signals 255
ATMT � Finite-state automaton . 256
BDOCT, BDHEXD � Bitwise demultiplexers 259
BITOP � Bitwise operation . 260
BMOCT, BMHEXD � Bitwise multiplexers . 262
COUNT � Controlled counter . 263
EATMT � Extended �nite-state automaton 265
EDGE � Falling/rising edge detection in a binary signal 268
EQ � Equivalence of two signals . 269
INTSM � Integer number bit shift and mask 270
ISSW � Simple switch for integer signals 271
ITOI � Transformation of integer and binary numbers 272
NOT � Boolean complementation . 273

CONTENTS 7

OR � Logical sum of two signals . 274
ORQUAD, OROCT, ORHEXD � Logical sum of multiple signals 275
RS � Reset-set �ip-�op circuit . 276
SR � Set-reset �ip-�op circuit . 277
TIMER � Multipurpose timer . 278

9 TIME � Blocks for handling time 281
DATE � Current date . 282
DATETIME � Get, set and convert time . 283
TC � Timer control and status . 285
TIME � Current time . 287
WSCH � Weekly schedule . 288

10 ARC � Data archiving 291
10.1 Functionality of the archiving subsystem 292
10.2 Generating alarms and events . 293

ALB, ALBI � Alarms for Boolean value . 293
ALM, ALMI � Alarm activation . 295
ALN, ALNI � Alarms for numerical value . 296
ARS � Archive store value . 299

10.3 Trends recording . 301
ACD � Archive compression using Delta criterion 301
TRND � Real-time trend recording . 303
TRNDV � Real-time trend recording with vector input 306
TRNDLF � ∗ Real-time trend recording (lock-free) 308
TRNDVLF � ∗ Real-time trend recording (for vector signals, lock-free) 310

10.4 Archive management . 311
AFLUSH � Forced archive �ushing . 311

11 STRING � Blocks for string operations 313
CNS � String constant . 314
CONCAT � Concat string by pattern . 315
FIND � Find a Substring . 316
ITOS � Integer number to string conversion 317
LEN � String length . 318
MID � Substring Extraction . 319
PJROCT � Parse JSON string (real output) 320
PJSOCT � Parse JSON string (string output) 322
PJSEXOCT � Parse JSON string (string output) 324
REGEXP � Regular expresion parser . 325
REPLACE � Replace substring . 328
RTOS � Real Number to String Conversion 329
SELSOCT � Selector switch for string signals 330
STOR � String to real number conversion 331

8 CONTENTS

12 PARAM � Blocks for parameter handling 333
GETPA � Block for remote array parameter acquirement 334
GETPR, GETPI, GETPB � Blocks for remote parameter acquirement 336
GETPS � ∗ Block for remote string parameter acquirement 338
PARA � Block with input-de�ned array parameter 339
PARE � Block with input-de�ned enumeration parameter 340
PARR, PARI, PARB � Blocks with input-de�ned parameter 341
PARS � ∗ Block with input-de�ned string parameter 343
SETPA � Block for remote array parameter setting 344
SETPR, SETPI, SETPB � Blocks for remote parameter setting 346
SETPS � ∗ Block for remote string parameter setting 348
SGSLP � Set, get, save and load parameters 349
SILO � Save input value, load output value 353
SILOS � Save input string, load output string 355

13 MODEL � Dynamic systems simulation 357
CDELSSM � Continuous state space model of a linear system with time delay358
CSSM � Continuous state space model of a linear system 361
DDELSSM � Discrete state space model of a linear system with time delay . 363
DFIR � Discrete �nite input response �lter 365
DSSM � Discrete state space model of a linear system 366
EKF � Extended (nonlinear) Kalman �lter 368
FMUCS � ∗ Import modelu FMU CS (pro Co-Simulation) 371
FMUINFO � ∗ Imformace o importovaném modelu FMU 374
FOPDT � First order plus dead-time model 375
MDL � Process model . 376
MDLI � Process model with input-de�ned parameters 377
MVD � Motorized valve drive . 378
NSSM � Nonlinear State-Space Model . 379
SOPDT � Second order plus dead-time model 382

14 MATRIX � Blocks for matrix and vector operations 385
CNA � Array (vector/matrix) constant . 388
MB_DASUM � Sum of the absolute values . 389
MB_DAXPY � Performs y := a*x + y for vectors x,y 390
MB_DCOPY � Copies vector x to vector y . 392
MB_DDOT � Dot product of two vectors . 394
MB_DGEMM � Performs C := alpha*op(A)*op(B) + beta*C, where op(X) =
X or op(X) = X^T . 396
MB_DGEMV � Performs y := alpha*A*x + beta*y or y := alpha*A^T*x +
beta*y . 398
MB_DGER � Performs A := alpha*x*y^T + A 400
MB_DNRM2 � Euclidean norm of a vector . 402
MB_DROT � Plain rotation of a vector . 403

CONTENTS 9

MB_DSCAL � Scales a vector by a constant 405
MB_DSWAP � Interchanges two vectors . 406
MB_DTRMM � Performs B := alpha*op(A)*B or B := alpha*B*op(A), where
op(X) = X or op(X) = X^T for triangular matrix A 408
MB_DTRMV � Performs x := A*x or x := A^T*x for triangular matrix A . . 410
MB_DTRSV � Solves one of the system of equations A*x = b or A^T*x =
b for triangular matrix A . 413
ML_DGEBAK � Backward transformation to ML_DGEBAL of left or right eigen-
vectors . 416
ML_DGEBAL � Balancing of a general real matrix 418
ML_DGEBRD � Reduces a general real matrix to bidiagonal form by an or-
thogonal transformation . 420
ML_DGECON � Estimates the reciprocal of the condition number of a general
real matrix . 422
ML_DGEES � Computes the eigenvalues, the Schur form, and, optionally,
the matrix of Schur vectors . 424
ML_DGEEV � Computes the eigenvalues and, optionally, the left and/or right
eigenvectors . 426
ML_DGEHRD � Reduces a real general matrix A to upper Hessenberg form . 428
ML_DGELQF � Computes an LQ factorization of a real M-by-N matrix A . . 430
ML_DGELSD � Computes the minimum-norm solution to a real linear least
squares problem . 432
ML_DGEQRF � Computes an QR factorization of a real M-by-N matrix A . . 434
ML_DGESDD � Computes the singular value decomposition (SVD) of a real
M-by-N matrix A . 436
ML_DLACPY � Copies all or part of one matrix to another matrix 438
ML_DLANGE � Computes one of the matrix norms of a general matrix . . . 440
ML_DLASET � Initilizes the o�-diagonal elements and the diagonal elements
of a matrix to given values . 442
ML_DTRSYL � Solves the real Sylvester matrix equation for quasi-triangular
matrices A and B . 444
MX_AT � Get Matrix/Vector element . 446
MX_ATSET � Set Matrix/Vector element . 447
MX_CNADD � Add scalar to each Matrix/Vector element 448
MX_CNMUL � Multiply a Matrix/Vector by a scalar 449
MX_CTODPA � Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations . 450
MX_DIM � Matrix/Vector dimensions . 452
MX_DIMSET � Set Matrix/Vector dimensions 453
MX_DSAGET � Set subarray of A into B . 455
MX_DSAREF � Set reference to subarray of A into B 457
MX_DSASET � Set A into subarray of B . 459
MX_DTRNSP � General matrix transposition: B := alpha*A^T 461
MX_DTRNSQ � Square matrix in-place transposition: A := alpha*A^T . . . 463

10 CONTENTS

MX_FILL � Fill real matrix or vector . 464
MX_MAT � Matrix data storage block . 465
MX_RAND � Randomly generated matrix or vector 466
MX_REFCOPY � Copies input references of matrices A and B to their output
references . 468
MX_SLFS � Save or load a Matrix/Vector into �le or string 469
MX_VEC � Vector data storage block . 471
MX_WRITE � Write a Matrix/Vector to the console/system log 472
RTOV � Vector multiplexer . 474
SWVMR � Vector/matrix/reference signal switch 476
VTOR � Vector demultiplexer . 477

15 OPTIM � Optimization blocks 479

QP_MPC2QP � Conversion of MPC problem to quadratic programming . . . 480
QP_OASES � Quadratic programming using active set method 487
QP_UPDATE � Update matrices/vectors of quadratic programming 492

16 SPEC � Special blocks 497

EPC � External program call . 498
HTTP � HTTP GET or POST request (obsolete) 501
HTTP2 � Block for generating HTTP GET or POST requests 503
SMTP � Send e-mail message via SMTP . 505
STEAM � Steam and water properties . 507
RDC � Remote data connection . 509
REXLANG � User programmable block . 514
UART � UART communication block . 534

17 LANG � Special blocks 537

PYTHON � User programmable block in Python 538

18 DSP � Digital Signal Processing blocks 545

BSGET, BSGETOCT � Binary Structure - Get a single value of given type . . 546
BSGETV, BSGETOCTV � Binary Structure - Get matrix (all values of the same
given type) . 548
BSSET, BSSETOCT � Binary Structure - Set a single value of given type . . . 549
BSSETV, BSSETOCTV � Binary Structure - Set matrix of given type 550
BSFIFO � Binary Structure - Queueing serialize and deserialize 551
MOSS � Motion smart sensor . 553

19 MQTT � Communication via MQTT protocol 555

MqttPublish � Publish MQTT message 556
MqttSubscribe � Subscribe to MQTT topic 558

CONTENTS 11

20 MC_SINGLE � Motion control - single axis blocks 561
RM_Axis � Motion control axis . 564
MC_AccelerationProfile, MCP_AccelerationProfile � Acceleration pro-
�le . 571
MC_Halt, MCP_Halt � Stopping a movement (interruptible) 575
MC_HaltSuperimposed, MCP_HaltSuperimposed � Stopping a movement
(superimposed and interruptible) . 576
MC_Home, MCP_Home � Homing . 577
MC_MoveAbsolute, MCP_MoveAbsolute � Move to position (absolute coor-
dinate) . 579
MC_MoveAdditive, MCP_MoveAdditive � Move to position (relative to pre-
vious motion) . 583
MC_MoveRelative, MCP_MoveRelative � Move to position (relative to ex-
ecution point) . 586
MC_MoveSuperimposed, MCP_MoveSuperimposed � Superimposed move . . 589
MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute � Move to
position (absolute coordinate) . 592
MC_MoveContinuousRelative, MCP_MoveContinuousRelative � Move to
position (relative to previous motion) . 595
MC_MoveVelocity, MCP_MoveVelocity � Move with constant velocity . . . 599
MC_PositionProfile, MCP_PositionProfile � Position pro�le 603
MC_Power � Axis activation (power on/o�) 607
MC_ReadActualPosition � Read actual position 608
MC_ReadAxisError � Read axis error . 609
MC_ReadBoolParameter � Read axis parameter (bool) 610
MC_ReadParameter � Read axis parameter 611
MC_ReadStatus � Read axis status . 613
MC_Reset � Reset axis errors . 615
MC_SetOverride, MCP_SetOverride � Set override factors 616
MC_Stop, MCP_Stop � Stopping a movement 618
MC_TorqueControl, MCP_TorqueControl � Torque/force control 620
MC_VelocityProfile, MCP_VelocityProfile � Velocity pro�le 623
MC_WriteBoolParameter � Write axis parameter (bool) 627
MC_WriteParameter � Write axis parameter 628
RM_AxisOut � Axis output . 629
RM_AxisSpline � Commanded values interpolation 630
RM_Track � Tracking and inching . 635

21 MC_MULTI � Motion control - multi axis blocks 637
MC_CamIn, MCP_CamIn � Engage the cam 638
MC_CamOut � Disengage the cam . 642
MCP_CamTableSelect � Cam de�nition . 644
MC_CombineAxes, MCP_CombineAxes � Combine the motion of 2 axes into
a third axis . 646

12 CONTENTS

MC_GearIn, MCP_GearIn � Engange the master/slave velocity ratio 649
MC_GearInPos, MCP_GearInPos � Engage the master/slave velocity ratio
in de�ned position . 652
MC_GearOut � Disengange the master/slave velocity ratio 657
MC_PhasingAbsolute, MCP_PhasingAbsolute � Phase shift in synchro-
nized motion (absolute coordinates) . 659
MC_PhasingRelative, MCP_PhasingRelative � Phase shift in synchro-
nized motion (relative coordinates) . 662

22 MC_COORD � Motion control - coordinated movement blocks 665
RM_AxesGroup � Axes group for coordinated motion control 668
RM_Feed � ∗ MC Feeder ??? . 671
RM_Gcode � ∗ CNC motion control . 672
MC_AddAxisToGroup � Adds one axis to a group 674
MC_UngroupAllAxes � Removes all axes from the group 675
MC_GroupEnable � Changes the state of a group to GroupEnable 676
MC_GroupDisable � Changes the state of a group to GroupDisabled 677
MC_SetCartesianTransform � Sets Cartesian transformation 678
MC_ReadCartesianTransform � Reads the parameter of the cartesian trans-
formation . 680
MC_GroupSetPosition, MCP_GroupSetPosition � Sets the position of all
axes in a group . 681
MC_GroupReadActualPosition � Read actual position in the selected co-
ordinate system . 683
MC_GroupReadActualVelocity � Read actual velocity in the selected co-
ordinate system . 684
MC_GroupReadActualAcceleration � Read actual acceleration in the se-
lected coordinate system . 685
MC_GroupStop � Stopping a group movement 686
MC_GroupHalt � Stopping a group movement (interruptible) 689
MC_GroupInterrupt, MCP_GroupInterrupt � Read a group interrupt . . . 694
MC_GroupContinue � Continuation of interrupted movement 695
MC_GroupReadStatus � Read a group status 696
MC_GroupReadError � Read a group error 697
MC_GroupReset � Reset axes errors . 698
MC_MoveLinearAbsolute � Linear move to position (absolute coordinates) 699
MC_MoveLinearRelative � Linear move to position (relative to execution
point) . 703
MC_MoveCircularAbsolute � Circular move to position (absolute coordi-
nates) . 707
MC_MoveCircularRelative � Circular move to position (relative to exe-
cution point) . 711
MC_MoveDirectAbsolute � Direct move to position (absolute coordinates) 715

CONTENTS 13

MC_MoveDirectRelative � Direct move to position (relative to execution
point) . 718
MC_MovePath � General spatial trajectory generation 721
MC_GroupSetOverride � Set group override factors 723

23 CanDrv � Communication via CAN bus 725
CanItem � Secondary received CAN message 726
CanRecv � Receive CAN message . 727
CanSend � Send CAN message . 729

24 OpcUaDrv � Communication using OPC UA 731
OpcUaReadValue � Read value from OPC UA Server 732
OpcUaServerValue � Expose value as an OPC UA Node 734
OpcUaWriteValue � Write value to OPC UA Server 736

A Licensing options 739

B Licensing of individual function blocks 741

C Error codes of the REXYGEN system 755

Bibliography 761

Index 763

Note: Only a partial documentation is available in blocks marked by ∗ .

14 CONTENTS

Chapter 1

Introduction

The manual �REXYGEN system function blocks� is a reference manual for the REXYGEN
system function block library RexLib. It includes description and detailed information
about all function blocks RexLib consists of.

1.1 How to use this manual

The extensive function block library RexLib, which is a standard part of the REXYGEN
system, is divided into smaller sets of logically related blocks, the so-called categories
(sublibraries). A separate chapter is devoted to each category, introducing the general
properties of the whole category and its blocks followed by a detailed description of
individual function blocks.

The content of individual chapters of this manual is following:

1 Introduction
This introductory chapter familiarizing the readers with the content and ordering
of the manual. A convention used for individual function blocks description is
presented.

2 EXEC � Runtime executive con�guration
Blocks used mainly for con�guration of the structure, priorities and timing of in-
dividual objects linked to the real-time subsystem of the REXYGEN system (the
RexCore program) are described in this chapter.

3 INOUT � Input and output blocks
This sublibrary consists of the blocks used mainly for the REXYGEN system. These
blocks provide the connection between the control tasks and input/output drivers.

4 MATH � Mathematic blocks
The blocks for arithmetic operations and basic math functions.

15

16 CHAPTER 1. INTRODUCTION

5 ANALOG � Analog signal processing
The integrator, derivator, time delay, moving average, various �lters, comparators
and selectors can be found among the blocks for analog signal processing. The
starting unit block (AVS) is also very interesting.

6 GEN � Signal generators
This chapter deals with analog and logic signal generators.

7 REG � Function blocks for control
The control function blocks form the most extensive sublibrary of the RexLib li-
brary. Blocks ranging from simple dynamic compensators to several modi�cations
of PID (P, I, PI, PD a PID) controller and some advanced controllers are included.
The blocks for control schemes switching and conversion of output signals for var-
ious types of actuators can be found in this sublibrary. The involved controllers
include the PIDGS block, enabling online switching of parameter sets (the so-called
gain scheduling), the PIDMA block with built-in moment autotuner, the PIDAT block
with built in relay autotuner, the FLCU fuzzy controller or the PSMPC predictive con-
troller, etc.

8 LOGIC � Logic control
This chapter describes blocks for combinational and sequential logic control includ-
ing the simplest Boolean operations (not, and, or) and also more complex blocks
like the sequential logic automat ATMT implementing the SFC standard (Sequential
Function Charts, formerly Grafcet).

10 ARC � Data archiving
This sublibrary contains blocks for alarms generation and blocks for storing trend
data directly on the target device.

12 PARAM � Parameter handling
This sublibrary contains blocks for parameter handling, namely saving, loading
and remote manipulation with parameters.

13 MODEL � Dynamic systems modeling
The REXYGEN system can also be used for creating real-time mathematical models
of dynamic systems. The function blocks of this sublibrary were developed for such
cases.

14 MATRIX � Working with matrix and vector data
Function blocks for handling vector and matrix data in REXYGEN are includeed
in this sublibrary.

20 MC_SINGLE � Single-axis motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for single axis motion control.

1.2. THE FUNCTION BLOCK DESCRIPTION FORMAT 17

21 MC_MULTI � Multi-axes motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for motion control in multiple axes.

22 MC_COORD � Coordinated motion control
Function blocks of this sublibrary were developed according to the PLCopen Mo-
tion Control standard for coordinated motion control.

16 SPEC � Special blocks
The most interesting blocks of this sublibrary are the REXLANG and RDC blocks. It is
possible to compile and interpret user algorithms using the REXLANG block, whose
programming language is very similar to the C language (the syntax of the REXLANG
commands is mostly the same as in the C language). The RDC block can be used
for real-time communication between two REXYGEN-enabled target devices.

The individual chapters of this reference guide are not much interconnected, which means
they can be read in almost any order or even only the necessary information for speci�c
block can be read for understanding the function of that block. The electronic version
of this manual (in the .pdf format) is well-suited for such case as it is equipped with
hypertext bookmarks and contents, which makes the look-up of individual blocks very
easy.

Despite of that it is recommended to read the following subchapter, which describes
the conventions used for description of individual blocks in the rest of this manual.

1.2 The function block description format

The description of each function block consists of several sections (in the following order):

Block Symbol � displays the graphical symbol of the block

Function Description � brief description of the block function, omitting too detailed
information.

Inputs � detailed description of all inputs of the block

Outputs � detailed description of all outputs of the block

Parameters � detailed description of all parameters of the block

Examples � a simple example of the use of the block in the context of other blocks and
optional graph with input and output signals for better understanding of the block
function.

If the block function is obvious, the section Examples is omitted. In case of block with
no input or no output the corresponding section is omitted as well.

The inputs, outputs and parameters description has a tabular form:

18 CHAPTER 1. INTRODUCTION

<name> [nam] Detailed description of the input (output, parameter)
<name>. Mathematical symbol nam on the right side of the
�rst column is used in the equations in the Function Description

section. It is listed only if it di�ers from the name more
than typographically. If the variable value is limited to only
enumerated values, the meaning of these values is explained in
this column. [⊙<def>] [↓<min>] [↑<max>]

<type>

The meaning of the three columns is quite obvious. The third column contains the
item <type>. The REXYGEN control system supports the types listed in table 1.1. But
the most frequently used types are Bool for Boolean variables, Long (I32) for integer
variables and Double (F64) for real variables (in �oating point arithmetics).

Each described variable (input, output or parameter) has a default value <def> in
the REXYGEN system, which is preceded by the ⊙ symbol. Also it has upper and lower
limits, preceded by the symbols ↓ and ↑ respectively. All these three values are optional
(marked by []). If the value ⊙<def> is not listed in the second column, it is equal to
zero. If the values of ↓<min> and/or ↑<max> are missing, the limits are given by the the
minimum and/or maximum of the corresponding type, see table 1.11.

Type Meaning Minimum Maximum
Bool Boolean value 0 or 1 0 1

Byte (U8) 8-bit integer number without the sign 0 255

Short (I16) 16-bit integer number with the sign -32768 32767

Long (I32) 32-bit integer number with the sign -2147483648 2147483647

Large (I64) 64-bit integer number with the sign −9.2234 · 1018 9.2234 · 1018
Word (U16) 16-bit integer number without the sign 0 65535

DWord (U32) 32-bit integer number without the sign 0 4294967295

Float (F32) 32-bit real number in �oating point arithmetics −3.4 · 1038 3.4 · 1038
Double (F64) 64-bit real number in �oating point arithmetics −1.7 · 10308 1.7 · 10308
String character string

Table 1.1: Types of variables in the REXYGEN system.

1.3 Conventions for variables, blocks and subsystems nam-
ing

Several conventions are used to simplify the use of the REXYGEN control system. All
used variable types were de�ned in the preceding chapter. The term variable refers to
function block inputs, outputs and parameters in this chapter. The majority of the blocks
uses only the following three types:

1Precise range of the Large data type is -9223372036854775808 to 9223372036854775807.

1.4. THE SIGNAL QUALITY CORRESPONDING WITH OPC 19

Bool � for two-state logic variables, e.g. on/o�, yes/no or true/false. The logic one (yes,
true, on, 1) is referred to as on in this manual. Similarly the logic zero (no, false,
o�, 0) is represented by off. This holds also for REXYGEN Studio. Other tools and
3rd party software may display these values as 1 for on and 0 for off. The names
of logic variables consist of uppercase letters, e.g. RUN, YCN, R1, UP, etc.

Long (I32) � for integer values, e.g. set of parameters ID, length of trend bu�er, type
of generated signal, error code, counter output, etc. The names of integer variables
use usually lowercase letters and the initial character (always lowercase) is in most
cases {i, k, l, m, n, or o}, e.g. ips, l, isig, iE, etc. But several exceptions to this
rule exist, e.g. cnt in the COUNT block, btype, ptype1, pfac and afac in the TRND
block, etc.

Double (F64) � for �oating point values (real numbers), e.g. gain, saturation limits,
results of the majority of math functions, PID controller parameters, time interval
lengths in seconds, etc. The names of �oating point variables use only lowercase
letters, e.g. hilim, y, ti, tt.

The function block names in the REXYGEN system use uppercase letters, numbers
and the '_' (underscore) character. It is recommended to append a lowercase user-de�ned
string to the standard block name when creating user instances of function blocks.

It is explicitly not recommended to use diacritic and special characters like spaces,
CR (end of line), punctuation, operators, etc. in the user-de�ned names. The use of such
characters limits the transferability to various platforms and it can lead to incompre-
hension. The names are checked by the REXYGEN Compiler compiler which generates
warnings if inappropriate characters are found.

1.4 The signal quality corresponding with OPC

Every signal (input, output, parameter) in the REXYGEN system has the so-called quality
�ags in addition to its own value of corresponding type (table 1.1). The quality �ags in
the REXYGEN system correspond with the OPC (OLE for Process Control) speci�cation
[1]. They can be represented by one byte, whose structure is explained in the table 1.2.

Bit number 7 6 5 4 3 2 1 0
Bit weight 128 64 32 16 8 4 2 1
Bit �eld Quality Substatus Limits

Q Q S S S S L L
BAD 0 0 S S S S L L
UNCERTAIN 0 1 S S S S L L
not used in OPC 1 0 S S S S L L
GOOD 1 1 S S S S L L

Table 1.2: The quality �ags structure

20 CHAPTER 1. INTRODUCTION

The basic quality type is determined by the QQ �ags in the two most important
bits. Based on these the quality is distinguished between GOOD, UNCERTAIN and BAD. The
four SSSS bits provide more detailed information about the signal. They have di�erent
meaning for each basic quality. The two least signi�cant bits LL inform whether the
value exceeded its limits or if it is constant. Additional details and the meaning of all
bits can be found in [1], chapter 6.8.

Chapter 2

EXEC � Real-time executive

con�guration

Contents

ALARMS � Alarms De�nition Con�guration 22

ARC � The REXYGEN system archive 25

EXEC � Real-time executive . 27

HMI � Human-Machine Interface Con�guration 30

INFO � Description of Algorithm . 32

IODRV � The REXYGEN system input/output driver 33

IOTASK � Driver-triggered task of the REXYGEN system 35

LPBRK � Loop break . 36

MODULE � Extension module of the REXYGEN system 37

OSCALL � Operating system calls . 38

PROJECT � Additional Project Settings 39

QTASK � Quick task of the REXYGEN system 40

SLEEP � Timing in Simulink . 41

SRTF � Set run-time �ags . 42

STATELOAD � Load multiple block states and parameters 44

STATESAVE � Save multiple block states and parameters 46

SYSEVENT � ∗ Read system log . 48

SYSLOG � Write system log . 49

TASK � Standard task of the REXYGEN system 50

TIODRV � The REXYGEN system input/output driver with tasks . 52

WWW � Internal Web Server Content 54

21

22 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

ALARMS � Alarms De�nition Con�guration

Block Symbol Licence: STANDARD

ALARMS

Function Description

The ALARMS is placed in the main project �le and allows the user to con�gure list of
alarms. Alarms are activated by the ALM or ALMI blocks. Alarms are de�ned in a .csv

(Comma separated variable) �le. The afile parameter contains the �le name of the
.csv �le. An alarm could be activated also by the ALB, ALBI, ALN, ALNI blocks, but these
blocks not use de�nitions in the ALARMS block.

The con�guration �le has the following columns:

id . . . Unique alarm reference number. The number is used in the ALM

block, in archive records, etc.
level . . . The value stored into an archive record (in the level �eld).
archives . . . Bit �eld � identi�es archives for recording events associated with

the alarm (alarm starts, ends, acknowledges). E.g. 0 = not stored
in the archive, 1 = stored in the 1st archive, 2 = stored in the 2nd
archive, 4 = stored in the 3rd archive, 3 = stored in the 1st and
2nd archives, etc.

group . . . Reserved for future use, now some number (or bit�eld up to 64
bits) to �lter alarm's list in HMI.

name . . . Name of the alarm; can be used as the alarm identi�er, so it should
be unique.

description . . . Text description of the alarm. It is possible to insert formatting
characters for multilingual texts and to insert values associated
with the alarm associated values) in the text, see below.

Multilingual support

REXYGEN supports multilingual alarm description. The description �eld must be in the
form:

<lang1_ID>:<lang1 text>|<lang2_ID>:<lang2 text>|<lang3_ID>:<lang3 text>

Number of languages is not limited, but total size of the �eld is limited to 32765 bytes
(english characters). The lang1 (language 1) is used if the user sets unsupported language.
Example: let's expect the description �eld in the form: cz:P°ep¥tí|en:High voltage

alarm. The user will see High voltage alarm if the language is set to en. The user will
see P°ep¥tí if the language is set to cz. The user will see P°ep¥tí in all other cases (for
example if the language is set to de, cze, EN, en-us, etc.).

23

Associated values

The desription �eld can contain special marks that is replaced by values from control
algorithm � so-called associated values. The mark has the form:

%<value number>[<format>][:<number of characters>[:<precision>]]

where the format is one of the following characters:
b, B . . . binary value (string on or off is shown)
d, D . . . integer number shown as decimal string, the default value for integer types
x, X . . . integer number shown as hexadecimal string
f, F . . . real number in �x point form, the precision of it is a number of digits behind

decimal point (if precision is speci�ed)
e, E . . . real number in exponential (scienti�c) form
g, G . . . the same as F or E (depends on actual value), the default format for real

number types
s, S . . . text string

The default type is used if the format is not speci�ed or if the type of the value is
not compatible with the speci�ed format. More characters than it is speci�ed is used if
it is necessary to show the correct value.

Format Examples:
%2 . . . value of 2nd variable (e.g. av2 in the ALM block)
%1:8:2 . . . value of 1st variable (e.g. av1 in the ALM block), 2 characters behind decimal

point, total 8 characters (leading spaces are used if necessary)
%1e . . . value of 1st variable (e.g. av1 in the ALM block) in exponential form

The ALB, ALBI blocks not use associated values. The ALN and ALNI maps it this way:
1 . . . value of the u input
2 . . . value of the h parameter (input)
3 . . . value of the hh parameter (input)
4 . . . value of the l parameter (input)
5 . . . value of the ll parameter (input)
6 . . . value of the tout parameter (input)

Remarks:

• It is possible to use comma or semicolon as a separator in the .csv �le. The �rst
row with column names is optional.

• Alarms (lines) in the �le must be in the ascending order respect to the id.

• The id must be unique including other alarming/archiving blocks (TRND, ALB, ALN,
...).

• It is possible to use the internal editor (the Configure button in parametric dialog)
or external tool. Internal editor generates a correct example if the .csv �le does
not exist.

24 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

• The blocks ALB, ALBI, ALN and ALNI regard lvl > 127 as an event, where only its
begin (nor end nor acknoledge) is stored into archives. The blocks ALM, ALMI do
not implement this event function.

• Alarm's associated values are stored into alarm's value when alarm is triggered
(begin). Later changes of the associated values are not updated in an alarm window
in HMI.

• Alarm window in HMI can show also alarm name. It is the name of the block
(without block type if it pre�xes the block name) that is connected to the alarm.

• The whole description string is displayed, if client sets the empty language (e.g.
"").

Parameters

afile �le name of an alarm's de�nition .csv �le String

25

ARC � The REXYGEN system archive

Block Symbol Licence: STANDARD

ARC

prev next

Function Description

The ARC block is intended for archives con�guration in the REXYGEN control system. The
archives can be used for continuous recording of alarms, events and history trends directly
on the target platform. The output Archives of the EXEC block must be connected to
the prev input of the �rst archive. The following archives can be added by connecting
the input prev with the preceding archive's output next. Only one archive block can
be connected to each next output, the output of the last archive remains unconnected.
The resulting archives sequence determines the order of allocation and initialization of
individual archives in the REXYGEN system and also the index of the archive, which
is used in the arc parameter of the archiving blocks (see chapter 10). The archives are
numbered from 1 and the maximum number of archives is limited to 15 (archive no. 0 is
the internal system log).

The atype parameter determines the type of archive from the data-available-after-
restarting point of view. The admissible types depend on the target platform properties,
which can be inspected in the Diagnostics section of the REXYGEN Studio program
after successful connecting to the target device.

Archive consists of sequenced variable-length items (memory and disk space opti-
mization) with a timestamp. Therefore the other parameters are the total archive size in
bytes asize and maximum number of timestamps nmarks for speeding-up the sequential
seeking in the archive.

The frequency of writing values to disk can be in�uenced by the period parameter.
For devices using �ash memory or SD cards as a disk, it is not suitable to write values
too often, therefore it is appropriate to set this parameter to a value in the order of
minutes. Furthermore, it is possible to select a suitable source of time stamps with the
timesrc parameter.

Input

prev Input for connecting with the next output of the preceding
archive or with the Archives output of the EXEC block in the
case of the �rst archive

Long (I32)

Output

next Output for creating sequences of archives by connecting to the
prev input of the following archive

Long (I32)

26 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

Parameters

atype Archive type ⊙1 Long (I32)

1 archive is allocated in the RAM memory (data is
irreversibly lost after restarting the target device)

2 archive is allocated in backed-up memory, e.g. CMOS
(data remains available after restarting the target
device)

3 archive is allocated on a drive (data remains available
in the �le after restarting)

asize Size of the archive in bytes ↓256 ⊙102400 Long (I32)

nmarks Number of time stamps for speeding-up sequential seeking in the
archive ↓2 ⊙720

Long (I32)

ldaymax Maximum size of archive per day [bytes]
↓1000 ↑2147480000 ⊙1048576

Large (I64)

period Period of writing data to disk [s] ⊙60.0 Double (F64)

timesrc Source of timestamps ⊙1 Long (I32)

1 CORETIMER � technological time � at current tick
2 CORETIMER-PRECISE � technological time � at block

execution
3 RTC � real time clock (wallclock) from operating

system � at current tick
4 RTC-PRECISE � real time clock (wallclock) from

operating system � at block execution
4 PFC � raw high precision time (PerFormanceCounter)

27

EXEC � Real-time executive

Block Symbol Licence: STANDARD

EXEC

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

Function Description

The EXEC block is a cornerstone of the so-called project main �le in the .mdl format,
which con�gures individual subsystems of the REXYGEN system. No similar block can
be found in the Matlab-Simulink system. The EXEC block and all connected con�guration
blocks do not implement any mathematic algorithm. Such con�guration structure is used
by the REXYGEN Compiler compiler during building of the overall REXYGEN control
system application.

The REXYGEN system con�guration consists of modules (Modules), input/output
drivers (Drivers), archive subsystem (Archives) and real-time subsystem, which in-
cludes quick computation tasks (see the QTASK function block description for details)
and four priority levels (Level0 to Level3) for inserting computation tasks (see the
TASK function block description for details).

The base (shortest) period of the application is determined by the tick parameter.
This value is checked by the REXYGEN Compiler compiler as its limits vary by selected
target platform. Generally speaking, the lower period is used, the higher computational
requirements of the REXYGEN system runtime core (RexCore) are.

The periods of individual computation levels (Level0 to Level3) are determined by
multiplying the base period tick by the parameters ntick0 to ntick3. Parameters pri0
to pri3 are the logical priorities of corresponding computation levels in the REXYGEN

system. The REXYGEN system uses 32 logical priorities, which are internally mapped to
the target platform operating system dependent priorities. The highest logical priority
of the REXYGEN system is 0, the value 31 means the lowest. Should two tasks with
di�erent priorities run at the same time, the lower priority (higher value) task would be

28 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

interrupted by the higher priority (lower value) task.
The default priorities pri0 to pri3 re�ect the commonly accepted idea that the

"fast" tasks (short sampling period) should have higher priority than the "slow" ones
(the so-called Rate monotonic scheduling). This means that the default priorities need
not to be changed in most cases. Impetuous changes can lead to unpredictable e�ects!

In devices with multiple CPUs, it is possible to assign di�erent levels to various CPUs.
The assignment of CPUs is managed using the parameters cpu0 to cpu3. The CPUs are
numbered starting from 0, where -1 denotes the default setting.

Outputs

Modules Output for connecting the REXYGEN system expansion modules,
see the MODULE function block description for details

Long (I32)

Drivers Output for connecting the REXYGEN system input/output
drivers, see the IODRV and TIODRV function block descriptions
for details

Long (I32)

Archives Output for archives con�guration, see the ARC block Long (I32)

QTask Output for connecting quick tasks with the highest priority and
the shortest period, see the QTASK block

Long (I32)

Level0 Computation level for inserting tasks (see the TASK block) with
high priority pri0 and short period determined by the ntick0

parameter

Long (I32)

Level1 Computation level for inserting tasks with medium priority pri1

and medium-length period determined by the ntick1 parameter
Long (I32)

Level2 Computation level for inserting tasks with low priority pri2 and
long period determined by the ntick2 parameter

Long (I32)

Level3 Computation level for inserting tasks with the lowest priority
pri3 and the longest period determined by the ntick3 parameter

Long (I32)

Parameters

target Target device ⊙Generic target device StringGeneric target device

tick The base period (tick) of the REXYGEN system core and also the
quick task (QTASK) period (in seconds) ⊙0.05

Double (F64)

ntick0 The multiplication tick*ntick0 determines the period of tasks
connected to Level0 ↓1 ⊙10

Long (I32)

ntick1 The multiplication tick*ntick1 determines the period of tasks
connected to Level1 ↓ntick0+1 ⊙50

Long (I32)

ntick2 The multiplication tick*ntick2 determines the period of tasks
connected to Level2 ↓ntick1+1 ⊙100

Long (I32)

ntick3 The multiplication tick*ntick3 determines the period of tasks
connected to Level3 ↓ntick2+1 ⊙1200

Long (I32)

pri0 Priority of all Level0 tasks ↓3 ↑31 ⊙5 Long (I32)

pri1 Priority of all Level1 tasks ↓pri0+1 ↑31 ⊙9 Long (I32)

29

pri2 Priority of all Level2 tasks ↓pri1+1 ↑31 ⊙13 Long (I32)

pri3 Priority of all Level3 tasks ↓pri2+1 ↑31 ⊙18 Long (I32)

cpu0 Level0 tasks CPU core (-1=default, 0=core 0, 1=core 1, ...)
↓-1 ↑127 ⊙-1

Long (I32)

cpu1 Level1 tasks CPU core (-1=default, 0=core 0, 1=core 1, ...)
↓-1 ↑127 ⊙-1

Long (I32)

cpu2 Level2 tasks CPU core (-1=default, 0=core 0, 1=core 1, ...)
↓-1 ↑127 ⊙-1

Long (I32)

cpu3 Level3 tasks CPU core (-1=default, 0=core 0, 1=core 1, ...)
↓-1 ↑127 ⊙-1

Long (I32)

30 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

HMI � Human-Machine Interface Con�guration

Block Symbol Licence: STANDARD

HMI

Function Description

The HMI block is a so-called "pseudo-block" which stores additional settings and param-
eters related to the Human-Machine Interface (HMI) and the contents of the internal
web server. The only �le where the block can be placed is the main project �le with a
single EXEC block.

The REXYGEN system currently provides three straightforward methods of how to
create Human-Machine Interface:

• WebWatch is an auto-generated HMI from the REXYGEN Studio development
tool during project compilation. It has similar look, attributes and functions as the
online mode of the REXYGEN Studio development tool. The main di�erence is that
WebWatch is stored on the target device, is available from the integrated web
server and may be viewed with any modern web browser or any application that is
compatible with HTML, SVG and JavaScript. The WebWatch is a perfect tool
for instant creation of HMI that is suitable for system developers or integrators. It
provides a graphical interaction with almost all signals in the control algorithm.

• WebBuDi, which is an acronym for Web Buttons and Displays, is a simple
JavaScript �le with several declarative blocks that describe data points which the
HMI is connected to and assemble a table in which all the data is presented. It
provides a textual interaction with selected signals and is suitable for system de-
velopers and integrators or may serve as a fall-back mode HMI for non-standard
situations.

• RexHMI is a standard SVG �le that is edited using REXYGEN HMI Designer. The
REXYGEN HMI Designer is a great tool for creating graphical HMI that is suitable
for operators and other end users.

The IncludeHMI parameter includes or excludes the HMI �les from the �nal binary
form of the project. The HmiDir speci�es a path to a directory where the �nal HMI is
located and from where it is inserted into the binary �le during project compilation.
The path may be absolute or relative to the project. The GenerateWebWatch speci�es
whether a WebWatch HMI should be generated into HmiDir during compilation. The
GenerateRexHMI speci�es whether a RexHMI andWebBuDi should be generated into
HmiDir during compilation.

The logic of generating and including HMI during project compilation is as follows:

31

1. Delete all contents from HmiDir when GenerateWebWatch or GenerateRexHMI is
speci�ed.

2. Generate RexHMI and WebBuDi from SourceDir into HmiDir if GenerateRexHMI
is enabled. All WebBuDi source �les should be named in a *.hmi.js format and
all RexHMI source �les should be named in a *.hmi.svg format. The generated
�les are then named *.html.

3. Copy all contents from SourceDir exceptWebBuDi or RexHMI source �les into
HmiDir if IncludeHMI is enabled.

4. Insert HMI from HmiDir into binary con�guration if IncludeHMI is enabled.

The block does not have any inputs or outputs. The HMI block itself does not become
a part of the �nal binary con�guration, only the �les it points to do. Be careful when
inserting big �les or directories as the integrated web server is not designed for mas-
sive data transfers. It is possible to shrink the data by enabling gzip compression. The
compression also reduces amount of data transferred to the client, but decompression
must be performed by the server when a client does not support gzip compression, which
brings additional load on the target device.

For a proper operation of the HMI block the compilation must be launched from the
REXYGEN Studio development tool and the REXYGEN HMI Designer must be installed.

Parameters

IncludeHMI Include HMI �les in the project ⊙on Bool

HmiDir Output folder for HMI �les ⊙hmi String

SourceDir Source directory ⊙hmisrc String

GenerateWebWatch Generate WebWatch HMI �les ⊙on Bool

GenerateRexHMI Generate HMI from SVG and JS �les ⊙on Bool

RedirectToHMI Web server will automatically redirect to HMI webpage if
enabled otherwise it will serve a standard home page as a starting
page. ⊙on

Bool

Compression Enables data compression in gzip format. Bool

32 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

INFO � Description of Algorithm

Block Symbol Licence: STANDARD

INFO

Function Description

The INFO block is a so-called "pseudo-block" which stores textual information about a
real-time executive. The only �le where the block can be placed is a main project �le
with a single EXEC block an so it belongs to the EXEC category. The block does not have
any inputs or outputs. The information speci�ed with this block becomes a part of the
�nal con�guration, is stored on the target device and may be seen on di�erent diagnostics
screens but does not have any impact on execution of the control algorithm or target's
behavior.

Parameters

Title Project title String

Author Project author String

Description Brief description of the project String

Customer Information about a customer String

33

IODRV � The REXYGEN system input/output driver

Block Symbol Licence: STANDARD

IODRV

prev next

Function Description

The input/output drivers of the REXYGEN system are implemented as extension modules
(see the MODULE block). A module can contain several drivers, which are added to the
REXYGEN system con�guration by using the IODRV blocks. The prev input of the block
must be connected with the Drivers output of the EXEC block or with the next output of
a IODRV block which is already included in the con�guration. There can be only one driver
connected to the next output of the IODRV block. The next output of the last driver in the
con�guration remains unconnected. This means that the drivers create a unidirectional
chain which de�nes the order of initialization and execution of the individual drivers.

Each driver of the REXYGEN system is identi�ed by its name, which is de�ned by
the classname parameter (beware, the name is case-sensitive!). If the name of the driver
di�ers from the name of the module containing the given driver, the module name must
be speci�ed by the module parameter, it is left blank otherwise. Details about these two
parameters can be found in the documentation of the corresponding REXYGEN system
driver.

The majority of drivers stores its own con�guration data in �les with .rio extension
(REXYGEN Input/Output), whose name is speci�ed by the cfgname parameter. The .rio
�les are created in the same directory where the project main �le is located (.mdl �le with
the EXEC block). Driver is con�gured (e.g. names of the input/output signals, connection
to physical inputs/outputs, parameters of communication with the input/output device,
etc.) in an embedded editor provided by the driver itself. The editor is opened when the
Configure button is pressed in the parameter dialog of the IODRV block in the REXYGEN
Studio program of the REXYGEN control system. In Matlab/Simulink the editor is opened
upon ticking the "Tick this checkbox to call IOdrv EDIT dialog" checkbox.

The remaining parameters are useful only when the driver implements its own com-
putational task (see the corresponding driver documentation). The factor parameter
de�nes the driver's task execution period by multiplying the EXEC block's tick param-
eter factor times (factor*tick). The stack parameter de�nes the stack size in bytes.
It is recommended to keep the default setting unless stated otherwise in the driver
documentation. The parameter pri de�nes the logical priority of the driver's task. Inap-
propriate priority can in�uence the overall performance of the control system critically so
it is highly recommended to check the driver documentation and the load of the control
system (drivers, levels and tasks) in the Diagnostics section of the REXYGEN Studio

program. The cpu parameter can be used to specify where the driver thread should run

34 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

on multi-CPU devices.

Input

prev Input for connecting the driver with the Drivers output of the
EXEC block or with the next output of the preceding driver

Long (I32)

Output

next Output for connecting to the prev input of the succeeding driver Long (I32)

Parameters

module Name of the module, which includes the input/output driver
(mandatory only if module name di�ers from classname)

String

classname I/O driver class name; case sensitive! ⊙DrvClass String

cfgname Name of the driver con�guration �le ⊙iodrv.rio String

factor Multiple of the EXEC block's tick parameter de�ning the driver's
task execution period ↓1 ⊙10

Long (I32)

stack Stack size of the driver's task in bytes ↓1024 ⊙10240 Long (I32)

pri Logical priority of the driver's task ↓1 ↑31 ⊙3 Long (I32)

cpu CPU core assigned to driver thread (-1=default, 0=core 0,
1=core 1, ...) ↓-1 ↑127 ⊙-1

Long (I32)

35

IOTASK � Driver-triggered task of the REXYGEN system

Block Symbol Licence: STANDARD

IOTASK

prev next

Function Description

Standard tasks of the REXYGEN system are integrated into the con�guration using the
TASK or QTASK blocks. Such tasks are executed by the system timer, whose tick is
con�gured by the EXEC block.

But the system timer can be unsuitable in some cases, e.g. when the shortest ex-
ecution period is too long or when the task should be executed by an external event
(input signal interrupt) etc. In such a case the IOTASK can be executed directly by the
I/O driver con�gured by the TIODRV block. The user manual of the given driver provides
more details about the possibility and conditions of using the above mentioned approach.

Input

prev Input for connecting the �rst task to the Tasks output of the
TIODRV block or for connecting to the previous task's next output

Long (I32)

Output

next Output for sequencing the tasks by connecting to the prev input
of the following task

Long (I32)

Parameters

factor Execution factor which can be used to determine the task
execution period, see the user guide of the corresponding I/O
driver ⊙1

Long (I32)

stack Stack size [bytes] ⊙10240 Long (I32)

filename Name of the �le with the .mdl extension which contains the task
algorithm; in the case filename is not speci�ed, the �lename is
given by the name of the IOTASK block in the project main �le
(the .mdl extension is attached automatically)

String

36 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

LPBRK � Loop break

Block Symbol Licence: STANDARD

Function Description

The LPBRK block is an auxiliary block often used in the control schemes consisting of the
REXYGEN system function blocks. The block is usually placed in all feedback loops in
the scheme. Its behavior di�ers in the REXYGEN system and the Simulink system.

The LPBRK block creates a one-sample delay in the Simulink system. If there exists
a feedback loop without the LPBRK block, the Simulink system detects an algebraic loop
and issues a warning (Matlab version 6.1 and above). The simulation fails after some
time.

The REXYGEN Compiler omits the LPBRK block, the only e�ect of this block is the
breaking of the feedback loop at the block's position. If there exists a loop without the
LPBRK block, the REXYGEN Compiler compiler issues a warning and breaks the loop at an
automatically determined position. It is recommended to use the LPBRK block in all loops
to achieve the maximum compatibility between the REXYGEN system and the Simulink
system.

Note: Behavior of the LPBRK block has been changed since the version 3.0. The block
is not removed by the REXYGEN Compiler but is present in the algorithm and clears
the quality �ag of the y output. This change is useful and necessary due to the quality
propagation in function blocks. Original behaviour (e.g. the block is removed from the
algorithm) can be forced by the RB = on parameter. The main function of the block
(indication of the feedback signal) remains unchanged in all cases.

Input

u Input signal Double (F64)

Output

y Output signal Double (F64)

Parameters

RB Removing block �ag Bool

37

MODULE � Extension module of the REXYGEN system

Block Symbol Licence: STANDARD

MODULE

prev next

Function Description

The REXYGEN system has an open architecture thus its functionality can be extended.
Such extension is provided by modules. Each module is identi�ed by its name placed
below the block symbol. The individual modules are added to the project main �le by
connecting the prev input with the Modules output of the EXEC block or with the next
output of a MODULE which is already included in the project. There can be only one
module connected to the next output of the MODULE block. The next output of the
last module in the project remains unconnected. This means that the modules create a
unidirectional chain which de�nes the order of initialization of individual modules.

Input

prev Input for connecting the module with the Modules output of the
EXEC block or with the next output of the preceding module

Long (I32)

Output

next Output for connecting to the prev input of the succeeding
module

Long (I32)

38 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

OSCALL � Operating system calls

Block Symbol Licence: STANDARD

OSCALL

TRG
E

iE

Function Description

The OSCALL block is intended for executing operating system functions from within the
REXYGEN system. The chosen action is performed upon a rising edge (off→on) at the
TRG input. However, not all actions are supported on individual platforms. The result of
the operation and the possible error code are displayed by the E and iE outputs.

Note that there is also the EPC block available, which allows execution of external
programs.

Input

TRG Trigger of the selected action Bool

Outputs

E Error �ag Bool

iE Error code Long (I32)

i REXYGEN general error

Parameter

action System function to perform ⊙1 Long (I32)

1 Reboot system
2 System shutdown
3 System halt
4 Flush disc caches
5 Lock system partition
6 Unlock system partition
7 Disable internal webserver
8 Enable internal webserver

39

PROJECT � Additional Project Settings

Block Symbol Licence: STANDARD

PROJECT

Function Description

The PROJECT block is a so-called "pseudo-block" which stores additional settings and
parameters related to a project and a real-time executive. The only �le where the block
can be placed is a main project �le with a single EXEC block an so it belongs to the EXEC
category.

The block does not have any inputs or outputs. The block does not become a part
of the �nal binary con�guration.

Parameters

CompileParams Command-line options that are passed to REXYGEN

Compiler during project compilation. To display the
documentation for the available parameters, run REXYGEN

Compiler from the command line with the parameter -?:
RexComp -?.

String

SourcesOnTarget Store source �les on target device ⊙on Bool

TargetURL URL address of a target on which the con�guration should
be run. The address is inserted into all connection dialogs
automatically.

String

LibraryPath Path to libraries referenced in the project. Can be absolute or
relative to project folder.

String

40 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

QTASK � Quick task of the REXYGEN system

Block Symbol Licence: STANDARD

QTASK

prev

Function Description

The QTASK block is used for including the so-called quick task with high priority into the
executive of the REXYGEN system. This task is used where the fastest processing of the
input signals is necessary, e.g. digital �ltering of input signals corrupted with noise or
immediate processing of switches connected via digital inputs. The quick task is added
into the con�guration by connecting the prev input with the EXEC block's QTask output.
The quick task is initialized before the initialization of the Level0 computation level (see
the TASK block).

There can be only one QTASK block in the REXYGEN control system. It runs with the
logical priority no. 2. The algorithm of the quick task is con�gured the same way as the
standard TASK, it is a separate .mdl �le.

The execution period of the task is given by a multiple of the factor parameter and
the tick of the EXEC block. The task is executed with the shortest period of tick seconds
for factor=1. In that case the system load is the highest. Under all circumstances the
QTASK must be executed within tick seconds, otherwise a real-time executive fatal error
occurs and no other tasks are executed. Therefore the QTASK block must be used with
consideration. The block's execution time is shown in the Diagnostics section of the
REXYGEN Studio program.

Input

prev Input for connecting the task with the QTask output of the EXEC
block

Long (I32)

Parameters

factor Multiple of the EXEC block's tick parameter de�ning the quick
task execution period ⊙1

Long (I32)

stack Stack size [bytes] ⊙10240 Long (I32)

filename Name of the �le with the .mdl extension which contains the
quick task algorithm; in the case filename is not speci�ed, the
�lename is given by the name of the QTASK block in the project
main �le (the .mdl extension is attached automatically)

String

41

SLEEP � Timing in Simulink

Block Symbol Licence: STANDARD

SLEEP

Function Description

The Matlab/Simulink system works natively in simulation time, which can run faster or
slower than real time, depending on the complexity of the algorithm and the computing
power available. Therefore the SLEEP block must be used when accurate timing and
execution of the algorithm in the Matlab/Simulink system is required. In the REXYGEN
system, timing and execution is provided by system resources (see the EXEC block) and
the SLEEP block is ignored.

In order to perform real-time simulation of the algorithm, the SLEEP block must be
included. It guarantees that the algorithm is executed with the period given by the ts

parameter unless the execution time is longer than the requested period.
The SLEEP block is implemented for Matlab/Simulink running in Microsoft Win-

dows operating system. It is recommended to use periods of 100 ms and above. For the
proper functionality the 'Solver type' must be set to fixed-step and discrete (no

continuous states) in the 'Solver' tab of the 'Simulation parameters' dialog. Further
the Fixed step size parameter must be equal to the ts parameter of the SLEEP block.
There should be at most one SLEEP block in the whole simulation scheme (including all
subsystems).

Parameter

ts Simulation scheme execution period (in seconds) ⊙0.1 Double (F64)

42 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

SRTF � Set run-time �ags

Block Symbol Licence: ADVANCED

SRTF

EXDIS

EXOSH

DGEN

DGRES

DGLOG

E

iE

Function Description

The SRTF block (Set Run-Time Flags) can be used to in�uence the execution of tasks
, subsystems (sequences) and blocks of the REXYGEN system. This block is not meant
for use in Matlab-Simulink. When describing this block, the term object refers to a
REXYGEN system object running in real-time, i.e. input/output driver, one of the tasks,
subsystem or a simple function block of the REXYGEN system.

All the operations described below a�ect the object, whose full path is given by
the bname parameter. Should the parameter be left blank (empty string), the operation
applies to the nearest owner of the SRTF object, i.e. the subsystem in which the block is
directly included or the task containing the block.

The run-time �ags allow the following operations:

• Disable execution of the object by setting the EXDIS input to on. The execution
can be enabled again by using the input signal EXDIS = off. The EXDIS input sets
the same run-time �ag as the Halt/Run button in the upper right corner of the
Workspace tab in the Diagnostics of the REXYGEN Studio program.

• One-shot execution of the object. If the object execution is disabled by the
EXDIS = on input or by the Diagnostics section of the REXYGEN Studio program,
it is possible to trigger one-shot execution by EXOSH = on.

• Enable diagnostics for the given object by DGEN = on. The result is equivalent to
ticking the Enable checkbox in the Diagnostics section of the corresponding tab
(I/O Driver, Level, Quick Task, Task, I/O Task, Sequence) of the REXYGEN

Studio program.

• Reset diagnostic data of the given object by DGRES = on. The same �ag can be
set by the Reset button in the Diagnostics section of the corresponding tab in
the REXYGEN Studio program. The �ag is automatically set back to 0 when the
data reset is performed.

The following table shows the �ags available for various objects in the REXYGEN

system.

43

Object type EXDIS EXOSH DGEN DGRES

I/O Driver
√ √ √ √

Level
√

×
√ √

Task
√ √ √ √

Quick Task
√ √ √ √

I/O Task
√ √ √ √

Sequence, subsystem
√

×
√ √

Block
√

× × ×

Inputs

EXDIS Disable execution Bool

EXOSH One-shot execution Bool

DGEN Enable diagnostics Bool

DGRES Reset diagnostic data Bool

DLOG Enable more verbose logging Bool

Outputs

E Error �ag Bool

off . . . No error
on An error occurred

iE Error code (for E = on) Long (I32)

0 No error
1 The object speci�ed by the bname parameter was not

found
2 REXYGEN system internal error (invalid pointers)
3 Flag could not be set (timeout)

Parameter

bname Full path to the block/object. Case sensitive. Individual layers
are separated by dots, the object names excluding tasks (TASK,
QTASK) start with the following special characters:

String

� Computational level, e.g. �0 for Level0
& Input/Output Driver, e.g. &WcnDrv

Name of the task triggered by input/output driver (IOTASK) has
the form &<driver_name>.<task_name>.

44 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

STATELOAD � Load multiple block states and parameters

Block Symbol Licence: ADVANCED

STATELOAD

LOAD

InState

uChain

DONE

iE

Function Description

The STATELOAD block reloads values of state and parameters from a �le or string. The
�le is speci�ed by the filename parameter and must be in JSON format, usually stored
by the STATESAVE block. It is also possible to read data from the InState input, which
is a JSON string in the same format as the input �le. The InState input is used if the
filename parameter is empty.

All values con�gured by the parameters blocks, depth, and mask that are stored
in the �le are loaded. If the parameter Strict is set to on, the block checks if the
con�gured blocks and values match those stored in the �le, and the �le is refused if there
is a mismatch.

Inputs

LOAD Trigger to load the state Bool

InState JSON string to load if the filename parameter is empty String

uChain This input is not used by the block but is useful for placing the
block in the correct execution order

Long (I32)

Parameters

filename Filename from which to load String

blocks List of blocks to load. The block name must be a relative
connection string (e.g. beginning with a dot) and they are
separated by semicolons. All blocks (in the current subsystem)
are loaded if this parameter is empty

String

depth If the loading block is a subsystem, this parameter speci�es how
many levels are also loaded. 0 = current level only, 1 = current
level and blocks directly in the current level subsystems, etc.

↓0 ↑65535

Long (I32)

45

mask Select which objects are loaded. Each bit of the number signi�es:

• 1 ... inputs

• 2 ... outputs

• 4 ... parameters

• 8 ... internal states

• 16 ... array parameters

• 32 ... array states

• 64 ... cyclic (trend) bu�ers

• 256 ... metadata (STATESAVE only)

↓0 ↑65535 ⊙65535

Long (I32)

LoadOnInit The �le is loaded during the con�guration initialization ⊙on Bool

STRICT If set, the �le is checked against the current con�guration and
data are refused if there is a mismatch ⊙on

Bool

Outputs

DONE State has been loaded Bool

iE Error code if block execution fails Error

46 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

STATESAVE � Save multiple block states and parameters

Block Symbol Licence: ADVANCED

STATESAVE

SAVE

uChain

OutState

DONE

iE

Function Description

The STATESAVE block stores the values of states and parameters in a �le. The �le is
speci�ed by the filename parameter and is in JSON format, which can usually be
reloaded by the STATELOAD block. It is also possible to store data in the OutState output,
which is a JSON string in the same format as the �le output. The OutState output is
used if the filename parameter is empty.

All values con�gured by the parameters blocks, depth, and mask are stored.

Inputs

SAVE Trigger to save the state Bool

uChain This input is not used by the block but is useful for placing the
block in the correct execution order.

Long (I32)

Parameters

filename Filename where to store String

blocks List of blocks to store. Block names must be relative connection
strings (e.g., begin with a dot) and are separated by semicolons.
All blocks (within the current subsystem) are stored if the
parameter is empty.

String

depth If the saved block is a subsystem, this parameter speci�es the
number of levels to save. 0 = current level only, 1 = current level
and blocks directly in the current level subsystems, etc.

↓0 ↑65535

Long (I32)

47

mask Select which objects are saved. Each bit of the number represents:

• 1 ... inputs

• 2 ... outputs

• 4 ... parameters

• 8 ... internal states

• 16 ... array parameters

• 32 ... array states

• 64 ... cyclic (trend) bu�ers

• 256 ... metadata (STATESAVE only)

↓0 ↑65535 ⊙65535

Long (I32)

SaveOnExit If set, the �le is stored when the entire con�guration is
terminated. ⊙on

Bool

Outputs

OutState JSON string where values are stored (only if the filename

parameter is empty)
String

DONE Indicates whether the state has been saved Bool

iE Error code if block execution fails Error

48 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

"

SYSEVENT � ∗ Read system log

Block Symbol Licence: STANDARD

SYSEVENT

VALID

sEvent

sVal

iVal

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Parameters

arc Archive to read (0=system log) ↓0 ↑16 Long (I32)

filter String that item must contain String

idfrom Minimum item ID to show ↓0 ↑65535 Long (I32)

idto Maximum item ID to show ↓0 ↑65535 ⊙65655 Long (I32)

lvlfrom Minimum item level to show ↓0 ↑255 Long (I32)

lvlto Maximum item level to show ↓0 ↑255 ⊙255 Long (I32)

Outputs

VALID Output data are valid (actual) Bool

sEvent Whole archive item in JSOM String

sVal Archive item value (string) String

iVal Archive item value (integer) Long (I32)

49

SYSLOG � Write system log

Block Symbol Licence: STANDARD

SYSLOG

msg
lvl
RUN

Function Description

The SYSLOG block is intended for writing any messages to the REXYGEN system log. It
can be used for basic logging of user events. To write, it is necessary to have messages
of the given level enabled in the System Logs Con�guration (Target -> System Logs
Con�guration -> Function block messages).

Inputs

msg The message you want to save to the log (max. 512 znak·) String

lvl Level of logged message: Long (I32)

0 Error
1 Warning
2 Info
3 Verbose

RUN Writing enable. Writing to the log continues as long as the RUN

input is ON
Bool

50 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

TASK � Standard task of the REXYGEN system

Block Symbol Licence: STANDARD

TASK

prev next

Function Description

The overall control algorithm of the REXYGEN system consists of individual tasks. These
are included by using the TASK block. There can be one or more tasks in the control
algorithm. The REXYGEN system contains four main computational levels represented
by the Level0 to Level3 outputs of the EXEC block. The individual tasks are added to
the given computational level <i> by connecting the prev input with the corresponding
Level<i> output or with the next output of a TASK, which is already included in the given
level <i>. There can be only one task connected to the next output of the TASK block.
The next output of the last task in the given level remains unconnected. This means that
the tasks in one level create a unidirectional chain which de�nes the order of initialization
and execution of the individual tasks of the given level in the REXYGEN system. The
individual levels are ordered from Level0 to Level3 (the QTASK block precedes Level0).

All tasks at the given level <i> are executed with the same priority, which is deter-
mined by the pri<i> parameter of the EXEC block. The execution period of the task is
calculated as a multiple of the factor parameter and the base tick of the ntick<i>∗tick
in the EXEC block.

The time allocated for task execution starts at the start tick and ends at the stop

tick. The start and stop values can be �xed or left to be controlled by the RexCore. For
RexCore control, the parameters can be �lled in as follows:

• start = -1: The execution begins as soon as the previous Task ends.

• start = -2: The execution starts on the next tick after the completion of the
previous task.

• stop = -1: The task execution must �nish before the end of ntick<i>*tick.

• stop = -2: The task execution must �nish in the next tick.

For �xed execution times, start and stop should be a non-negative integer.
The REXYGEN Compiler compiler additionally veri�es that the stop parameter of the

preceding task is less than or equal to the stop parameter of the succeeding task. This
ensures that the allocated time intervals for individual tasks do not overlap. If the timing
of individual levels is inappropriate, tasks may be interrupted by tasks and other events
with higher priority. In such cases, execution is not aborted but delayed (in contrast to
the QTASK block). The Diagnostics section of the REXYGEN Studio program assesses
whether the execution delay is occasional or permanent (the Level and Task tabs).

51

Input

prev Input for connecting the task with the corresponding Level<i>

output of the EXEC block or with the next output of the preceding
task of the given level

Long (I32)

Output

next Output for connecting to the prev input of the succeeding task
in the given level

Long (I32)

Parameters

factor Execution factor; multiple of the execution period of the i-th
level of the EXEC block de�ning the execution period of the task:
factor ∗ tick ∗ ntick<i> ⊙1

Long (I32)

start Number of tick of the given computational level which should
trigger the task execution ↓0 ↑ntick<i> ⊙0

Long (I32)

stop Number of tick of the given computational level by which the
task execution should �nish ↓start+1 ↑ntick<i> ⊙1

Long (I32)

stack Stack size [bytes] ⊙10240 Long (I32)

filename Name of the �le with the .mdl extension which contains the task
algorithm. In the case filename is not speci�ed, the �lename is
given by the name of the TASK block in the project main �le (the
.mdl extension is attached automatically)

String

52 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

TIODRV � The REXYGEN system input/output driver with
tasks

Block Symbol Licence: STANDARD

TIODRV

prev
next
Tasks

Function Description

The TIODRV block is used for con�guration of special drivers of the REXYGEN system
which are able to execute tasks de�ned by the IOTASK blocks. See the corresponding
driver documentation.

The prev input of the IOTASK block must be connected with the Tasks output of
the TIODRV block. If the driver allows so, the next output of a TIODRV block which is
already included in the con�guration can be used to add more tasks. The next output of
the last task remains unconnected. On the contrary to standard tasks, the number and
order of the driver's tasks are not checked by the REXYGEN Compiler compiler but by
the input-output driver itself.

If the driver cannot guarantee periodic execution of some task (e.g. task is triggered
by an external event), a corresponding �ag is set for the given task. Such a task cannot
contain blocks which require constant sampling period (e.g. the majority of controllers).
If some of these restricted blocks are used, the executive issues a task execution error,
which can be traced using the Diagnostics section of the REXYGEN Studio program. The
cpu parameter can be used to specify where the driver thread should run on multi-CPU
devices.

Input

prev Input for connecting the driver with the Drivers output of the
EXEC block or with the next output of the preceding driver

Long (I32)

Outputs

next Output for connecting to the prev input of the succeeding driver Long (I32)

Tasks The IOTASK blocks executed by the driver are connected to this
output using the prev input

Long (I32)

Parameters

module Name of the module, which includes the input/output driver
(mandatory only if module name di�ers from classname)

String

classname Name of the driver class; case sensitive! ⊙DrvClass String

53

cfgname Name of the driver con�guration �le ⊙iodrv.rio String

factor Multiple of the EXEC block's tick parameter de�ning the driver's
task execution period ↓1 ⊙10

Long (I32)

stack Stack size of the driver's task in bytes ↓1024 ⊙10240 Long (I32)

pri Logical priority of the driver's task ↓1 ↑31 ⊙3 Long (I32)

cpu CPU core assigned to driver thread (-1=default, 0=core 0,
1=core 1, ...) ↓-1 ↑127 ⊙-1

Long (I32)

54 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

WWW � Internal Web Server Content

Block Symbol Licence: STANDARD

WWW

Function Description

The WWW block is a so-called "pseudo-block" which stores additional information about a
contents of an internal web server. The only �le where the block can be placed is a main
project �le with a single EXEC block an so it belongs to the EXEC category.

The block does not have any inputs or outputs. The block itself does not become
a part of a �nal binary con�guration but the data it points to does. Be careful when
inserting big �les or directories as the integrated web server is not optimized for a large
data. It is possible to shrink the data by enabling gzip compression. The compression
also reduces amount of data transferred to the client, but decompression must be per-
formed on the server side when a client does not support gzip compression which brings
additional load on the target device.

Parameters

Source Speci�es a source directory or a �le name that should be placed
on the target and should be available via integrated web server
using standard HTTP and/or HTTPS protocol. The path may
be absolute or relative to path of a main project �le.

String

Target Speci�es a target directory or a �le name on the integrated web
server.

String

Compression Enables data compression in gzip format. Bool

Chapter 3

INOUT � Input and output blocks

Contents

Display � Numeric display of input values 56

From, INSTD � Signal connection or input 58

Goto, OUTSTD � Signal source or output 60

GotoTagVisibility � Visibility of the signal source 62

Inport, Outport � Input and output port 63

SubSystem � Subsystem block . 65

INQUAD, INOCT, INHEXD � Multi-input blocks 67

OUTQUAD, OUTOCT, OUTHEXD � Multi-output blocks 68

OUTRQUAD, OUTROCT, OUTRHEXD � Multi-output blocks with veri�cation 70

OUTRSTD � Output block with veri�cation 71

QFC � Quality �ags coding . 72

QFD � Quality �ags decoding . 73

VIN � Validation of the input signal 74

VOUT � Validation of the output signal 75

55

56 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Display � Numeric display of input values

Block Symbol Licence: STANDARD

DispValue

Function Description

The DISPLAY block shows input value in a selected format. A su�x may be appended
to the value. An actual value is shown immediately in REXYGEN Studio even without
turning on Watch mode for the block, and the same in WebWatch. Actual conversion of
input into its textual representation is performed on the target device in each Decimation

period so the value displayed may be also read via the REST interface or used in visu-
alization.

Input

u Input signal Any

57

Parameters

Format Format of displayed value ⊙1 Long (I32)

Best fit same as long, but for extremly small or big
numbers same as long_e; this is default format for
real numbers

short �xed point, no more than 3 places after the decimal
point; default format is used for not-real numbers

long . . �xed point, full precision (up to 16 digits); default
format for is used not-real numbers

short_e exponencial (scienti�c) format, no more than 3
places after the decimal point; default format is used
for not-real numbers

long_e , exponencial (scienti�c) format, full precision (up to
16 digits); default format is used for not-real numbers

bank . . �xed point, 2 places after the decimal point; default
format is used for not-real numbers

dec . . . integer number in decimal format (standard
number); this is default format for integer numbers

hex . . . integer number in hexadecimal format (used by
programmers); default format is used for not-integer
numbers

bin . . . integer number in binary format (used by
programmers); default format is used for not-integer
numbers

oct . . . integer number in octal format (used by
programmers); default format is used for not-integer
numbers

Decimation Value is evaluated in each Decimation period ↓1 ↑100000 ⊙1 Long (I32)

Suffix A string to be appended to the value String

58 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

From, INSTD � Signal connection or input

Block Symbols Licence: STANDARD

[DRV__signal]

Function Description

The two blocks From (signal connection) and INSTD (standard input) share the same
symbol. They are used for referring to another signal, either internal or external.

In the function block library, you can only �nd the From block. It is converted to the
INSTD block at compile time if necessary. The following rules de�ne how the REXYGEN
Compiler compiler distinguishes between the two block types:

• If the parameter GotoTag contains the __ delimiter (two successive '_' characters),
then the block is of the INSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRV type block contained in the main �le of the project. The REXYGEN Compiler

compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the corresponding
driver. This name is validated by the driver and in the case of success, an instance
of the INSTD block is created. This instance collects real-time data from the driver
and feeds the data into the control algorithm at each execution of the task it is
included in.

• If there is no __ delimiter in the GotoTag parameter, the block is of type From.
A matching Goto block with the same GotoTag parameter and required visibility
given by the TagVisibility parameter (see the Goto block description) is searched.
In case it is not found, the REXYGEN Compiler compiler issues a warning and
deletes the From block. Otherwise an "invisible" connection is created between the
corresponding blocks. The From block is removed also in this case and thus it is
not contained in the resulting control system con�guration.

In the case of INSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver:

<DRV>__<signal>

E.g. the �rst digital input of a Modbus I/O device might be referenced by MBM__DI1.
Detailed information about signal naming can be found in the user manual of the corre-
sponding I/O driver.

59

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the �ag MBM__DI<id> will refer to digital input 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

Output

value Signal coming from I/O driver or Goto block. The type of output
is determined by the type of the signal which is being referred
by the GotoTag parameter.

Any

Parameter

GotoTag Reference to a Goto block with the same GotoTag parameter,
which should be connected with the From block or a reference to
input signal of the REXYGEN I/O driver, which should provide
data through the block's output.

String

60 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Goto, OUTSTD � Signal source or output

Block Symbols Licence: STANDARD

[DRV__signal]

Function Description

The two blocks Goto (signal source) and OUTSTD (standard output) share the same sym-
bol. They are used for providing signals, either internal or external.

In the function block library, you can only �nd the Goto block. It is converted to the
OUTSTD block at compile time if necessary. The following rules de�ne how the REXYGEN
Compiler compiler distinguishes between the two block types:

• If the parameter GotoTag contains the __ delimiter (two successive '_' characters),
then the block is of the OUTSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRV type block contained in the main �le of the project. The REXYGEN Compiler

compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the appropriate driver.
This name is validated by the driver and in the case of success, an instance of the
OUTSTD block is created. This instance collects real-time data from the driver and
feeds the data into the control algorithm at each execution of the task it is included
in.

• If there is no __ delimiter in the GotoTag parameter, the block is of type Goto. A
matching From block with the same GotoTag parameter for which the Goto block is
visible is searched. In case it is not found, the REXYGEN Compiler compiler issues a
warning and deletes the Goto block. Otherwise an "invisible" connection is created
between the corresponding blocks. The Goto block is removed also in this case thus
it is not contained in the resulting control system con�guration.

The other parameter of the Goto block de�nes the visibility of the block within the
given .mdl �le. The TagVisibility parameter can be local, global or scoped, whose
meaning is explained in the table below. This parameter is ignored if the block is compiled
as the OUTSTD block.

In the case of OUTSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver:

<DRV>__<signal>

61

E.g. the �rst digital output of a Modbus I/O device might be referenced by MBM__DO1.
Detailed information about signal naming can be found in the user manual of the corre-
sponding I/O driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the �ag MBM__DO<id> will refer to digital output 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

Input

value Signal going to I/O driver or From block. In case of connection to
an I/O driver, the type of input is determined by the I/O driver
from the GotoTag parameter.

Any

Parameters

GotoTag Reference to a From block with the same GotoTag parameter,
which should be connected with the Goto block or a reference
to output signal of the REXYGEN control system driver, which
should send the data from block input to the process.

String

TagVisibility Visibility (availability) of the block within the .mdl �le.
De�nes conditions under which the two corresponding Goto and
From blocks are reciprocally available: ⊙local

String

local the two blocks must be in the same subsystem
global blocks can be anywhere in the given task (.mdl �le)
scoped the From block must be placed in the same

subsystem or in any lower hierarchical level below the
GotoTagVisibility block with the same GotoTag

parameter

62 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

GotoTagVisibility � Visibility of the signal source

Block Symbol Licence: STANDARD

GotoTagVisibility

Function Description

The GotoTagVisibility blocks specify the visibility of the Goto blocks with scoped vis-
ibility. The symbol (tag) de�ned in the Goto block by the GotoTag parameter is available
for all From blocks in the subsystem which contains the appropriate GotoTagVisibility
block and also in all subsystems below in the hierarchy.

The GotoTagVisibility block is required only for Goto blocks whose TagVisibility
parameter is set to scoped. There is no need for the GotoTagVisibility block for local
or global visibility.

The GotoTagVisibility block is used only during project compilation by the REXY-
GEN Compiler compiler. It is not included in the binary con�guration �le for real-time
execution.

Parameter

GotoTag Reference to a Goto block with the GotoTag parameter,
whose visibility is de�ned by the position of this block
(GotoTagVisibility)

String

63

Inport, Outport � Input and output port

Block Symbols Licence: STANDARD

0

Inport

0

Outport

Function Description

The Inport and Outport blocks are used for connecting signals over individual hierar-
chical levels. There are two possible ways to use these blocks in the REXYGEN system:

1. To connect inputs and outputs of the subsystem. The blocks create an interface
between the symbol of the subsystem and its inner algorithm (sequence of blocks
contained in the subsystem). The Inport or Outport blocks are located inside the
subsystem, the name of the given port is displayed in the subsystem symbol in the
upper hierarchy level.

2. To provide connection between various tasks. The port blocks are located in the
highest hierarchy level of the given task (.mdl �le) in this case. The corresponding
Inport and Outport blocks should have the same Block name. The connection
between blocks in various tasks is checked and created by the REXYGEN Compiler

compiler.

The ordering of the blocks to be connected is based on the Port parameter of the
given block. The numberings of the input and output ports are independent on each
other. The numbering is automatic in REXYGEN Studioand it starts at 1. The numbers
of ports must be unique in the given hierarchy level, in case of manual modi�cation of
the port number the other ports are re-numbered automatically. Be aware that after
re-numbering in an already connected subsystem the inputs (or outputs) in the upper
hierarchy level are re-ordered, which results in probably unintended change in signal
mapping!

In the blocks `Inport` and `Outport`, it is also possible to explicitly specify the data
type of the transmitted value using the `OutDataTypeStr` parameter. If no value is
selected (the option `Inherit: auto` is chosen), the value type is determined automatically.

The `Description` parameter allows you to add a textual description of the block.
This description is displayed in the properties of the subsystem and library block if the
`Inport` or `Outport` is used to de�ne the inputs and outputs of the subsystem.

Warning: The blocks Inport and Outport should not be use to connect arrays and
other references between tasks (references often have ref in name and have a type
intptr in the Diagnostics section of the REXYGEN Studio program). Consistence is
not guaranteed in this case; incorrect value could be get and runtime code can crash
in worst case scenario. Typical behaviour is that some array members are from one
period of execution and other members of array from next period. The blocks SETPA and

64 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

GETPA ensure consistent read and write of the array between task. Some blocks guarantee
consistence of references over task boundary (for example RM_AxisSpline). In this case,
this is explicitly stated in the block manual.

Input

value Value going to the output pin or Inport Any

Output

value Value coming from the input pin or Outport Any

Parameters

Port Ordering of the Inport or Outport pins Long (I32)

OutDataTypeStr Data type of item String

Inherit: auto
double
single
uint8
int16
uint16
int32
uint32
boolean
�oat
int64
string
array

Description Description of the port String

65

SubSystem � Subsystem block

Block Symbol Licence: STANDARD

SubSystem

Function Description

The SubSystem block is a cornerstone of hierarchical organization of block diagrams in
REXYGEN. A subsystem is a container for a group of function blocks and their con-
nections, which then appear as a single block. Nesting of subsystems is allowed, i.e. a
subsystem can include additional subsystems.

The runtime core or REXYGEN executes the subsystem as an ordered sequence of
blocks. Therefore the subsystem is sometimes referred to as sequence. All blocks from
the surroundings of the subsystem are executed strictly before or strictly after the whole
subsystem is executed.

Subsystems are also used for creating user-de�ned reusable components, which are
then placed in user libraries.

A library reference can be distinguished from a standard subsystem by the style of
the upper border.

Please refer to [2] for details on using subsystems and creating reusable components
in REXYGEN.

Also see examples 0101-02 and 0101-03 demonstrating the use of subsystems. The
examples are included in REXYGEN Studio.

Inputs

The ordering and names of the inputs are given by the numbers and names of the Inport
blocks contained within the subsystem. See REXYGEN Studio manual [2] for details.

Outputs

66 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

The ordering and names of the outputs are given by the numbers and names of the
Outport blocks contained within the subsystem. See REXYGEN Studio manual [2] for
details.

Parameters

The parameters of the subsystem are de�ned by the so-called subsystem mask. See
REXYGEN Studio manual [2] for details.

67

INQUAD, INOCT, INHEXD � Multi-input blocks

Block Symbols Licence: STANDARD

INQUAD

val0

val1

val2

val3

INOCT

val0

val1

val2

val3

val4

val5

val6

val7

INHEXD

val0

val1

val2

val3

val4

val5

val6

val7

val8

val9

val10

val11

val12

val13

val14

val15

Function Description

The REXYGEN system allows not only reading of a single input signal but also simulta-
neous reading of multiple signals through just one block (for example all signals from one
module or plug-in board). The blocks INQUAD, INOCT and INHEXD are designed for these
purposes. They di�er only in the maximum number of signals (4, 8 and 16, respectively).

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks.
E.g. the digital inputs of a Modbus I/O device might be referenced by MBM__DI. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for data acquisition through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are read simultane-
ously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the name MBM__module<id> will refer to module 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

Outputs

vali Input signals fed into the control algorithm through
input/output drivers. The type and location of individual
signals is described in the user manual for the given driver.

Any

68 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

OUTQUAD, OUTOCT, OUTHEXD � Multi-output blocks

Block Symbols Licence: STANDARD

OUTQUAD

val0

val1

val2

val3

OUTOCT

val0

val1

val2

val3

val4

val5

val6

val7

OUTHEXD

val0

val1

val2

val3

val4

val5

val6

val7

val8

val9

val10

val11

val12

val13

val14

val15

Function Description

The REXYGEN system allows not only writing of a single output signal but also simul-
taneous writing of multiple signals through just one block (for example all signals of
one module or plug-in board). The blocks OUTQUAD, OUTOCT and OUTHEXD are designed
for these purposes. They di�er only in the maximum number of signals (4, 8 and 16,
respectively). These blocks are not included in the RexLib function block library for
Matlab-Simulink.

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks. E.g.
the digital outputs of a Modbus I/O device might be referenced by MBM__DO. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for setting the outputs through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are written simulta-
neously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver signals.
This is useful inside subsystems where this placeholder is replaced by the value of sub-
system parameter. E.g. the name MBM__module<id> will refer to signals of module 1, 2,
3 etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

69

Inputs

vali Signals to be sent to the process via the input/output driver.
The type and location of individual signals is described in the
user manual for the given driver.

Any

70 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

OUTRQUAD, OUTROCT, OUTRHEXD � Multi-output blocks with veri-
�cation

Block Symbols Licence: ADVANCED

OUTRQUAD

val0

val1

val2

val3

raw0

raw1

raw2

raw3

OUTROCT

val0

val1

val2

val3

val4

val5

val6

val7

raw0

raw1

raw2

raw3

raw4

raw5

raw6

raw7

OUTRHEXD

val0

val1

val2

val3

val4

val5

val6

val7

val8

val9

val10

val11

val12

val13

val14

val15

raw0

raw1

raw2

raw3

raw4

raw5

raw6

raw7

raw8

raw9

raw10

raw11

raw12

raw13

raw14

raw15

Function Description

The OUTRQUAD, OUTROCT and OUTRHEXD blocks allow simultaneous writing of multiple
signals, they are similar to the OUTQUAD, OUTOCT and OUTHEXD blocks. Additionally they
provide feedback information about the result of write operation for the given output.

There are two ways to inform the control algorithm about the result of write operation
through the rawi output:

• Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of D/A converter (thus the raw notation).

• Through reading the quality �ags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The rawi outputs are not always refreshed right at the moment of block execution, there
is some delay given by the properties of the driver, communication line and/or target
platform.

Inputs

vali Output signals de�ned by the control algorithm through the
input/output driver. The type and location of individual signals
is described in the user manual for the given driver.

Any

Outputs

rawi Feedback information about the write operation result. The type
and meaning of individual signals is described in the user manual
for the given driver.

Any

71

OUTRSTD � Output block with veri�cation

Block Symbol Licence: ADVANCED

OUTRSTD

raw

Function Description

The OUTRSTD block is similar to the OUTSTD block. Additionally it provides feedback
information about the result of write operation for the output signal.

There are two ways to inform the control algorithm about the result of write operation
through the raw output:

• Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of D/A converter (thus the raw notation).

• Through reading the quality �ags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The raw outputs is not refreshed right at the moment of block execution, there is some
delay given by the properties of the driver, communication line and/or target platform.

Input

value Output signal de�ned by the control algorithm through the
input/output driver. The type and naming of the signal is
described in the user manual for the given driver.

Any

Output

raw Feedback information about the write operation result. The type
and meaning of the signal is described in the user manual for the
given driver.

Any

72 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

QFC � Quality �ags coding

Block Symbol Licence: STANDARD

QFC

iq
is
il
iqf

Function Description

The QFC block creates the resulting signal iqf representing the quality �ags by combining
three components iq, is and il. The quality �ags are part of each input or output signal
in the REXYGEN system. Further details about quality �ags can be found in chapter 1.4
of this manual. The RexLib function block library for Matlab-Simulink does not use any
quality �ags.

It is possible to use the QFC block together with the VOUT block to force arbitrary
quality �ags for a given signal. Reversed function to the QFC block is performed by the
QFD block.

Inputs

iq Basic quality type �ags, see table 1.2, page 19 Long (I32)

is Substatus �ags, see [1] Long (I32)

il Limits �ags, see [1] Long (I32)

Output

iqf Bit combination of the iq, is and il input signals Long (I32)

73

QFD � Quality �ags decoding

Block Symbol Licence: STANDARD

QFD

iqf
iq
is
il

Function Description

The QFD decomposes quality �ags to individual components iq, is and il. The quality
�ags are part of each input or output signal in the REXYGEN system. Further details
about quality �ags can be found in chapter 1.4 of this manual. The RexLib function block
library for Matlab-Simulink does not use any quality �ags.

It is possible to use the QFD block together with the VIN block for detailed processing
of quality �ags of a given signal. Reversed function to the QFD block is performed by the
QFC block.

Input

iqf Quality �ags to be decomposed to iq, is and il components Long (I32)

Outputs

iq Basic quality type �ags, see table 1.2, page 19 Long (I32)

is Substatus �ags, see [1] Long (I32)

il Limits �ags, see [1] Long (I32)

74 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

VIN � Validation of the input signal

Block Symbol Licence: STANDARD

VIN

u

sv

yg
QG
iqf

Function Description

The VIN block can be used for veri�cation of the input signal quality in the REXYGEN
system. Further details about quality �ags can be found in chapter 1.4 of this manual.

The block continuously separates the quality �ags from the input u and feeds them to
the iqf output. Based on these quality �ags and the GU parameter (Good if Uncertain),
the input signals are processed in the following manner:

• For GU = off the output QG is set to on if the quality is GOOD. It is set to QG = off

in case of BAD or UNCERTAIN quality.

• For GU = on the output QG is set to onif the quality is GOOD or UNCERTAIN. It is set
to QG = off only in case of BAD quality.

The output yg is equal to the u input if QG = on. Otherwise it is set to yg = sv

(substitution variable).

Inputs

u Input signal whose quality is assessed. The type of the signal is
determined upon the connected signal.

Any

sv Substitute value for an error case Any

Outputs

yg Validated output signal (yg = u for QG = on or yg = sv for
QG = off)

Any

QG Indicator of input signal acceptability Bool

iqf Complete quality �ag separated from the u input signal Long (I32)

Parameter

GU Acceptability of UNCERTAIN quality Bool

off . . . Uncertain quality unacceptable
on Uncertain quality acceptable

75

VOUT � Validation of the output signal

Block Symbol Licence: STANDARD

VOUT

u
iqf

yq

Function Description

It is possible to use the VOUT block to force arbitrary quality �ags for a given signal. The
desired quality �ags are given by the input signal iqf. Further details about quality �ags
can be found in chapter 1.4 of this manual.

Inputs

u Input signal whose quality �ags are being replaced. The type of
the signal is determined upon the connected signal.

Any

iqf Desired quality �ags Long (I32)

Output

yq Resulting signal composed from input u and quality �ags given
by the iqf input

Any

76 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Chapter 4

MATH � Math blocks

Contents

ABS � Absolute value . 79

ADD � Addition of two signals . 80

ADDQUAD, ADDOCT, ADDHEXD � Multi-input addition 81

CNB � Boolean (logic) constant . 82

CNE � Enumeration constant . 83

CNI � Integer constant . 84

CNR � Real constant . 85

DIF � Di�erence . 86

DIV � Division of two signals . 87

EAS � Extended addition and subtraction 88

EMD � Extended multiplication and division 89

FNX � Evaluation of single-variable function 90

FNXY � Evaluation of two-variables function 92

GAIN � Multiplication by a constant 94

GRADS � Gradient search optimization 95

IADD � Integer addition . 97

ISUB � Integer subtraction . 99

IMUL � Integer multiplication . 101

IDIV � Integer division . 103

IMOD � Remainder after integer division 104

LIN � Linear interpolation . 105

MUL � Multiplication of two signals 106

POL � Polynomial evaluation . 107

REC � Reciprocal value . 108

REL � Relational operator . 109

RTOI � Real to integer number conversion 110

77

78 CHAPTER 4. MATH � MATH BLOCKS

SQR � Square value . 112

SQRT � Square root . 113

SUB � Subtraction of two signals . 114

UTOI � Unsigned to signed integer number conversion 115

79

ABS � Absolute value

Block Symbol Licence: STANDARD

ABS_

u
y

sgn

Function Description

The ABS block computes the absolute value of the analog input signal u. The output y
is equal to the absolute value of the input and the sgn output denotes the sign of the
input signal.

sgn =

−1, for u < 0,
0, for u = 0,
1, for u > 0.

Input

u Analog input of the block Double (F64)

Outputs

y Absolute value of the input signal Double (F64)

sgn Indication of the input signal sign Long (I32)

80 CHAPTER 4. MATH � MATH BLOCKS

ADD � Addition of two signals

Block Symbol Licence: STANDARD

ADD

u1
u2
y

Function Description

The ADD blocks sums two analog input signals. The output is given by

y = u1+ u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Output

y Sum of the input signals Double (F64)

81

ADDQUAD, ADDOCT, ADDHEXD � Multi-input addition

Block Symbols Licence: STANDARD

ADDQUAD

u1
u2
u3
u4

y

ADDOCT

u1
u2
u3
u4
u5
u6
u7
u8

y

ADDHEXD

u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

y

Function Description

The ADDQUAD, ADDOCT and ADDHEXD blocks sum (or subtract) up to 16 input signals. The
nl parameter de�nes the inputs which are subtracted instead of adding. For an empty nl

parameter the block output is given by y = u1+ u2+ u3+ u4+ u5+ u6+ u7+ . . .+ u16.
For e.g. nl=2,5,7, the block implements the function y = u1− u2+ u3+ u4− u5+ u6−
u7+ . . .+ u16.

Note that the ADD and SUB blocks are available for simple addition and subtraction
operations.

Inputs

u1..u16 Analog input signals Double (F64)

Output

y Resulting value Double (F64)

Parameter

nl List of signals to subtract instead of adding. The format of the list
is e.g. 1,3..5,8. Third-party programs (Simulink, OPC clients
etc.) work with an integer number, which is a binary mask, i.e.
157 (binary 10011101) in the mentioned case.

Long (I32)

82 CHAPTER 4. MATH � MATH BLOCKS

CNB � Boolean (logic) constant

Block Symbol Licence: STANDARD

Y

CNB

Function Description

The CNB block stands for a Boolean (logic) constant.

Output

Y Logical output of the block Bool

Parameter

YCN Boolean constant ⊙on Bool

off . . . Disabled
on Enabled

83

CNE � Enumeration constant

Block Symbol Licence: STANDARD

iy

CNE

Function Description

The CNE block allows selection of a constant from a prede�ned popup list. The popup list
of constants is de�ned by the pupstr string, whose syntax is obvious from the default
value shown below. The output value corresponds to the number at the beginning of the
selected item. In case the pupstr string format is invalid, the output is set to 0.

There is a library called CNEs in Simulink, which contains CNE blocks with the most
common lists of constants.

Parameters

yenum Enumeration constant ⊙1: option A String

pupstr Popup list de�nition
⊙1: option A|2: option B|3: option C

String

Output

iy Integer output of the block Long (I32)

84 CHAPTER 4. MATH � MATH BLOCKS

CNI � Integer constant

Block Symbol Licence: STANDARD

iy

CNI

Function Description

The CNI block stands for an integer constant.

Output

iy Integer output of the block Long (I32)

Parameter

icn Integer constant ⊙1 Long (I32)

vtype Output numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

85

CNR � Real constant

Block Symbol Licence: STANDARD

y

CNR

Function Description

The CNR block stands for a real constant.

Output

y Analog output of the block Double (F64)

Parameter

ycn Real constant ⊙1.0 Double (F64)

86 CHAPTER 4. MATH � MATH BLOCKS

DIF � Di�erence

Block Symbol Licence: STANDARD

DIF

u
R1
HLD
y

Function Description

The DIF block di�erentiates the input signal u according to the following formula

yk = uk − uk−1,

where uk = u, yk = y and uk−1 is the value of input u in the previous cycle (delay TS ,
which is the execution period of the block).

Input

u Analog input of the block Double (F64)

R1 Block reset (same state as after init) Bool

HLD Hold block execution Bool

Output

y Di�erence of the input signal Double (F64)

Parameters

ISSF Zero output at start-up Bool

off . . . In the �rst cycle the output will be y = u.
on Zero output in the �rst cycle, y = 0.

87

DIV � Division of two signals

Block Symbol Licence: STANDARD

DIV

u1
u2
y
E

Function Description

The DIV block divides two analog input signals y = u1/u2. In case u2 = 0, the output E
is set to onand the output y is substituted by y = yerr.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Outputs

y Quotient of the inputs Double (F64)

E Error �ag � division by zero Bool

Parameter

yerr Substitute value for an error case ⊙1.0 Double (F64)

88 CHAPTER 4. MATH � MATH BLOCKS

EAS � Extended addition and subtraction

Block Symbol Licence: STANDARD

EAS

u1
u2
u3
u4

y

Function Description

The EAS block sums input analog signals u1, u2, u3 and u4 with corresponding weights
a, b, c and d. The output y is then given by

y = a ∗ u1+ b ∗ u2+ c ∗ u3+ d ∗ u4+ y0.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

u3 Third analog input of the block Double (F64)

u4 Fourth analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

a Weighting coe�cient of the u1 input ⊙1.0 Double (F64)

b Weighting coe�cient of the u2 input ⊙1.0 Double (F64)

c Weighting coe�cient of the u3 input ⊙1.0 Double (F64)

d Weighting coe�cient of the u4 input ⊙1.0 Double (F64)

y0 Additive constant (bias) Double (F64)

89

EMD � Extended multiplication and division

Block Symbol Licence: STANDARD

EMD

u1
u2
u3
u4

y

E

Function Description

The EMD block multiplies and divides analog input signals u1, u2, u3 and u4 with corre-
sponding weights a, b, c and d. The output y is then given by

y =
(a ∗ u1+ a0)(b ∗ u2+ b0)

(c ∗ u3+ c0)(d ∗ u4+ d0)
. (4.1)

The output E is set to on in the case that the denominator in the equation (4.1) is equal
to 0 and the output y is substituted by y = yerr.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

u3 Third analog input of the block Double (F64)

u4 Fourth analog input of the block Double (F64)

Outputs

y Analog output of the block Double (F64)

E Error �ag � division by zero Bool

Parameters

a Weighting coe�cient of the u1 input ⊙1.0 Double (F64)

a0 Additive constant for u1 input Double (F64)

b Weighting coe�cient of the u2 input ⊙1.0 Double (F64)

b0 Additive constant for u2 input Double (F64)

c Weighting coe�cient of the u3 input ⊙1.0 Double (F64)

c0 Additive constant for u3 input Double (F64)

d Weighting coe�cient of the u4 input ⊙1.0 Double (F64)

d0 Additive constant for u4 input Double (F64)

yerr Substitute value for an error case ⊙1.0 Double (F64)

90 CHAPTER 4. MATH � MATH BLOCKS

FNX � Evaluation of single-variable function

Block Symbol Licence: STANDARD

FNX

u
y
E

Function Description

The FNX block evaluates basic math functions of single variable. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.
List of functions:

ifn: shortcut function constraints on u

1: acos arccosine u ∈< −1.0, 1.0 >
2: asin arcsine u ∈< −1.0, 1.0 >
3: atan arctangent �
4: ceil rounding towards the nearest higher integer �
5: cos cosine �
6: cosh hyperbolic cosine �
7: exp exponential function eu �
8: exp10 exponential function 10u �
9: fabs absolute value �
10: floor rounding towards the nearest lower integer �
11: log logarithm u > 0
12: log10 decimal logarithm u > 0
13: random arbitrary number z ∈< 0, 1 > (u independent) �
14: sin sine �
15: sinh hyperbolic sine �
16: sqr square function �
17: sqrt square root u > 0
18: srand changes the seed for the random function to u u ∈ N
19: tan tangent �
20: tanh hyperbolic tangent �

Note: All trigonometric functions process data in radians.

The error output is activated (E = on) in the case when the input value u falls out of
its bounds or an error occurs during evaluation of the selected function (implementation
dependent), e.g. square root of negative number. The output is set to substitute value
in such case (y = yerr).

91

Input

u Analog input of the block Double (F64)

Outputs

y Result of the selected function Double (F64)

E Error �ag Bool

Parameters

ifn Function type (see table above) ⊙1 Long (I32)

yerr Substitute value for an error case Double (F64)

92 CHAPTER 4. MATH � MATH BLOCKS

FNXY � Evaluation of two-variables function

Block Symbol Licence: STANDARD

FNXY

u1
u2
y
E

Function Description

The FNXY block evaluates basic math functions of two variables. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.
List of functions:

ifn: shortcut function constraints on u1, u2
1: atan2 arctangent u1/u2 �
2: fmod remainder after division u1/u2 u2 ̸= 0.0
3: pow exponentiation of the inputs y = u1u2 �

The atan2 function result belongs to the interval ⟨−π, π⟩. The signs of both inputs
u1 a u2 are used to determine the appropriate quadrant.

The fmod function computes the remainder after division u1/u2 such that u1 = i · u2+ y,
where i is an integer, the signs of the y output and the u1 input are the same and the
following holds for the absolute value of the y output: |y| < |u2|.

The error output is activated (E = on) in the case when the input value u2 does
not meet the constraints or an error occurs during evaluation of the selected function
(implementation dependent), e.g. division by zero. The output is set to substitute value
in such case (y = yerr).

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Outputs

y Result of the selected function Double (F64)

E Error �ag Bool

off . . . No error
on An error occurred

93

Parameters

ifn Function type (see the table above) ⊙1 Long (I32)

1 atan2
2 fmod
3 pow

yerr Substitute value for an error case Double (F64)

94 CHAPTER 4. MATH � MATH BLOCKS

GAIN � Multiplication by a constant

Block Symbol Licence: STANDARD

GAIN

u y

Function Description

The GAIN block multiplies the analog input u by a real constant k. The output is then

y = ku.

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameter

k Gain ⊙1.0 Double (F64)

95

GRADS � Gradient search optimization

Block Symbol Licence: ADVANCED

GRADS

f

x0

START

BRK

x
xopt
fopt
BSY
iter
E
iE

Function Description

The GRADS block performs one-dimensional optimization of the f(x, v) function by gra-
dient method, where x ∈ ⟨xmin, xmax⟩ is the optimized variable and v is an arbitrary
vector variable. It is assumed that the value of the function f(x, v) for given x at time
k is enumerated and fed to the f input at time k + n ∗ TS , where TS is the execution
period of the GRADS block. This means that the individual optimization iterations have
a period of n ∗ TS . The length of step of the gradient method is given by

grad = (fi − fi−1) ∗ (dx)i−1

(dx)i = −gamma ∗ grad,

where i stands for i-th iteration. The step size is restricted to lie within the interval
⟨dmin, dmax⟩. The value of the optimized variable for the next iteration is given by

xi+1 = xi + (dx)i

Inputs

f Value of the optimized f(.) for given variable x Double (F64)

x0 Optimization starting point Double (F64)

START Starting signal (rising edge) Bool

BRK Termination signal Bool

Outputs

x Current value of the optimized variable Double (F64)

xopt Resulting optimal value of the x variable Double (F64)

fopt Resulting optimal value of the function f(x, v) Double (F64)

BSY Indicator of running optimization Bool

iter Number of current iteration Long (I32)

E Error �ag Bool

96 CHAPTER 4. MATH � MATH BLOCKS

iE Error code Long (I32)

1 x /∈< xmin, xmax >
2 x = xmin or x = xmax

Parameters

xmin Lower limit for the x variable Double (F64)

xmax Upper limit for the x variable ⊙10.0 Double (F64)

gamma Coe�cient for determining the step size of the gradient
optimization method ⊙0.3

Double (F64)

d0 Initial step size ⊙0.05 Double (F64)

dmin Minimum step size ⊙0.01 Double (F64)

dmax Maximum step size ⊙1.0 Double (F64)

n Iteration period (in sampling periods TS) ⊙100 Long (I32)

itermax Maximum number of iterations ⊙20 Long (I32)

97

IADD � Integer addition

Block Symbol Licence: STANDARD

IADD

i1

i2

n

E

Function Description

The IADD block sums two integer input signals n = i1 + i2. The range of integer num-
bers in a computer is always restricted by the variable type. This block uses the vtype

parameter to specify the type. If the sum �ts in the range of the given type, the result
is the ordinary sum. In the other cases the result depends on the SAT parameter.

The over�ow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 + 2770 = -32766).

For SAT = on the over�ow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 30000
+ 2770 = 32767).

Inputs

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Outputs

n Integer sum of the input signals Long (I32)

E Error �ag Bool

off . . . No error
on An error occurred

Parameters

vtype Numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

98 CHAPTER 4. MATH � MATH BLOCKS

SAT Saturation (over�ow) checking Bool

off . . . Over�ow is not checked
on Over�ow is checked

99

ISUB � Integer subtraction

Block Symbol Licence: STANDARD

ISUB

i1

i2

n

E

Function Description

The ISUB block subtracts two integer input signals n = i1 − i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the di�erence �ts in the range of the given
type, the result is the ordinary sum. In the other cases the result depends on the SAT

parameter.
The over�ow is not checked for SAT = off, i.e. the output E = off and the output

value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 - -2770 = -32766).

For SAT = on the over�ow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 30000
- -2770 = 32767).

Inputs

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameters

vtype Numeric type ⊙4 Long (I32)

2 Byte (range 0 ... 255)
3 Short (range -32768 ... 32767)
4 Long (range -2147483648 ... 2147483647)
5 Word (range 0 ... 65536)
6 DWord (range 0 ... 4294967295)
10 Large (range -9223372036854775808...9223372036854775807)

SAT Saturation (over�ow) checking Bool

off . . . Over�ow is not checked
on Over�ow is checked

Outputs

n Integer di�erence between the input signals Long (I32)

100 CHAPTER 4. MATH � MATH BLOCKS

E Error �ag Bool

off . . . No error
on An error occurred

101

IMUL � Integer multiplication

Block Symbol Licence: STANDARD

IMUL

i1

i2

n

E

Function Description

The IMUL block multiplies two integer input signals n = i1 ∗ i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the multiple �ts in the range of the given type,
the result is the ordinary multiple. In the other cases the result depends on the SAT

parameter.
The over�ow is not checked for SAT = off, i.e. the output E = off and the output

value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 2000 * 20 = -25536).

For SAT = on the over�ow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 2000
* 20 = 32767).

Inputs

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameters

vtype Numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

SAT Saturation (over�ow) checking Bool

off . . . Over�ow is not checked
on Over�ow is checked

102 CHAPTER 4. MATH � MATH BLOCKS

Outputs

n Integer product of the input signals Long (I32)

E Error �ag Bool

off . . . No error
on An error occurred

103

IDIV � Integer division

Block Symbol Licence: STANDARD

IDIV

i1

i2

n

E

Function Description

The IDIV block performs an integer division of two integer input signals, n = i1÷ i2,
where ÷ stands for integer division operator. If the ordinary (non-integer, normal) quo-
tient of the two operands is an integer number, the result of integer division is the same.
In other cases the resulting value is obtained by trimming the non-integer quotient's
decimals (i.e. rounding towards lower integer number). In case i2 = 0, the output E is
set to on and the output n is substituted by n = nerr.

Inputs

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Outputs

n Integer quotient of the inputs Long (I32)

E Error �ag � division by zero Bool

Parameters

vtype Numeric type ⊙4 Long (I32)

2 Byte
3 Short
4 Long
5 Word
6 DWord
10 Large

nerr Substitute value for an error case ⊙1 Long (I32)

104 CHAPTER 4. MATH � MATH BLOCKS

IMOD � Remainder after integer division

Block Symbol Licence: STANDARD

IMOD

i1

i2

n

E

Function Description

The IMOD block divides two integer input signals, n = i1%i2, where % stands for remain-
der after integer division operator (modulo). If both numbers are positive and the divisor
is greater than one, the result is either zero (for commensurable numbers) or a positive
integer lower than the divisor. In the case that one of the numbers is negative, the result
has the sign of the dividend, e.g. 15%10 = 5, 15%(−10) = 5, but (−15)%10 = −5. In
case i2 = 0, the output E is set to on and the output n is substituted by n = nerr.

Inputs

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Outputs

n Remainder after integer division Long (I32)

E Error �ag � division by zero Bool

Parameters

vtype Numeric type ⊙4 Long (I32)

2 Byte
3 Short
4 Long
5 Word
6 DWord
10 Large

nerr Substitute value for an error case ⊙1 Long (I32)

105

LIN � Linear interpolation

Block Symbol Licence: STANDARD

LIN

u y

Function Description

The LIN block performs linear interpolation. The following �gure illustrates the in�uence
of the input u and given interpolation points [u1, y1] and [u2, y2] on the output y.

u1 u u2

y1

y

y2

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

u1 x-coordinate of the 1st interpolation node Double (F64)

y1 y-coordinate of the 1st interpolation node Double (F64)

u2 x-coordinate of the 2nd interpolation node ⊙1.0 Double (F64)

y2 y-coordinate of the 2nd interpolation node ⊙1.0 Double (F64)

106 CHAPTER 4. MATH � MATH BLOCKS

MUL � Multiplication of two signals

Block Symbol Licence: STANDARD

MUL

u1
u2
y

Function Description

The MUL block multiplies two analog input signals y = u1 · u2.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Output

y Product of the input signals Double (F64)

107

POL � Polynomial evaluation

Block Symbol Licence: STANDARD

POL

u y

Function Description

The POL block evaluates the polynomial of the form:

y = a0 + a1u+ a2u
2 + a3u

3 + a4u
4 + a5u

5 + a6u
6 + a7u

7 + a8u
8.

The polynomial is internally evaluated by using the Horner scheme to improve the nu-
merical robustness.

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

ai The i-th coe�cient of the polynomial, i = 0, 1, . . . , 8 Double (F64)

108 CHAPTER 4. MATH � MATH BLOCKS

REC � Reciprocal value

Block Symbol Licence: STANDARD

REC

u
y
E

Function Description

The REC block computes the reciprocal value of the input signal u. The output is then

y =
1

u
.

In case u = 0, the error indicator is set to E = on and the output is set to the substitu-
tional value y = yerr.

Input

u Analog input of the block Double (F64)

Outputs

y Analog output of the block Double (F64)

E Error �ag � division by zero Bool

Parameter

yerr Substitute value for an error case ⊙1.0 Double (F64)

109

REL � Relational operator

Block Symbol Licence: STANDARD

REL

u1

u2
Y

Function Description

The REL block evaluates the binary relation u1 ◦ u2 between the values of the input
signals and sets the output Y according to the result of the relation "◦". The output
is set to Y = on when relation holds, otherwise it is zero (relation does not hold). The
binary operation codes are listed below.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Output

Y Logical output indicating whether the relation holds Bool

Parameter

irel Relation type ⊙1 Long (I32)

1 equality (==)
2 inequality (!=)
3 less than (<)
4 greater than (>)
5 less than or equal to (<=)
6 greater than or equal to (>=)

110 CHAPTER 4. MATH � MATH BLOCKS

RTOI � Real to integer number conversion

Block Symbol Licence: STANDARD

RTOI

r i

Function Description

The RTOI block converts the real number r to a signed integer number i. The resulting
rounded value is de�ned by:

i :=

−2147483648 for r ≤ −2147483648.0
round(r) for −2147483648.0 < r ≤ 2147483647.0 ,
2147483647 for r > 2147483647.0

where round(r) stands for rounding to the nearest integer number. The number of the
form n+0.5 (n is integer) is rounded to the integer number with the higher absolute
value, i.e. round(1.5) = 2, round(−2.5) = −3.

Note that the numbers −2147483648 and 2147483647 correspond with the lowest and
the highest signed number representable in 32-bit format respectively (0x7FFFFFFF and
0x80000000 in hexadecimal form in the C language). This limits are valid if the vtype

parameter has default value. Limits of selected data type is applied in other cases.

Input

r Analog input of the block Double (F64)

Parameters

vtype Output numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

SAT Saturation (over�ow) checking ⊙on Bool

111

Output

i Rounded and converted input signal Long (I32)

112 CHAPTER 4. MATH � MATH BLOCKS

SQR � Square value

Block Symbol Licence: STANDARD

SQR

u y

Function Description

The SQR block raises the input u to the power of 2. The output is then

y = u2.

Input

u Analog input of the block Double (F64)

Output

y Square of the input signal Double (F64)

113

SQRT � Square root

Block Symbol Licence: STANDARD

SQRT_

u
y
E

Function Description

The SQRT block computes the square root of the input u. The output is then

y =
√
u.

In case u < 0, the error indicator is activated (E = on) and the output y is set to the
substitute value y = yerr.

Input

u Analog input of the block Double (F64)

Outputs

y Square root of the input signal Double (F64)

E Error �ag Bool

off . . . No error
on Square root of negative number

Parameter

yerr Substitute value for an error case ⊙1.0 Double (F64)

114 CHAPTER 4. MATH � MATH BLOCKS

SUB � Subtraction of two signals

Block Symbol Licence: STANDARD

SUB

u1
u2
y

Function Description

The SUB block subtracts two input signals. The output is given by

y = u1− u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

Inputs

u1 Analog input of the block Double (F64)

u2 Analog input of the block Double (F64)

Output

y Di�erence between the two input signals Double (F64)

115

UTOI � Unsigned to signed integer number conversion

Block Symbol Licence: STANDARD

UTOI

u i

Function Description

The block regards input (positive) number as a binary complement representation of
signed number (e.g. comon representation in today processors). The range of the repre-
sentation is de�ned by the parameter bits. Typical ussage is parsing signal from data
structures of comunication driver. If one of comunicating processor is big-endian and
second processor little-endian you can need swap byte order. It is realize by the SWAP

parameter. It is recommended to set SWAP=on only in case the bits parameter is set to
16 or 32 because other cases ussualy not solve endianess problem.

Input

u Unsigned input signal ↓-9.22337E+18 ↑9.22337E+18 Large (I64)

Parameters

bits Valid (LSB) bits in input signal ↓2 ↑64 ⊙16 Long (I32)

SWAP Swap input byte order Bool

Output

i Converted (signed) input signal Large (I64)

116 CHAPTER 4. MATH � MATH BLOCKS

Chapter 5

ANALOG � Analog signal

processing

Contents

ABSROT � Processing data from absolute position sensor 119

ASW � Switch with automatic selection of input 121

AVG � Moving average �lter . 123

AVS � Motion control unit . 124

BPF � Band-pass �lter . 125

CMP � Comparator with hysteresis 126

CNDR � Nonlinear conditioner . 127

DEL � Delay with initialization . 129

DELM � Time delay . 130

DER � Derivation, �ltering and prediction from the last n+1 samples131

EVAR � Moving mean value and standard deviation 133

INTE � Controlled integrator . 134

KDER � Derivation and �ltering of the input signal 136

LPF � Low-pass �lter . 138

MINMAX � Running minimum and maximum 140

NSCL � Nonlinear scaling factor . 141

OSD � One step delay . 142

RDFT � Running discrete Fourier transform 143

RLIM � Rate limiter . 145

S1OF2 � One of two analog signals selector 146

SAI � Safety analog input . 149

SEL � Selector switch for analog signals 152

SELQUAD, SELOCT, SELHEXD � Selector switch for analog signals . . . 153

SHIFTOCT � Data shift register . 155

117

118 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SHLD � Sample and hold . 157

SINT � Simple integrator . 158

SPIKE � Spike �lter . 159

SSW � Simple switch . 161

SWR � Selector with ramp . 162

VDEL � Variable time delay . 163

ZV4IS � Zero vibration input shaper 164

119

ABSROT � Processing data from absolute position sensor

Block Symbol Licence: ADVANCED

ABSROT

u

R1

y
irev
MPI
OLI

Function Description

The ABSROT function block is intended for processing the data from absolute position
sensor on rotary equipment, e.g. a shaft. The absolute sensor has a typical range of 5◦

to 355◦ (or -175◦ to +175◦) but in some cases it is necessary to control the rotation
over a range of more than one revolution. The function block assumes a continuous
position signal, therefore the transition from 355◦ to 5◦ in the input signal means that
one revolution has been completed and the angle is in fact 365◦.

In the case of long-term unidirectional operation the precision of the estimated po-
sition y deteriorates due to the precision of the double data type. For that case the R1

input is available to reset the position y to the base range of the sensor. If the RESR �ag
is set to RESR = on, the irev revolutions counter is also reset by the R1 input. In all cases
it is necessary to reset all accompanying signals (e.g. the sp input of the corresponding
controller).

The MPI output indicates that the absolute sensor reading is near to the middle of
the range, which may be the appropriate time to reset the block. On the other hand, the
OLI output indicates that the sensor reached the so-called dead-angle where it cannot
report valid data.

Inputs

u Signal from the absolute position sensor Double (F64)

R1 Block reset Bool

Outputs

y Position output Double (F64)

irev Number of �nished revolutions Long (I32)

MPI Mid-point indicator Bool

OLI O�-limits indicator Bool

Parameters

lolim Lower limit of the sensor reading ⊙-3.14159265 Double (F64)

hilim Upper limit of the sensor reading ⊙3.14159265 Double (F64)

tol Tolerance for the mid-point indicator ⊙0.5 Double (F64)

120 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

hys Hysteresis for the mid-point indicator Double (F64)

RESR Flag for resetting the revolutions counter Bool

off . . . Reset only the estimated position y

on Reset also the irev revolutions counter

121

ASW � Switch with automatic selection of input

Block Symbol Licence: ADVANCED

ASW

u1
u2
u3
u4
iSW

y

oSW

Function Description

The ASW block copies one of the inputs u1, . . . , u4 or one of the parameters p1, . . . , p4
to the output y. The appropriate input signal is copied to the output as long as the
input signal iSW belongs to the set {1, 2, 3, 4} and the parameters are copied when iSW

belongs to the set {−1,−2,−3,−4} (i.e. y = p1 for iSW = −1, y = u3 for iSW = 3 etc.).
If the iSW input signal di�ers from any of these values (i.e. iSW = 0 or iSW < −4 or
iSW > 4), the output is set to the value of input or parameter which has changed the
most recently. The signal or parameter is considered changed when it di�ers by more
than delta from its value at the moment of its last change (i.e. the changes are measured
integrally, not as a di�erence from the last sample). The following priority order is used
when changes occur simultaneously in more than one signal: p4, p3, p2, p1, u4, u3, u2,
u1. The identi�er of input signal or parameter which is copied to the output y is always
available at the oSW output.

The ASW block has one special feature. The updated value of y is copied to all the
parameters p1, . . . , p4. This results in all external tools reading the same value y. This is
particularly useful in higher-level systems which use the set&follow method (e.g. a slider
in Iconics Genesis). This feature is not implemented in Simulink as there are no ways to
read the values of inputs by external programs.

ATTENTION! One of the inputs u1, . . . , u4 can be delayed by one step when the
block is contained in a loop. This might result in an illusion, that the priority is broken
(the oSW output then shows that the most recently changed signal is the delayed one).
In such a situation the LPBRK block(s) must be used in appropriate positions.

Inputs

u1..u4 Analog input signals to be selected from Double (F64)

iSW Active signal or parameter selector Long (I32)

Outputs

y The selected analog signal or parameter Double (F64)

oSW Identi�er of the selected signal or parameter Long (I32)

122 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Parameters

delta Threshold for detecting a change ⊙1e-06 Double (F64)

p1..p4 Parameters to be selected from Double (F64)

123

AVG � Moving average �lter

Block Symbol Licence: STANDARD

AVG

u y

Function Description

The AVG block computes a moving average from the last n samples according to the
formula

yk =
1

n
(uk + uk−1 + · · ·+ uk−n+1).

There is a limitation n < N , where N depends on the implementation.
If the last n samples are not yet known, the average is computed from the samples

available.

Input

u Input signal to be �ltered Double (F64)

Output

y Filtered output signal Double (F64)

Parameter

n Number of samples to compute the average from
↓1 ↑10000000 ⊙10

Long (I32)

nmax Limit for parameter n (used for internal memory allocation)
↓10 ↑10000000 ⊙100

Long (I32)

124 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

AVS � Motion control unit

Block Symbol Licence: ADVANCED

AVS

START

SET

am

dm

vm

sm

a

v

s

tt

RDY

BSY

Function Description

The AVS block generates time-optimal trajectory from initial steady position 0 to a �nal
steady position sm while respecting the constraints on the maximal acceleration am,
maximal deceleration dm and maximal velocity vm. When rising edge (off→on) occurs
at the SET input, the block is initialized for current values of the inputs am, dm, vm and
sm. The RDY output is set to offbefore the �rst initialization and during the initialization
phase, otherwise it is set to 1. When rising edge (off→on) occurs at the START input, the
block generates the trajectory at the outputs a, v, s and tt, where the signals correspond
to acceleration, velocity, position and time respectively. The BSY output is set to onwhile
the trajectory is being generated, otherwise it is off.

Inputs

START Starting signal (rising edge) Bool

SET Initialize/compute the trajectory for the current inputs Bool

am Maximal allowed acceleration [m/s2] Double (F64)

dm Maximal allowed deceleration [m/s2] Double (F64)

vm Maximum allowed velocity [m/s] Double (F64)

sm Desired �nal position [m] (initial position is 0) Double (F64)

Outputs

a Acceleration [m/s2] Double (F64)

v Velocity [m/s] Double (F64)

s Position [m] Double (F64)

tt Time [s] Double (F64)

RDY Flag indicating that the block is ready to generate the trajectory Bool

BSY Flag indicating that the trajectory is being generated Bool

125

BPF � Band-pass �lter

Block Symbol Licence: STANDARD

BPF

u
R1
HLD
y

Function Description

The BPF implements a second order �lter in the form

Fs =
2ξas

a2s2 + 2ξas+ 1
,

where a and ξ are are the block parameters fm and xi respectively. The fm parameter
de�nes the middle of the frequency transmission band and xi is the relative damping
coe�cient.

If ISSF = on, then the state of the �lter is set to the steady value at the block
initialization according to the input signal u.

Input

u Input signal to be �ltered Double (F64)

R1 Block reset (same state as after init) Bool

HLD Hold block execution Bool

Output

y Filtered output signal Double (F64)

Parameters

fm Peak frequency, middle of the frequency transmission band [Hz]
⊙1.0

Double (F64)

xi Relative damping coe�cient (recommended value 0.5 to 1)
⊙0.707

Double (F64)

ISSF Steady state at start-up �ag Bool

off . . . Zero initial state
on Initial steady state

126 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

CMP � Comparator with hysteresis

Block Symbol Licence: STANDARD

CMP

u1

u2
Y

Function Description

The CMP block compares the inputs u1 and u2 with the hysteresis h as follows:

Y−1 = 0,

Yk = hyst(ek), k = 0, 1, 2, . . .

where

ek = u1k − u2k

and

hyst(ek) =

0 for ek ≤ −h
Yk−1 for ek ∈ (−h, h)
1 for ek ≥ h (ek > h for h = 0)

The indexed variables refer to the values of the corresponding signal in the cycle de�ned
by the index, i.e. Yk−1 denotes the value of output in the previous cycle/step. The value
Y−1 is used only once when the block is initialized (k = 0) and the di�erence of the input
signals ek is within the hysteresis limits.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Output

Y Logical output of the block Bool

Parameter

hys Hysteresis ↓0.0 ⊙0.5 Double (F64)

127

CNDR � Nonlinear conditioner

Block Symbol Licence: STANDARD

CNDR

u
y
is

Function Description

The CNDR block can be used for compensation of complex nonlinearities by a piecewise
linear transformation which is depicted below.

is: 1 2 n-1

u0

SATF=1

SATF=0

SATF=1

SATF=0

n0

u1 u2 un-2 un-1

yn-1

yn-2

y2

y1

y0

It is important to note that in the case of u < u0 or u > un−1 the output depends on
the SATF parameter.

Input

u Analog input of the block Double (F64)

Outputs

y Analog output of the block Double (F64)

is Active sector of nonlinearity (see the �gure above) Long (I32)

Parameters

nmax Reserved Size of up, yp arrays ↓4 ⊙10 Long (I32)

SATF Saturation �ag ⊙on Bool

off . . . Signal not limitedon Saturation limits active

128 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

up Vector of increasing u-coordinates
⊙[0.0 3.9 3.9 9.0 14.5 20.0]

Double (F64)

yp Vector of y-coordinates ⊙[0.0 0.0 15.8 38.4 72.0 115.0] Double (F64)

129

DEL � Delay with initialization

Block Symbol Licence: STANDARD

DEL

u
R1
y0

y

RDY

Function Description

The DEL block implements a delay of the input signal u. The signal is shifted n samples
backwards, i.e.

yk = uk−n.

If the last n samples are not yet known, the output is set to

yk = y0,

where y0 is the initialization input signal. This can happen after restarting the control
system or after resetting the block (R1: off→on→off) and it is indicated by the output
RDY = off.

Inputs

u Analog input of the block Double (F64)

R1 Block reset Bool

y0 Initial output value Double (F64)

Outputs

y Delayed input signal Double (F64)

RDY Ready �ag indicating that the bu�er is �lled with the input signal
samples

Bool

Parameter

n Delay (number of samples). The resulting time delay is n · TS ,
where TS is the block execution period. ↓0 ↑10000000 ⊙10

Long (I32)

nmax Limit for parameter n (used for internal memory allocation)
↓10 ↑10000000 ⊙100

Long (I32)

130 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

DELM � Time delay

Block Symbol Licence: STANDARD

DELM

u y

Function Description

The DELM block implements a time delay of the input signal. The length of the delay
is given by rounding the del parameter to the nearest integer multiple of the block
execution period. The output signal is y = 0 for the �rst del seconds after initialization.

Input

u Analog input of the block Double (F64)

Output

y Delayed input signal Double (F64)

Parameter

del Time delay [s] ⊙1.0 Double (F64)

nmax Size of delay bu�er del (number of samples). Used for internal
memory allocation. ↓10 ↑10000000 ⊙100

Long (I32)

131

DER � Derivation, �ltering and prediction from the last n+1
samples

Block Symbol Licence: STANDARD

DER

u
RUN
tp

y
z

RDY

Function Description

The DER block interpolates the last n + 1 samples (n ≤ N − 1, N is implementation
dependent) of the input signal u by a line y = at + b using the least squares method.
The starting point of the time axis is set to the current sampling instant.

In case of RUN = on the outputs y and z are computed from the obtained parameters
a and b of the linear interpolation as follows:

Derivation: y = a
Filtering: z = b, for tp = 0
Prediction: z = atp + b, for tp > 0
Retrodiction: z = atp + b, for tp < 0

In case of RUN = off or n + 1 samples of the input signal are not yet available
(RDY = off), the outputs are set to y = 0, z = u.

Inputs

u Analog output of the block Double (F64)

RUN Enable execution Bool

off . . . tracking (z = u)
on �ltering (y � estimate of the derivative, z � estimate

of u at time tp)
tp Time instant for prediction/�ltering (tp = 0 corresponds with

the current sampling instant)
Double (F64)

Outputs

y Estimate of input signal derivative Double (F64)

z Predicted/�ltered input signal Double (F64)

RDY Ready �ag (all n+ 1 samples are available) Bool

Parameters

n Number of samples for interpolation (n + 1 samples are used);
1 ≤ n ≤ nmax ↓1 ↑10000000 ⊙10

Long (I32)

132 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

nmax Limit for parameter n (used for internal memory allocation)
↓1 ↑10000000 ⊙10

Long (I32)

133

EVAR � Moving mean value and standard deviation

Block Symbol Licence: STANDARD

EVAR

u
mu

si

Function Description

The EVAR block estimates the mean value mu (µ) and standard deviation si (σ) from the
last n samples of the input signal u according to the formulas

µk =
1

n

n−1∑
i=0

uk−i

σk =

√√√√1

n

n−1∑
i=0

u2k−i − µ2
k

where k stands for the current sampling instant.

Input

u Analog input of the block Double (F64)

Outputs

mu Mean value of the input signal Double (F64)

si Standard deviation of the input signal Double (F64)

Parameter

n Number of samples to estimate the statistical properties from
↓2 ↑10000000 ⊙100

Long (I32)

nmax Limit value of parameter n (used for internal memory allocation)
↓10 ↑10000000 ⊙200

Long (I32)

134 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

INTE � Controlled integrator

Block Symbol Licence: STANDARD

INTE

u
RUN
R1
y0
ti

y

Q

LY

HY

Function Description

The INTE block implements a controlled integrator with variable integral time constant
ti and two indicators of the output signal level (ymin a ymax). If RUN = on and R1 = off

then

y(t) =
1

Ti

∫ t

0
u(τ)dτ + C,

where C = y0. If RUN = off and R1 = off then the output y is frozen to the last value
before the falling edge at the RUN input signal. If R1 = on then the output y is set to the
initial value y0. The integration uses the trapezoidal method as follows

yk = yk−1 +
TS

2Ti
(uk + uk−1),

where TS is the block execution period. If Ti = 0, the block realize summation by
following equation

yk = yk−1 + uk.

If Ti < 0, the block behaviour is unde�ned.
Consider using the SINT block, whose simpler structure and functionality might be

su�cient for elementary tasks.

Inputs

u Analog input of the block Double (F64)

RUN Enable execution Bool

off . . . Integration stoppedon Integration running

R1 Block reset, initialization of the integrator output to y0 Bool

y0 Initial output value Double (F64)

ti Integral time constant Double (F64)

Outputs

y Integrator output Double (F64)

Q Running integration indicator Bool

LY Lower level indicator (y < ymin) Bool

135

HY Upper level indicator (y > ymax) Bool

Parameters

ymin Lower level de�nition ⊙-1.0 Double (F64)

ymax Upper level de�nition ⊙1.0 Double (F64)

SAT Limit output if level limit is reach Bool

136 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

KDER � Derivation and �ltering of the input signal

Block Symbol Licence: ADVANCED

KDER

u

y
dy
d2y
d3y
d4y
d5y

Function Description

The KDER block is a Kalman-type �lter of the norder-th order aimed at estimation of
derivatives of locally polynomial signals corrupted by noise. The order of derivatives
ranges from 0 to norder − 1. The block can be used for derivation of almost arbitrary
input signal u = u0(t) + v(t), assuming that the frequency spectrums of the signal and
noise di�er.

The block is con�gured by only two parameters pbeta and norder. The pbeta pa-
rameter depends on the sampling period TS , frequency properties of the input signal u
and also the noise to signal ratio. An approximate formula pbeta ≈ TSω0 can be used.
The frequency spectrum of the input signal u should be located deep down below the
cuto� frequency ω0. But at the same time, the frequency spectrum of the noise should
be as far away from the cuto� frequency ω0 as possible. The cuto� frequency ω0 and
thus also the pbeta parameter must be lowered for strengthening the noise rejection.

The other parameter nordermust be chosen with respect to the order of the estimated
derivations. In most cases the 2nd or 3rd order �lter is su�cient. Higher orders of the
�lter produce better derivation estimates for non-polynomial signals at the cost of slower
tracking and higher computational cost.

Input

u Input signal to be �ltered Double (F64)

Outputs

y Filtered input signal Double (F64)

dy Estimated 1st order derivative Double (F64)

d2y Estimated 2nd order derivative Double (F64)

d3y Estimated 3rd order derivative Double (F64)

d4y Estimated 4th order derivative Double (F64)

d5y Estimated 5th order derivative Double (F64)

Parameters

norder Order of the derivative �lter ↓2 ↑10 ⊙3 Long (I32)

137

pbeta Bandwidth of the derivative �lter ↓0.0 ⊙0.1 Double (F64)

138 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

LPF � Low-pass �lter

Block Symbol Licence: STANDARD

LPF

u
R1
HLD
y

Function Description

The LPF block implements a second order �lter in the form

Fs =
1

a2s2 + 2ξas+ 1
,

where

a =

√√
2
√
2ξ4 − 2ξ2 + 1− 2ξ2 + 1

2πfb

and fb and ξ = xi are the block parameters. The fb parameter de�nes the �lter band-
width and xi is the relative damping coe�cient. The recommended value is xi = 0.71
for the Butterworth �lter and xi = 0.87 for the Bessel �lter.

If ISSF = on, then the state of the �lter is set to the steady value at the block
initialization according to the input signal u.

Input

u Input signal to be �ltered Double (F64)

R1 Block reset (same state as after init) Bool

HLD Hold block execution Bool

Output

y Filtered output signal Double (F64)

Parameters

fb Filter bandwidth [Hz]; the frequencies in the range ⟨0, fb⟩ pass
through the �lter, the attenuation at the frequency fb is 3 dB
and approximately 40 dB at 10 · fb; it must hold fb < 1

10TS
for

proper function of the �lter, where TS is the block execution
period ⊙1.0

Double (F64)

xi Relative damping coe�cient (recommended value 0.5 to 1)
⊙0.707

Double (F64)

139

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

140 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

MINMAX � Running minimum and maximum

Block Symbol Licence: STANDARD

MINMAX

u

R1

ymin
ymax
RDY

Function Description

The MINMAX function block evaluates minimum and maximum from the last n samples
of the u input signal. The output RDY = off indicates that the bu�er contains less than
n samples. In such a case the minimum and maximum are found among the available
samples.

Inputs

u Analog input of the block Double (F64)

R1 Block reset Bool

Outputs

ymin Minimal value found Double (F64)

ymax Maximal value found Double (F64)

RDY Ready �ag (bu�er �lled) Bool

Parameters

n Number of samples for analysis (bu�er length)
↓1 ↑10000000 ⊙100

Long (I32)

nmax Limit value of parameter n (used for internal memory allocation)
↓10 ↑10000000 ⊙200

Long (I32)

141

NSCL � Nonlinear scaling factor

Block Symbol Licence: STANDARD

NSCL

u y

Function Description

The NSCL block compensates common nonlinearities of the real world (e.g. the servo
valve nonlinearity) by using the formula

y = gain
u

ze+ (1− ze) · u
,

where gain and ze are the parameters of the block. The choice of ze within the interval
(0, 1) leads to concave transformation, while ze > 1 gives a convex transformation.

0 0.2 0.4 0.6 0.8 1
0

gain

input u

o
u
tp
u
t
y

ze=1.2

ze=0.8

ze=1.0

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

gain Signal gain ⊙1.0 Double (F64)

ze Shaping parameter ⊙1.0 Double (F64)

142 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

OSD � One step delay

Block Symbol Licence: STANDARD

OSD

u y

Function Description

The OSD block implements a one step delay of the input signal u. The length of the
step delay (in seconds) is given by the task period (see the EXEC function block description
for details).

Inputs

u Input of the block Any

Outputs

y Delayed input signal Any

143

RDFT � Running discrete Fourier transform

Block Symbol Licence: ADVANCED

RDFT

u

HLD

amp
thd

vAmp
vPhi
vRe
vIm
E
iE

Function Description

The RDFT function block analyzes the analog input signal using the discrete Fourier
transform with the fundamental frequency freq and optional higher harmonic frequen-
cies. The computations are performed over the last m samples of the input signal u, where
m = nper/freq/TS , i.e. from the time-window of the length equivalent to nper periods
of the fundamental frequency.

If nharm > 0 the number of monitored higher harmonic frequencies is given solely by
this parameter. On the contrary, for nharm = 0 the monitored frequencies are given by
the user-de�ned vector parameter freq2.

For each frequency the amplitude (vAmp output), phase-shift (vPhi output), real/cosine
part (vRe output) and imaginary/sine part (vIm output). The output signals have the
vector form, therefore the computed values for all the frequencies are contained within.
Use the VTOR function block to disassemble the vector signals.

Inputs

u Analog input of the block Double (F64)

HLD Hold Bool

Outputs

amp Amplitude of the fundamental frequency Double (F64)

thd Total harmonic distortion (only for nharm ≥ 1) Double (F64)

vAmp Vector of amplitudes at given frequencies Reference

vPhi Vector of phase-shifts at given frequencies Reference

vRe Vector of real parts at given frequencies Reference

vIm Vector of imaginary parts at given frequencies Reference

E Error �ag Bool

iE Error code Error

i REXYGEN general error

144 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Parameters

freq Fundamental frequency ↓1e-09 ↑1e+09 ⊙1.0 Double (F64)

nper Number of periods to calculate upon ↓1 ↑10000 ⊙10 Long (I32)

nharm Number of monitored harmonic frequencies ↓0 ↑16 ⊙3 Long (I32)

ifrunit Frequency units ↓1 ↑2 ⊙1 Long (I32)

1 Hz
2 rad/s

iphunit Phase shift units ↓0 ↑2 ⊙1 Long (I32)

1 degrees
2 radians

nmax Allocated size of array ↓10 ↑10000000 ⊙8192 Long (I32)

freq2 Vector of user-de�ned monitored frequencies ⊙[2.0 3.0 4.0] Double (F64)

145

RLIM � Rate limiter

Block Symbol Licence: STANDARD

RLIM

u y

Function Description

The RLIM block copies the input signal u to the output y, but the maximum allowed rate
of change is limited. The limits are given by the time constants tp and tn:

the steepest rise per second: 1/tp
the steepest descent per second: −1/tn

Input

u Input signal to be �ltered Double (F64)

Output

y Filtered output signal Double (F64)

Parameters

tp Time constant de�ning the maximum allowed rise ⊙2.0 Double (F64)

tn Time constant de�ning the maximum allowed descent (note that
tn > 0) ⊙2.0

Double (F64)

146 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

S1OF2 � One of two analog signals selector

Block Symbol Licence: ADVANCED

S1OF2

u1
u2
sv
HF1
HF2
R

y
E
E1
E2
iE1
iE2
W

Function Description

The S1OF2 block assesses the validity of two input signals u1 and u2 separately. The
validation method is equal to the method used in the SAI block. If the signal u1 (or u2)
is marked invalid, the output E1 (or E2) is set to on and the error code is sent to the iE1
(or iE2) output. The S1OF2 block also evaluates the di�erence between the two input
signals. The internal �ag D is set to on if the di�erences |u1− u2| in the last nd samples
exceed the given limit, which is given by the following inequation

|u1− u2| > pdev
vmax− vmin

100
,

where vmin and vmax are the minimal and maximal limits of the inputs u1 and u2 and
pdev is the allowed percentage di�erence with respect to the overall range of the input
signals. The value of the output y depends on the validity of the input signals (�ags E1
and E2) and the internal di�erence �ag D as follows:

(i) If E1 = off and E2 = off and D = off , then the output y depends on the mode

parameter:

y =

u1+u2

2 , for mode = 1,
min(u1, u2), for mode = 2,
max(u1, u2), for mode = 3,

and the output E is set to off unless set to on earlier.

(ii) If E1 = off and E2 = off and D = on , then y = sv and E = on.

(iii) If E1 = on and E2 = off (E1 = off and E2 = on) , then y = u2 (y = u1) and the
output E is set to off unless set to on earlier.

(iv) If E1 = on and E2 = on , then y = sv and E = on.

The input R resets the inner error �ags Fl�F4 (see the SAI block) and the D �ag. For
the input R set permanently to on, the invalidity indicator E1 (E2) is set to on for only
one cycle period whenever some invalidity condition is ful�lled. On the other hand, for
R = 0, the output E1 (E2) is set to on and remains true until the reset (R: off→on). A
similar rule holds for the E output. For the input R set permanently to on, the E output

147

is set to on for only one cycle period whenever a rising edge occurs in the internal D �ag
(D = off → on). On the other hand, for R = 0, the output E is set to on and remains
true until the reset (rising edge R: off→on). The output W is set to on only in the (iii)
or (iv) cases, i.e. at least one input signal is invalid.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

sv Substitute value for an error case, i.e. E = on Double (F64)

HF1 Hardware error �ag for signal u1 Bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

HF2 Hardware error �ag for signal u2 Bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

R Reset inner error �ags of the input signals u1 and u2 Bool

Outputs

y Analog output of the block Double (F64)

E Output signal invalidity indicator Bool

off . . . Signal is valid on Signal is invalid

E1 Invalidity indicator for input u1 Bool

off . . . Signal is valid on Signal is invalid, y = u2

E2 Invalidity indicator for input u2 Bool

off . . . Signal is valid on Signal is invalid, y = u1

iE1 Reason of input u1 invalidity Long (I32)

0 Signal valid
1 Signal out of range
2 Signal varies too little
3 Signal varies too little and signal out of range
4 Signal varies too much
5 Signal varies too much and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out

of range
8 Hardware error

iE2 Reason of input u2 invalidity, see the iE1 output Long (I32)

W Warning �ag (invalid input signal) Bool

off . . . Both input signals u1 and u2 are valid
on At least one of the input signals is invalid

148 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Parameters

nb Number of samples which are not included in the validity
assessment of the signals u1 and u2 after initialization of the
block ⊙10

Long (I32)

nc Number of samples for invariability testing (see the SAI block,
condition F2) ⊙10

Long (I32)

nbits Number of A/D converter bits (source of the signals u1 and u2)
⊙12

Long (I32)

nr Number of samples for variability testing (see the SAI block,
condition F3) ⊙10

Long (I32)

prate Maximum allowed percentage change of the input u1 (u2) within
the last nr samples (with respect to the overall range of the input
signals vmax− vmin, see the SAI block) ⊙10.0

Double (F64)

nv Number of samples for out-of-range testing (see the SAI block,
condition F4) ⊙1

Long (I32)

vmin Lower limit for the input signals u1 and u2 ⊙-1.0 Double (F64)

vmax Upper limit for the input signals u1 and u2 ⊙1.0 Double (F64)

nd Number of samples for deviation testing (inner �ag D; D is always
off for nd = 0) ⊙5

Long (I32)

pdev Maximum allowed percentage deviation of the inputs u1 and u2

with respect to the overall range of the input signals vmax−vmin

⊙10.0

Double (F64)

mode De�nes how to compute the output signal y when both input
signals are valid (E1 = off, E2 = off and D = off) ⊙1

Long (I32)

1 Average, y = u1+u2

2
2 Minimum, y = min(u1, u2)
3 Maximum, y = max(u1, u2)

149

SAI � Safety analog input

Block Symbol Licence: ADVANCED

SAI

u
sv
HWF
R

y
yf
E
iE

Function Description

The SAI block tests the input signal u and assesses its validity. The input signal u is
considered invalid (the output E = on) in the following cases:

F1: Hardware error. The input signal HWF = on.

F2: The input signal u varies too little. The last nc samples of the input u lies within
the interval of width du,

du =

⟨ vmax−vmin

2nbits
, for nbits ∈ {8, 9, ..., 16}

0, for nbits /∈ {8, 9, ..., 16},

where vmin and vmax are the lower and upper limits of the input u, respectively,
and nbits is the number of A/D converter bits. The situation when the input
signal u varies too little is shown in the following picture:

k-nc+1 k

Sufficient changes in the signal u,
F2=0

k-nc+1 k

The signal u varies too little,
F2=1

max - min > du
max - min < du

If the parameter nc is set to nc = 0, the condition F2 is never ful�lled.

F3: The input signal u varies too much. The last nr samples of the input u �ltered by
the SPIKE �lter have a span which is greater than rate,

rate = prate
vmax− vmin

100
,

where prate de�nes the allowed percentage change in the input signal u within the
last nr samples (with respect to the overall range of the input signal u ∈ ⟨vmin, vmax⟩).

150 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

The block includes a SPIKE �lter with �xed parameters mingap = vmax−vmin

100 and
q = 2 suppressing peaks in the input signal to avoid undesirable ful�lling of this
condition. See the SPIKE block description for more details. The situation when
the input signal u varies too much is shown in the following picture:

k-nr+1 k

Acceptable changes in the signal u,
F3=0

k-nr+1 k

max - min < rate

max - min > rate

The signal u varies too much,
F3=1

If the parameter nr is set to nr = 0, the condition F3 is never ful�lled.

F4: The input signal u is out of range. The last nv samples of the input signal u lie out
of the allowed range ⟨vmin, vmax⟩.
If the parameter nv is set to nv = 0, the condition F4 is never ful�lled.

The signal u is copied to the output y without any modi�cation when it is considered
valid. In the other case, the output y is determined by a substitute value from the sv

input. In such a case the output E is set to on and the output iE provides the error code.
The input R resets the inner error �ags F1�F4. For the input R set permanently to on,
the invalidity indicator E is set to on for only one cycle period whenever some invalidity
condition is ful�lled. On the other hand, for R = off, the output E is set to on and
remains true until the reset (rising edge R: off→on).

The table of error codes iE resulting from the inner error �ags F1�F4:

F1 F2 F3 F4 iE

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 * * * 8

The nb parameter de�nes the number of samples which are not included in the validity
assessment after initialization of the block (restart). Recommended setting is nb ≥ 5 to
allow the SPIKE �lter initial conditions to fade away.

151

Inputs

u Analog input of the block Double (F64)

sv Substitute value to be used when the signal u is marked as invalid Double (F64)

HWF Hardware error indicator Bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

R Reset inner error �ags F1�F4 Bool

Outputs

y Analog output of the block Double (F64)

yf Filtered analog output signal y, output of the SPIKE �lter Double (F64)

E Output signal invalidity indicator Bool

off . . . Signal is valid
on Signal is invalid, y =

yf = sv

iE Reason of invalidity Long (I32)

0 Signal valid
1 Signal out of range
2 Signal varies too little
3 Signal varies too little and signal out of range
4 Signal varies too much
5 Signal varies too much and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out

of range
8 Hardware error

Parameters

nb Number of samples which are not included in the validity
assessment of the signal u after initialization of the block ⊙10

Long (I32)

nc Number of samples for invariability testing (the F2 condition)
⊙10

Long (I32)

nbits Number of A/D converter bits ⊙12 Long (I32)

nr Number of samples for variability testing (the F3 condition)
⊙10

Long (I32)

prate Maximum allowed percentage change of the input u within the
last nr samples (with respect to the overall range of the input
signal vmax− vmin) ⊙10.0

Double (F64)

nv Number of samples for out-of-range testing (the F4 condition)
⊙1

Long (I32)

vmin Lower limit for the input signal u ⊙-1.0 Double (F64)

vmax Upper limit for the input signal u ⊙1.0 Double (F64)

152 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SEL � Selector switch for analog signals

Block Symbol Licence: STANDARD

SEL

u1
u2
u3
u4
iSW
SW1
SW2

y

Function Description

The SEL block is obsolete, replace it by the SELQUAD block. Note the di�erence in binary
selector signals SWn.

The SEL block selects one of the four input signals u1, u2, u3 and u4 and copies it to
the output signal y. The selection is based on the iSW input or the binary inputs SW1 and
SW2. These two modes are distinguished by the BINF binary �ag. The signal is selected
according to the following table:

iSW SW1 SW2 y

0 off off u1

1 off on u2

2 on off u3

3 on on u4

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

u3 Third analog input of the block Double (F64)

u4 Fourth analog input of the block Double (F64)

iSW Active signal selector, active when BINF = off Long (I32)

SW1 Binary signal selector, active when BINF = on Bool

SW2 Binary signal selector, active when BINF = on Bool

Output

y The selected signal Double (F64)

Parameter

BINF Enable the binary selectors Bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

153

SELQUAD, SELOCT, SELHEXD � Selector switch for analog signals

Block Symbols Licence: STANDARD

SELQUAD

u0
u1
u2
u3
iSW
SW0
SW1

y

SELOCT

u0
u1
u2
u3
u4
u5
u6
u7
iSW
SW0
SW1
SW2

y

SELHEXD

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
iSW
SW0
SW1
SW2
SW3

y

Function Description

The SELQUAD, SELOCT and SELHEX blocks select one of the input signals and copy it to
the output signal y. The selection of the active signal u0. . . u15 is based on the iSW input
or the binary inputs SW0. . . SW3. These two modes are distinguished by the BINF binary
�ag. The signal is selected according to the following table:

iSW SW0 SW1 SW2 SW3 y

0 off off off off u0

1 on off off off u1

2 off on off off u2

3 on on off off u3

4 off off on off u4

5 on off on off u5

6 off on on off u6

7 on on on off u7

8 off off off on u8

9 on off off on u9

10 off on off on u10

11 on on off on u11

12 off off on on u12

13 on off on on u13

14 off on on on u14

15 on on on on u15

Please note that the only di�erence among the blocks is the number of inputs.

154 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Inputs

u0..15 Analog inputs of the block Double (F64)

iSW Active signal selector Long (I32)

SW0..3 Binary signal selectors Bool

Output

y The selected input signal Double (F64)

Parameter

BINF Enable the binary selectors Bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

155

SHIFTOCT � Data shift register

Block Symbol Licence: STANDARD

SHIFTOCT

u

RUN

y0
y1
y2
y3
y4
y5
y6
y7

Function Description

The SHIFTOCT block works as a shift register with eight outputs of arbitrary data
type.

If the RUN input is active, the following assignment is performed with each algorithm
tick:

yi = yi−1, i = 1..7

y0 = u

Thus the value on each output y0 to y6 is shifted to the following output and the
value on input u is assigned to output y0.

The block works with any data type of signal connected to the input u. Data type
has to be speci�ed by the vtype parameter. Outputs y0 to y8 then have the same data
type.

If you need a triggered shift register, place the EDGE_ block in front of the RUN input.

Inputs

u Data input of the register Any

RUN Enables outputs shift Bool

Outputs

y0 First output of the block Any

y1 Second output of the block Any

y2 Third output of the block Any

y3 Fourth output of the block Any

y4 Fifth output of the block Any

y5 Sixth output of the block Any

y6 Seventh output of the block Any

y7 Eighth output of the block Any

156 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Parameters

vtype Output data type ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
�-
10 Large (I64)

157

SHLD � Sample and hold

Block Symbol Licence: STANDARD

SHLD

u
SETH
R1

y

Function Description

The SHLD block is intended for holding the value of the input signal. It processes the
input signal according to the mode parameter.

In Triggered sampling mode the block sets the output signal y to the value of the
input signal u when rising edge (off→on) occurs at the SETH input. The output is held
constant unless a new rising edge occurs at the SETH input.

If Hold last value mode is selected, the output signal y is set to the last value of the
input signal u before the rising edge at the SETH input occured. It is kept constant as
long as SETH = on. For SETH = off the input signal u is simply copied to the output y.

In Hold current value mode the u input is sampled right when the rising edge
(off→on) occurs at the SETH input. It is kept constant as long as SETH = on. For
SETH = off the input signal u is simply copied to the output y.

The binary input R1 sets the output y to the value y0, it overpowers the SETH input
signal.

See also the PARR block, which can be used for storing a numeric value as well.

Inputs

u Analog input of the block Double (F64)

SETH Trigger for the set and hold operation Bool

R1 Block reset, R1 = on → y = y0 Bool

Output

y Analog output of the block Double (F64)

Parameter

y0 Initial output value Double (F64)

mode Sampling mode ⊙3 Long (I32)

1 Triggered sampling
2 Hold last value
3 Hold current value

158 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SINT � Simple integrator

Block Symbol Licence: STANDARD

SINT

u y

Function Description

The SINT block implements a discrete integrator described by the following di�erence
equation

yk = yk−1 +
TS

2Ti
(uk + uk−1),

where TS is the block execution period and Ti is the integral time constant. If Ti = 0,
the block realize summation by following equation

yk = yk−1 + uk.

If Ti < 0, the block behaviour is unde�ned. If yk falls out of the saturation limits ymin
and ymax, the output and state of the block are appropriately modi�ed.

For more complex tasks, consider using the INTE block, which provides extended
functionality.

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

ti Integral time constant Ti ⊙1.0 Double (F64)

y0 Initial output value Double (F64)

ymax Upper limit of the output signal ⊙1.0 Double (F64)

ymin Lower limit of the output signal ⊙-1.0 Double (F64)

159

SPIKE � Spike �lter

Block Symbol Licence: ADVANCED

SPIKE

u y

Function Description

The SPIKE block implements a nonlinear �lter for suppressing isolated peaks (pulses) in
the input signal u. One cycle of the SPIKE �lter performs the following transformation
(u, y) → y:

delta := y - u;

if abs(delta) < gap

then

begin

y := u;

gap := gap/q;

ifgap < mingap then gap:= mingap;

end

else

begin

if delta < 0

then y := y + gap

else y := y - gap;

gap := gap * q;

end

where mingap and q are the block parameters.
The signal passes through the �lter una�ected for su�ciently large mingap parameter,

which de�nes the minimal size of the tolerance window. By lowering this parameter it
is possible to �nd an appropriate value, which leads to suppression of the undesirable
peaks but leaves the input signal intact otherwise. The recommended value is 1 % of
the overall input signal range. The q parameter determines the adaptation speed of the
tolerance window.

Input

u Input signal to be �ltered Double (F64)

Output

y Filtered output signal Double (F64)

160 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Parameters

mingap Minimum size of the tolerance window ⊙0.01 Double (F64)

q Tolerance window adaptation speed ↓1.0 ⊙2.0 Double (F64)

161

SSW � Simple switch

Block Symbol Licence: STANDARD

SSW

u1
u2
SW

y

Function Description

The SSW block selects one of two input signals u1 and u2 with respect to the binary input
SW. The selected input is copied to the output y. If SW = off (SW = on), then the selected
signal is u1 (u2).

Inputs

u1 First input of the block Any

u2 Second input of the block Any

SW Signal selector Bool

off . . . The u1 signal is selected, y = u1

on The u2 signal is selected, y = u2

Output

y Output of the block Any

162 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SWR � Selector with ramp

Block Symbol Licence: STANDARD

SWR

u1
u2
SW

y

Function Description

The SWR block selects one of two input signals u1 and u2 with respect to the binary
input SW. The selected input is copied to the output y. If SW = off (SW = on), then
the selected signal is u1 (u2). The output signal is not set immediately to the value of
the selected input signal but tracks the selected input with given rate constraint (i.e. it
follows a ramp). This rate constraint is con�gured independently for each input u1, u2
and is de�ned by time constants t1 and t2. As soon as the output reaches the level of
the selected input signal, the rate limiter is disabled and remains inactive until the next
signal switching.

Inputs

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

SW Signal selector Bool

off . . . The u1 signal is selected
on The u2 signal is selected

Parameters

t1 Rate limiter time constant for switching from u2 to u1 ⊙1.0 Double (F64)

t2 Rate limiter time constant for switching from u1 to u2 ⊙1.0 Double (F64)

y0 Initial output value to start the tracking from (before the �rst
switching of signals occurs)

Double (F64)

Output

y Analog output of the block Double (F64)

163

VDEL � Variable time delay

Block Symbol Licence: STANDARD

VDEL

u
d

y

Function Description

The VDEL block delays the input signal u by the time de�ned by the input signal d.
More precisely, the delay is given by rounding the input signal d to the nearest integer
multiple of the block execution period (n · TS). A substitute value y0 is used until n
previous samples are available after the block initialization.

Inputs

u Analog input of the block Double (F64)

d Time delay [s] Double (F64)

Output

y Delayed input signal Double (F64)

Parameter

y0 Initial/substitute output value Double (F64)

nmax Size of delay bu�er (number of samples) for the time delay d.
Used for internal memory allocation. ↓10 ↑10000000 ⊙1000

Long (I32)

164 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

ZV4IS � Zero vibration input shaper

Block Symbol Licence: ADVANCED

ZV4IS

u
y
E

Function Description

The function block ZV4IS implements a band-stop frequency �lter. The main �eld of
application is in motion control of �exible systems where the low sti�ness of mechanical
construction causes an excitation of residual vibrations which can be observed in form
of mechanical oscillations. Such vibration can cause signi�cant deterioration of quality
of control or even instability of control loops. They often lead to increased wear of
mechanical components. Generally, the �lter can be used in arbitrary application for a
purpose of control of an oscillatory system or in signal processing for selective suppression
of particular frequency.

The input shaping �lter can be used in two di�erent ways. By using an open loop
connection, the input reference signal for an feedback loop coming from human operator
or higher level of control structure is properly shaped in order to attenuate any unwanted
oscillations. The internal dynamics of the �lter does not in�uence a behaviour of the infe-
rior loop. The only condition is correct tuning of feedback compensator C(s), which has
to work in linear mode. Otherwise, the frequency spectrum of the manipulating variable
gets corrupted and unwanted oscillations can still be excited in a plant P (s). The main
disadvantage is passive vibration damping which works only in reference signal path.
In case of any external disturbances acting on the plant, the vibrations may still arise.
The second possible way of use is feedback connection. The input shaper is placed on the
output side of feedback compensator C(s) and modi�es the manipulating variable acting
on the plant. An additional dynamics of the �lter is introduced and the compensator
C(s) needs to be properly tuned.

The algorithm of input shaper can be described in time domain

y(t) = A1u(t− t1) +A2u(t− t2) +A3u(t− t3) +A4u(t− t4)

Thus, the �lter has a structure of sum of weighted time delays of an input signal. The
gains A1..A4 and time delay values t1..t4 depend on a choice of �lter type, natural

165

frequency and damping of controlled oscillatory mode of the system. The main advantage
of this structure compared to commonly used notch �lters is �nite impulse response
(which is especially important in motion control applications), warranted stability and
monotone step response of the �lter and generally lower dynamic delay introduced into
a signal path.

For correct function of the �lter, natural frequency omega and damping xi of the
oscillatory mode need to be set. The parameter ipar sets a �lter type. For ipar = 1, one
of ten basic �lter types chosen by istype is used. Particular basic �lters di�er in shape
and width of stop band in frequency domain. In case of precise knowledge of natural
frequency and damping, the ZV (Zero Vibration) or ZVD �lters can be used, because
their response to input signal is faster compared to the other �lters. In case of large
uncertainty in system/signal model, robust UEI (Extra Insensitive) or UTHEI �lters
are good choice. Their advantage is wider stopband at the cost of slower response. The
number on the end of the name has the meaning of maximum allowed level of excited
vibrations for the given omega and xi (one, two or �ve percent).

For precise tuning of the �lter, complete parameterization ipar = 2 can be selected.
For this choice, three parameters p_alpha,p_a2 and p_a3 which a�ect the shape of the
�lter frequency response can freely be assigned. These parameters can be used for �nding
of optimal compromise between robustness of the �lter and introduced dynamical delay.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Input frequency ω [rad]

F
ilt

e
r

a
m

p
lit

u
d
e

re
s
p
o
n
s
e

A
(j
ω

)

ω
d
=

p
1
=0.2

p
1
=0.3p

1
=−0.1 p

1
=0.1

p
1
=−0.2

p
1
=−0.3

The asymmetry parameter p_alpha determines relative location of the stopband of
�lter frequency response with respect to chosen natural frequency. Positive values mean
a shift to higher frequency range, negative values to lower frequency range, zero value
leads to symmetrical shape of the characteristic (see the �gure above). The parameter
p_alpha also a�ects the overall �lter length, thus the overall delay introduced into a
signal path. Lower values result in slower �lters and higher delay. Asymmetric �lters can
be used in cases where a lower or higher bound of the uncertainty in natural frequency
parameter is known.

166 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Input frequency ω [rad]

F
ilt

e
r

a
m

p
lit

u
d
e

 r
e

s
p
o

n
s
e

 A
(j
ω

)

p
2
=0.1

p
2
=0.2

p
2
=0.3

p
2
=0.4

p
2
=0.5

ω
d
=

Insensitivity parameter p_a2 determines the width and attenuation level of the �lter
stopband. Higher values result in wider stopband and higher attenuation. For most ap-
plications, the value p_a2 = 0.5 is recommended for highest achievable robustness with
respect to modeling errors.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Input frequency ω [rad]

F
ilt

e
r

a
m

p
lit

u
d
e
 r

e
s
p
o

n
s
e

 A
(j
ω

)

p
2
=0.4

p
2
=0.6

p
2
=0.7

p
2
=0.75

p
2
=0.8

p
3
=p

2

ω
d
=

The additional parameter p_a3 needs to be chosen for symmetrical �lters (p_alpha =
0). A rule for the most of the practical applications is to chose equal values p_a2 =
p_a3 from interval < 0, 0.75 >. Overall �lter length is constant for this choice and only
the shape of �lter stopband is a�ected. Lower values lead to robust shapers with wide
stopband and frequency response shape similar to standard THEI (Two-hump extra
insensitive) �lters. Higher values lead to narrow stopband and synchronous drop of two
stopband peaks. The choice p_a2 = p_a3 = 0.75 results in standard ZVDD �lter with
maximally �at and symmetric stopband shape. The proposed scheme can be used for
systematic tuning of the �lter.

Input

u Input signal to be �ltered Double (F64)

167

Outputs

y Filtered output signal Double (F64)

E Error �ag Bool

off . . . No error on An error occurred

Parameters

omega Natural frequency ⊙1.0 Double (F64)

xi Relative damping coe�cient Double (F64)

ipar Speci�cation ⊙1 Long (I32)

1 Basic types of IS
2 Complete parametrization

istype Type ⊙2 Long (I32)

1 ZV
2 ZVD
3 ZVDD
4 MISZV
5 UEI1
6 UEI2
7 UEI5
8 UTHEI1
9 UTHEI2
10 UTHEI5

p_alpha Shaper duration/assymetry parameter ⊙0.2 Double (F64)

p_a2 Insensitivity parameter ⊙0.5 Double (F64)

p_a3 Additional parameter (only for p_alpha = 0) ⊙0.5 Double (F64)

nmax Size of data bu�er (number of samples). Used for internal
memory allocation. ↓10 ↑10000000 ⊙1000

Long (I32)

168 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Chapter 6

GEN � Signal generators

Contents

ANLS � Controlled generator of piecewise linear function 170

BINS � Controlled binary sequence generator 172

BIS � Binary sequence generator 174

BISR � Binary sequence generator with reset 176

MP � Manual pulse generator . 178

PRBS � Pseudo-random binary sequence generator 179

SG, SGI � Signal generators . 181

169

170 CHAPTER 6. GEN � SIGNAL GENERATORS

ANLS � Controlled generator of piecewise linear function

Block Symbol Licence: STANDARD

ANLS

RUN
y
is

Function Description

The ANLS block generates a piecewise linear function of time given by nodes t1,y1;
t2,y2; t3,y3; t4,y4. The initial value of output y is de�ned by the y0 parameter. The
generation of the function starts when a rising edge occurs at the RUN input (and the
internal timer is set to 0). The output y is then given by

y = yi +
yi+1 − yi
ti+1 − ti

(t− ti)

within the time intervals ⟨ti, ti+1⟩, i = 0, . . . , 3, t0 = 0.
To generate a step change in the output signal, it is necessary to to de�ne two nodes

in the same time instant (i.e. ti = ti+1). The generation ends when time t4 is reached or
when time ti is reached and the following node precedes the active one (i.e. ti+1 < ti).
The output holds its �nal value afterwards. But for the RPT parameter set to on, instead
of holding the �nal value, the block returns to its initial state y0, the internal block timer
is set to 0 and the sequence is generated repeatedly. This can be used to generate square
or sawtooth functions. The generation can also be prematurely terminated by the RUN

input signal set to off. In that case the block returns to its initial state y0, the internal
block timer is set to 0 and is = 0 becomes the active time interval.

Input

RUN Enable execution, run the analog sequence generation Bool

Outputs

y Analog output of the block Double (F64)

is Index of the active time interval Long (I32)

Parameters

y0 Initial output value Double (F64)

t1 Node 1 time ⊙1.0 Double (F64)

y1 Node 1 value Double (F64)

t2 Node 2 time ⊙1.0 Double (F64)

y2 Node 2 value ⊙1.0 Double (F64)

171

t3 Node 3 time ⊙2.0 Double (F64)

y3 Node 3 value ⊙1.0 Double (F64)

t4 Node 4 time ⊙2.0 Double (F64)

y4 Node 4 value Double (F64)

RPT Repeating sequence Bool

off . . . Disabled
on Enabled

172 CHAPTER 6. GEN � SIGNAL GENERATORS

BINS � Controlled binary sequence generator

Block Symbol Licence: STANDARD

BINS

START
Y

is

Function Description

The BINS block generates a binary sequence at the Y output, similarly to the BIS block.
The binary sequence is given by the block parameters.

• The initial value of the output is given by the Y0 parameter.

• Whenever a rising edge (off→on) occurs at the START input (even when a binary
sequence is being generated), the internal timer of the block is set to 0 and started.

• Whenever a rising edge occurs at the START input, the output Y is set to Y0.

• The output value is inverted at time instants t1, t2, . . ., t8 (off→on, on→off).

• For RPT = off, the last switching of the output occurs at time ti, where ti+1 = 0
and the output then holds its value until another rising edge (off→on) occurs at
the START input.

• For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

On the contrary to the BIS block the changes in parameters t1. . . t8 are accepted
only when a rising edge occurs at the START input.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< TS/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

Input

START Starting signal (rising edge) Bool

Outputs

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

173

Parameters

Y0 Initial output value Bool

off . . . Disabled/false on Enabled/true

t1 Switching time 1 [s] ↓0.0 ⊙1.0 Double (F64)

t2 Switching time 2 [s] ↓0.0 ⊙2.0 Double (F64)

t3 Switching time 3 [s] ↓0.0 ⊙3.0 Double (F64)

t4 Switching time 4 [s] ↓0.0 ⊙4.0 Double (F64)

t5 Switching time 5 [s] ↓0.0 ⊙5.0 Double (F64)

t6 Switching time 6 [s] ↓0.0 ⊙6.0 Double (F64)

t7 Switching time 7 [s] ↓0.0 ⊙7.0 Double (F64)

t8 Switching time 8 [s] ↓0.0 ⊙8.0 Double (F64)

RPT Repeating sequence Bool

off . . . Disabled on Enabled

174 CHAPTER 6. GEN � SIGNAL GENERATORS

BIS � Binary sequence generator

Block Symbol Licence: STANDARD

BIS

Y

is

Function Description

The BIS block generates a binary sequence at the Y output. The sequence is given by
the block parameters.

• The initial value of the output is given by the Y0 parameter.

• The internal timer of the block is set to 0 when the block initializes.

• The internal timer of the block is immediately started when the block initializes.

• The output value is inverted at time instants t1, t2, . . ., t8 (off→on, on→off).

• For RPT = off, the last switching of the output occurs at time ti, where ti+1 = 0
and the output then holds its value inde�nitely.

• For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

All the parameters t1. . . t8 can be changed in runtime and all changes are immedi-
ately accepted.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< TS/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

See also the BINS block, which allows for triggering the sequence by external signal.

Outputs

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

Parameters

Y0 Initial output value Bool

off . . . Disabled/false on Enabled/true

t1 Switching time 1 [s] ↓0.0 ⊙1.0 Double (F64)

175

t2 Switching time 2 [s] ↓0.0 ⊙2.0 Double (F64)

t3 Switching time 3 [s] ↓0.0 ⊙3.0 Double (F64)

t4 Switching time 4 [s] ↓0.0 ⊙4.0 Double (F64)

t5 Switching time 5 [s] ↓0.0 ⊙5.0 Double (F64)

t6 Switching time 6 [s] ↓0.0 ⊙6.0 Double (F64)

t7 Switching time 7 [s] ↓0.0 ⊙7.0 Double (F64)

t8 Switching time 8 [s] ↓0.0 ⊙8.0 Double (F64)

RPT Repeating sequence Bool

off . . . Disabled on Enabled

176 CHAPTER 6. GEN � SIGNAL GENERATORS

BISR � Binary sequence generator with reset

Block Symbol Licence: STANDARD

BISR

RUN

R1

Y

is

Function Description

The BISR block generates a binary sequence at the Y output. The RUN input must be set
to on for the whole duration of the sequence. When RUN is off, the sequence is paused
and so is the internal timer.

The binary sequence is given by the block parameters. The initial value of the output
is given by the Y0 parameter. The output value Y is inverted (off→on, on→off) at time
instants t1, t2, . . ., t8. The ADDT parameter de�nes whether the ti instants are relative
to the �rst rising edge at the RUN input or relative to the last switching of the Y output.

If there is less than 8 edges in the desired binary sequence, set any of the ti parameters
to zero and the remaining ones will be ignored.

Whenever a rising edge occurs at the R1 input, the output Y is set to Y0 and the
internal timer is reset. The R1 input overpowers the RUN input.

For RPT = off, the last switching of the output occurs at time ti, where ti+1 = 0
and the output then holds its value until another rising edge (off→on) occurs at the
START input. For RPT = on, instead of switching the output for the last time, the block
returns to its initial state, the Y output is set to Y0, the internal block timer is set to 0
and started. As a result, the binary sequence is generated repeatedly.

The BISR block is an extended version of the BINS block.

Input

RUN Enable execution Bool

Outputs

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

Parameters

Y0 Initial output value Bool

off . . . Disabled/false
on Enabled/true

ADDT Additive timing Bool

off . . . Absolute timing (sequence as a whole)
on Additive timing (segment by segment)

177

RPT Repeating sequence Bool

off . . . Disabled
on Enabled

t1 Switching time 1 [s] ↓0.0 ⊙1.0 Double (F64)

t2 Switching time 2 [s] ↓0.0 ⊙2.0 Double (F64)

t3 Switching time 3 [s] ↓0.0 ⊙3.0 Double (F64)

t4 Switching time 4 [s] ↓0.0 ⊙4.0 Double (F64)

t5 Switching time 5 [s] ↓0.0 ⊙5.0 Double (F64)

t6 Switching time 6 [s] ↓0.0 ⊙6.0 Double (F64)

t7 Switching time 7 [s] ↓0.0 ⊙7.0 Double (F64)

t8 Switching time 8 [s] ↓0.0 ⊙8.0 Double (F64)

178 CHAPTER 6. GEN � SIGNAL GENERATORS

MP � Manual pulse generator

Block Symbol Licence: STANDARD

MP

Y

Function Description

The MP block generates a pulse of width pwidth when a rising edge occurs at the BSTATE
parameter (off→on). The algorithm immediately reverts the BSTATE parameter back to
off (BSTATE stands for a shortly pressed button). If repetition is enabled (RPTF = on),
it is possible to extend the pulse by repeated setting the BSTATE parameter to on. When
repetition is disabled, the parameter BSTATE is not taken into account during generation
of a pulse, i.e. the output pulses have always the speci�ed width of pwidth.

The MP block reacts only to rising edge of the BSTATE parameter, therefore it cannot be
used for generating a pulse immediately at the start of the REXYGEN system executive.
Use the BIS block for such a purpose.

Output

Y Logical output of the block Bool

Parameters

pwidth Pulse width [s] (0 means one pulse) ⊙1.0 Double (F64)

BSTATE Output pulse activation Bool

off . . . No action
on Generate output pulse

RPTF Allow pulse extension Bool

off . . . Disabled
on Enabled

179

PRBS � Pseudo-random binary sequence generator

Block Symbol Licence: STANDARD

PRBS

START
BRK

y
BSY

Function Description

The PRBS block generates a pseudo-random binary sequence. The �gure below displays
how the sequence is generated.

swper

seqt waitt

valhi

val0

vallo

START

The initial and �nal values of the sequence are val0. The sequence starts from this
value when rising edge occurs at the START input (off→on), the output y is immediately
switched to the valhi value. The generator then switches the output to the other limit
value with the period of swper seconds and the probability of switching swprob. After
seqt seconds the output is set back to val0. A waitt-second period follows to allow
the settling of the controlled system response. Only then it is possible to start a new
sequence. It is possible to terminate the sequence prematurely by the BRK = on input
when necessary.

Inputs

START Starting signal (rising edge) Bool

BRK Termination signal Bool

Outputs

y Generated pseudo-random binary sequence Double (F64)

BSY Busy �ag Bool

Parameters

val0 Initial and �nal value Double (F64)

valhi Upper level of the y output ⊙1.0 Double (F64)

vallo Lower level of the y output ⊙-1.0 Double (F64)

180 CHAPTER 6. GEN � SIGNAL GENERATORS

swper Period of random output switching [s] ⊙1.0 Double (F64)

swprob Probability of switching ↓0.0 ↑1.0 ⊙0.2 Double (F64)

seqt Length of the sequence [s] ⊙10.0 Double (F64)

waitt Settling period [s] ⊙2.0 Double (F64)

181

SG, SGI � Signal generators

Block Symbols Licence: STANDARD

SG

y

SGI

RUN
SYN

y

Function Description

The SG and SGI blocks generate periodic signals of chosen type (isig parameter): sine
wave, square, sawtooth and white noise with uniform distribution. The amplitude and
frequency of the output signal y are given by the amp and freq parameter respectively.
The output y can have a phase shift of phase ∈ (0, 2π) in the deterministic signals
(isig ∈ {1, 2, 3}).

The SGI block allows synchronization of multiple generators using the RUN and SYN

inputs. The RUN parameter must be set to on to enable the generator, the SYN input
synchronizes the generators during the output signal generation.

Inputs

RUN Enable execution, run the binary sequence generation Bool

SYN Synchronization signal Bool

Output

y Analog output of the block Double (F64)

Parameters

isig Generated signal type ⊙1 Long (I32)

1 Sine wave
2 Symmetrical rectangular signal
3 Sawtooth signal
4 White noise with uniform distribution
5 Triangular signal

amp Amplitude of the generated signal ⊙1.0 Double (F64)

freq Frequency of the generated signal ⊙1.0 Double (F64)

phase Phase shift of the generated signal Double (F64)

offset Value added to the generated signal ⊙1.0 Double (F64)

ifrunit Frequency units ⊙1 Long (I32)

1 Hz
2 rad/s

182 CHAPTER 6. GEN � SIGNAL GENERATORS

iphunit Phase shift units ⊙1 Long (I32)

1 degrees
2 radians

Chapter 7

REG � Function blocks for control

Contents

ARLY � Advance relay . 185

FLCU � Fuzzy logic controller unit 186

FRID � ∗ Frequency response identi�cation 188

I3PM � Identi�cation of a three parameter model 190

LC � Lead compensator . 192

LLC � Lead-lag compensator . 193

MCU � Manual control unit . 194

PIDAT � PID controller with relay autotuner 196

PIDE � PID controller with de�ned static error 199

PIDGS � PID controller with gain scheduling 201

PIDMA � PID controller with moment autotuner 203

PIDU � PID controller unit . 209

PIDUI � PID controller unit with variable parameters 212

POUT � Pulse output . 214

PRGM � Setpoint programmer . 215

PSMPC � Pulse-step model predictive controller 217

PWM � Pulse width modulation . 221

RLY � Relay with hysteresis . 223

SAT � Saturation with variable limits 224

SC2FA � State controller for 2nd order system with frequency
autotuner . 226

SCU � Step controller with position feedback 233

SCUV � Step controller unit with velocity input 236

SELU � Controller selector unit . 239

SMHCC � Sliding mode heating/cooling controller 240

SMHCCA � Sliding mode heating/cooling controller with autotuner 244

SWU � Switch unit . 251

183

184 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

TSE � Three-state element . 252

185

ARLY � Advance relay

Block Symbol Licence: STANDARD

ARLY

u y

Function Description

The ARLY block is a modi�cation of the RLY block, which allows lowering the amplitude of
steady state oscillations in relay feedback control loops. The block transforms the input
signal u to the output signal y according to the diagram below.

en

ep
y

ap

an

u

en+tol

ep-tol

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

ep Value for switching the output to the "On" state ⊙-1.0 Double (F64)

en Value for switching the output to the "O�" state ⊙1.0 Double (F64)

tol Tolerance limit for the superposed noise of the input signal u
↓0.0 ⊙0.5

Double (F64)

ap Value of the y output in the "On" state ⊙1.0 Double (F64)

an Value of the y output in the "O�" state ⊙-1.0 Double (F64)

y0 Initial output value Double (F64)

186 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

FLCU � Fuzzy logic controller unit

Block Symbol Licence: ADVANCED

FLCU

u

v

y
ir
wr

Function Description

The FLCU block implements a simple fuzzy logic controller with two inputs and one
output. Introduction to fuzzy logic problems can be found in [3].

The output is de�ned by trapezoidal membership functions of linguistic terms of the
u and v inputs, impulse membership functions of linguistic terms of the y output and
inference rules in the form

If (u is Ui) AND (v is Vj), then (y is Yk),

where Ui, i = 1, . . . , nu are the linguistic terms of the u input; Vj , j = 1, . . . , nv are the
linguistic terms of the v input and Yk, k = 1, . . . , ny are the linguistic terms of the y

output. Trapezoidal (triangular) membership functions of the u and v inputs are de�ned
by four numbers as depicted below.

1

x
1

x
2

x
3

x
4

u

Not all numbers x1, . . . , x4 are mutually di�erent in triangular functions. The matri-
ces of membership functions of the u and v input are composed of rows [x1, x2, x3, x4].
The dimensions of matrices mfu and mfv are (nu× 4) and (nv× 4) respectively.

The impulse 1st order membership functions of the y output are de�ned by the triplet

yk, ak, bk,

where yk is the value assigned to the linguistic term Yk, k = 1, . . . , ny in the case of
ak = bk = 0. If ak ̸= 0 and bk ̸= 0, then the term Yk is assigned the value of yk+aku+bkv.
The output membership function matrix sty has a dimension of (ny × 3) and contains
the rows [yk, ak, bk], k = 1, . . . , ny.

The set of inference rules is also a matrix whose rows are [il, jl, kl, wl], l = 1, . . . , nr,
where il, jl and kl de�nes a particular linguistic term of the u and v inputs and y output
respectively. The number wl de�nes the weight of the rule in percents wl ∈ {0, 1, . . . , 100}.
It is possible to suppress or emphasize a particular inference rule if necessary.

187

Inputs

u First analog input of the block Double (F64)

v Second analog input of the block Double (F64)

Outputs

y Analog output of the block Double (F64)

ir Dominant rule Long (I32)

wr Degree of truth of the dominant rule Double (F64)

Parameters

umax Upper limit of the u input ⊙1.0 Double (F64)

umin Lower limit of the u input ⊙-1.0 Double (F64)

vmax Upper limit of the v input ⊙1.0 Double (F64)

vmin Lower limit of the v input ⊙-1.0 Double (F64)

nmax Number of reserved (allocated) membership functions (for each
inputs and output) ↓4 ↑10000 ⊙10

Long (I32)

mfu Matrix of membership functions of the input u
⊙[-1 -1 -1 0; -1 0 0 1; 0 1 1 1]

Double (F64)

mfv Matrix of membership functions of the input v
⊙[-1 -1 -1 0; -1 0 0 1; 0 1 1 1]

Double (F64)

sty Matrix of membership functions of the output y
⊙[-1 0 0; 0 0 0; 1 0 0]

Double (F64)

rls Matrix of inference rules
⊙[1 2 3 100; 1 1 1 100; 1 0 3 100]

Byte (U8)

188 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

FRID � ∗ Frequency response identi�cation

Block Symbol Licence: ADVANCED

FRID

dv

pv

ID

HLD

BRK

mv
SAT

IDBSY
w

xres
xims
xrem
ximm
epv
IDE
iIDE
A0
A1
A2
A3
A4
A5

THD
DAV

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

dv Feedforward control variable Double (F64)

pv Process variable Double (F64)

ID Start the tuning experiment Bool

HLD Hold Bool

BRK Stop the tuning experiment Bool

Parameters

ubias Static component of the exciting signal Double (F64)

uamp Amplitude of the exciting signal ⊙1.0 Double (F64)

wb Frequency interval lower limit [rad/s] ⊙1.0 Double (F64)

wf Frequency interval higher limit [rad/s] ⊙10.0 Double (F64)

isweep Frequency sweeping mode ⊙1 Long (I32)

1 Logarithmic
2 Linear

cp Sweeping Rate ⊙0.995 Double (F64)

iavg Number of values for averaging ⊙10 Long (I32)

obw Observer bandwith ⊙2 Long (I32)

1 LOW
2 NORMAL
3 HIGH

stime Settling period [s] ⊙10.0 Double (F64)

189

umax Maximum generator amplitude ⊙1.0 Double (F64)

thdmin Minimum demanded THD treshold ⊙0.1 Double (F64)

adapt_rc Maximum rate of amplitude variation ⊙0.001 Double (F64)

pv_max Maximum desired process value ⊙1.0 Double (F64)

pv_sat Maximum allowed process value ⊙2.0 Double (F64)

ADAPT_EN Enable automatic amplitude adaptation ⊙on Bool

immode Mesurement mode ⊙1 Long (I32)

1 Manual speci�cation of frequency points
2 Linear series of nmw points in the interval <wb;wf>
3 Logarithmic series of nmw points in the interval

<wb;wf>
4 Automatic detection of important frequencies (N/A)

nwm Number of frequency response point for automatic mode Long (I32)

wm Frequency measurement points for manual meas. mode [array of
rad/s] ⊙[2.0 4.0 6.0 8.0]

Double (F64)

Outputs

mv Manipulated variable (controller output) Double (F64)

SAT Saturation �ag Bool

IDBSY Tuner busy �ag Bool

w Actual frequency [rad/s] Double (F64)

xres real part of frequency response (sweeping) Double (F64)

xims imaginary part of frequency response (sweeping) Double (F64)

xrem real part of frequency response (measurement) Double (F64)

ximm imaginary part of frequency response (measurement) Double (F64)

epv Estimated process value Double (F64)

IDE Error indicator Bool

iIDE Error code Long (I32)

A0 Estimated DC value Double (F64)

A1 Estimated 1st harmonics amlitude Double (F64)

A2 Estimated 2nd harmonics amlitude Double (F64)

A3 Estimated 3rd harmonics amlitude Double (F64)

A4 Estimated 4th harmonics amlitude Double (F64)

A5 Estimated 5th harmonics amlitude Double (F64)

THD Total harmonic distorsion Double (F64)

DAV Data Valid Bool

190 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

I3PM � Identi�cation of a three parameter model

Block Symbol Licence: ADVANCED

I3PM

u

y

u0

y0

RUN

CLR

ips

p1
p2
p3
p4
p5
p6
p7
p8

BSY
RDY
E
iE

Function Description

The I3PM block is based on the generalized moment identi�cation method. It provides a
three parameter model of the system.

Inputs

u Input of the identi�ed system Double (F64)

y Output of the identi�ed system Double (F64)

u0 Input steady state Double (F64)

y0 Output steady state Double (F64)

RUN Execute identi�cation Bool

CLR Block reset Bool

ips Meaning of the output signals Long (I32)

0 FOPDT model
p1 . . . gain
p2 . . . time delay
p3 . . . time constant

1 moments of input and output
p1 . . . parameter mu0
p2 . . . parameter mu1
p3 . . . parameter mu2
p4 . . . parameter my0
p5 . . . parameter my1
p6 . . . parameter my2

2 process moments
p1 . . . parameter mp0
p2 . . . parameter mp1
p3 . . . parameter mp2

3 characteristic numbers
p1 . . . parameter κ
p2 . . . parameter µ
p3 . . . parameter σ2

p4 . . . parameter σ

191

Outputs

pi Identi�ed parameters with respect to ips, i = 1, . . . , 8 Double (F64)

BSY Busy �ag Bool

RDY Ready �ag Bool

E Error �ag Bool

iE Error code Long (I32)

1 Premature termination (RUN = off)
2 mu0 = 0
3 mp0 = 0
4 σ2 < 0

Parameters

tident Duration of identi�cation [s] ⊙100.0 Double (F64)

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I

3 ID
4 P

5 PD
6 PI

7 PID

ispeed Desired closed loop speed ⊙2 Long (I32)

1 Slow closed loop
2 Normal (middle fast) closed loop
3 Fast closed loop

192 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

LC � Lead compensator

Block Symbol Licence: STANDARD

LC

u
R1
HLD
y

Function Description

The LC block is a discrete simulator of derivative element

C(s) =
td ∗ s

td

nd
∗ s+ 1

,

where td is the derivative constant and nd determines the in�uence of parasite 1st order
�lter. It is recommended to use 2 ≤ nd ≤ 10. If ISSF = on, then the state of the parasite
�lter is set to the steady value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the C(s)
transfer function.

Input

u Analog input of the block Double (F64)

R1 Block reset (same state as after init) Bool

HLD Hold block execution Bool

Output

y Analog output of the block Double (F64)

Parameters

td Derivative time constant ⊙1.0 Double (F64)

nd Derivative �ltering parameter ⊙10.0 Double (F64)

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

193

LLC � Lead-lag compensator

Block Symbol Licence: STANDARD

LLC

u
R1
HLD
y

Function Description

The LLC block is a discrete simulator of integral-derivative element

C(s) =
a ∗ tau ∗ s+ 1

tau ∗ s+ 1
,

where tau is the denominator time constant and the time constant of numerator is an
a-multiple of tau (a ∗ tau). If ISSF = on, then the state of the �lter is set to the steady
value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the
C(s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the LLC block.

Input

u Analog input of the block Double (F64)

R1 Block reset (same state as after init) Bool

HLD Hold block execution Bool

Output

y Analog output of the block Double (F64)

Parameters

tau Time constant ⊙1.0 Double (F64)

a Numerator time constant coe�cient Double (F64)

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

194 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

MCU � Manual control unit

Block Symbol Licence: STANDARD

MCU

tv
UP
DN
rv
LOC

y

Function Description

The MCU block is suitable for manual setting of the numerical output value y, e.g. a
setpoint. In the local mode (LOC = on) the value is set using the buttons UP and DN.
The rate of increasing/decreasing of the output y from the initial value y0 is determined
by the integration time constant tm and pushing time of the buttons. After elapsing ta

seconds while a button is pushed, the rate is always multiplied by the factor q until
the time tf is elapsed. Optionally, the output y range can be constrained (SATF = on)
by saturation limits lolim and hilim. If none of the buttons is pushed (UP = off and
DN = off), the output y tracks the input value tv. The tracking speed is controlled by
the integration time constant tt.

In the remote mode (LOC = off), the input rv is optionally saturated (SATF = on)
and copied to the output y. The detailed function of the block is depicted in the following
diagram.

tv

UP

DN

rv

LOC

y
1

0

hilim
lolim

SATF

1

0

x0

1
1

s

1

Tm

1

Tt

G�

G+

5

4

3

2

1

Inputs

tv Tracking variable Double (F64)

UP The "up" signal Bool

DN The "down" signal Bool

rv Remote output value in the mode LOC = off Double (F64)

LOC Local or remote mode Bool

195

Output

y Analog output of the block Double (F64)

Parameters

tt Tracking time constant of the input tv ⊙1.0 Double (F64)

tm Initial value of integration time constant ⊙100.0 Double (F64)

y0 Initial output value Double (F64)

q Multiplication quotient ⊙5.0 Double (F64)

ta Interval after which the rate is changed [s] ⊙4.0 Double (F64)

tf Interval after which the rate changes no more [s] ⊙8.0 Double (F64)

SATF Saturation �ag Bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal ⊙1.0 Double (F64)

lolim Lower limit of the output signal ⊙-1.0 Double (F64)

196 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDAT � PID controller with relay autotuner

Block Symbol Licence: AUTOTUNING

PIDAT

dv

sp

pv

tv

hv

MAN

TUNE

TBRK

mv
de

SAT
TBSY
TE
ite
pk
pti
ptd
pnd
pb

Function Description

The PIDAT block has the same control function as the PIDU block. Additionally it is
equipped with the relay autotuning function.

In order to perform the autotuning experiment, it is necessary to drive the system to
approximately steady state (at a suitable working point), choose the type of controller
to be autotuned (PI or PID) and activate the TUNE input by setting it to on. The con-
trolled process is regulated by special adaptive relay controller in the experiment which
follows. One point of frequency response is estimated from the data measured during
the experiment. Based on this information the controller parameters are computed. The
amplitude of the relay controller (the level of system excitation) and its hysteresis is
de�ned by the amp and hys parameters. In case of hys=0 the hysteresis is determined
automatically according to the measurement noise properties on the controlled variable
signal. The signal TBSY is set to onduring the tuning experiment. A successful experiment
is indicated by and the controller parameters can be found on the outputs pk, pti, ptd,
pnd and pb. The c weighting factor is assumed (and recommended) c=0. A failure during
the experiment causes TE = on and the output ite provides further information about
the problem. It is recommended to increase the amplitude amp in the case of error. The
controller is equipped with a built-in function which decreases the amplitude when the
deviation of output from the initial steady state exceeds the maxdev limit. The tuning
experiment can be prematurely terminated by activating the TBRK input.

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

197

TUNE Start the tuning experiment Bool

TBRK Stop the tuning experiment Bool

Outputs

mv Manipulated variable (controller output) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy �ag Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occurred during the experiment

ite Error code; expected time (in seconds) to �nishing the tuning
experiment while the tuning experiment is active

Long (I32)

1000 . . Signal/noise ratio too low
1001 . . Hysteresis too high
1002 . . Too tight termination rule
1003 . . Phase out of interval

pk Proposed controller gain Double (F64)

pti Proposed integral time constant Double (F64)

ptd Proposed derivative time constant Double (F64)

pnd Proposed derivative component �ltering Double (F64)

pb Proposed weighting factor � proportional component Double (F64)

Parameters

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K. By de�nition, the value 0 turns the controller
o�. Negative values are not allowed, use the RACT parameter for
such a purpose. ↓0.0 ⊙1.0

Double (F64)

ti Integral time constant Ti. The value 0 disables the integrating
part (the same e�ect as disabling it by the irtype parameter).

↓0.0 ⊙4.0

Double (F64)

td Derivative time constant Td. The value 0 disables the derivative
part (the same e�ect as disabling it by the irtype parameter).

↓0.0 ⊙1.0

Double (F64)

nd Derivative �ltering parameter N . The value 0 disables the
derivative part (the same e�ect as disabling it by the irtype

parameter). ↓0.0 ⊙10.0

Double (F64)

198 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

b Setpoint weighting � proportional part ↓0.0 ⊙1.0 Double (F64)

c Setpoint weighting � derivative part ↓0.0 Double (F64)

tt Tracking time constant. ↓0.0 ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

iainf Type of apriori information ⊙1 Long (I32)

1 No apriori information
2 Astatic process (process with integration)
3 Low order process
4 Static process + slow closed loop step response
5 Static process + middle fast (normal) closed loop

step response
6 Static process + fast closed loop step response

k0 Static gain of the process (must be provided in case of iainf =
3, 4, 5) ⊙1.0

Double (F64)

n1 Maximum number of half-periods for estimation of frequency
response point ⊙20

Long (I32)

mm Maximum number of half-periods for averaging ⊙4 Long (I32)

amp Relay controller amplitude ⊙0.1 Double (F64)

uhys Relay controller hysteresis Double (F64)

ntime Length of noise amplitude estimation period at the beginning of
the tuning experiment [s] ⊙5.0

Double (F64)

rerrap Termination value of the oscillation amplitude relative error
⊙0.1

Double (F64)

aerrph Termination value of the absolute error in oscillation phase
⊙10.0

Double (F64)

maxdev Maximal admissible deviation error from the initial steady state
⊙1.0

Double (F64)

It is recommended not to change the parameters n1, mm, ntime, rerrap and aerrph.

199

PIDE � PID controller with de�ned static error

Block Symbol Licence: ADVANCED

PIDE

dv
sp
pv
tv
hv
MAN

mv

de

SAT

Function Description

The PIDE block is a basis for creating a modi�ed PI(D) controller which di�ers from
the standard PI(D) controller (the PIDU block) by having a �nite static gain (in fact,
the value ε which causes the saturation of the output is entered). In the simplest case
it can work autonomously and provide the standard functionality of the modi�ed PID
controller with two degrees of freedom in the automatic (MAN = off) or manual mode
(MAN = on).

If in automatic mode and if the saturation limits are not active, the controller im-
plements a linear control law given by

U(s) = ±K

[
bW (s)− Y (s) +

1

Tis+ β
E(s) +

Tds
Tds
N + 1

(cW (s)− Y (s))

]
+ Z(s),

where
β =

Kε

1−Kε

U(s) is the Laplace transform of the manipulated variable mv, W (s) is the Laplace
transform of the setpoint sp, Y (s) is the Laplace transform of the process variable pv,
E(s) is the Laplace transform of the deviation error, Z(s) is the Laplace transform of the
feedforward control variable dv and K, Ti, Td, N , ε (= bp/100), b and c are the controller
parameters. The sign of the right hand side depends on the parameter RACT. The range of
the manipulated variable mv (position controller output) is limited by parameters hilim,
lolim.

By connecting the output mv of the controller to the controller input tv and properly
setting the tracking time constant tt we obtain the bumpless operation of the controller
in the case of the mode switching (manual, automatic) and also the correct operation of
the controller when saturation of the output mv occurs (antiwindup).

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. In this mode the inner controller state tracks the signal connected to the tv

input so the successive switching to the automatic mode is bumpless. But the tracking
is not precise for ε > 0.

200 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Outputs

mv Manipulated variable (controller output) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

Parameters

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K ↓0.0 ⊙1.0 Double (F64)

ti Integral time constant Ti ↓0.0 ⊙4.0 Double (F64)

td Derivative time constant Td ↓0.0 ⊙1.0 Double (F64)

nd Derivative �ltering parameter N ↓0.0 ⊙10.0 Double (F64)

b Setpoint weighting � proportional part ↓0.0 ⊙1.0 Double (F64)

c Setpoint weighting � derivative part ↓0.0 Double (F64)

tt Tracking time constant. No meaning for controllers without
integrator. ↓0.0 ⊙1.0

Double (F64)

bp Static error coe�cient Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

201

PIDGS � PID controller with gain scheduling

Block Symbol Licence: ADVANCED

PIDGS

dv
sp
pv
tv
hv
MAN
IH
ip
vp

mv

dmv

de

SAT

kp

Function Description

The functionality of the PIDGS block is completely equivalent to the PIDU block. The
only di�erence is that the PIDGS block has a at most six sets of basic PID controller
parameters and allow bumpless switching of these sets by the ip (parameter set index)
or vp inputs. In the latter case it is necessary to set GSCF = on and provide an array of
threshold values thsha. The following rules de�ne the active parameter set: the set 0 is
active for vp < thrsha(0), the set 1 for thrsha(0) < vp < thrsha(1) etc. till the set 5
for thrsha(4) < vp. The index of the active parameter set is available at the kp output.

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

ip Parameter set index ↓0 ↑5 Long (I32)

vp Switching analog signal Double (F64)

Outputs

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

202 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

kp Active parameter set index Long (I32)

Parameters

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

nmax Reserved number of controller parameter sets ↓4 ↑10000 ⊙10 Long (I32)

GSCF Switch parameters by analog signal vp Bool

off . . . Index-based switching
on Analog signal based switching

hys Hysteresis for controller parameters switching Double (F64)

irtypea Vector of controller types (control laws) ⊙[6 6 6 6 6 6] Byte (U8)

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACTA Vector of reverse action �ags ⊙[0 0 0 0 0 0] Bool

0 Higher mv → higher pv
1 Higher mv → lower pv

ka Vector of controller gains K ⊙[1.0 1.0 1.0 1.0 1.0 1.0] Double (F64)

tia Vector of integral time constants Ti

⊙[4.0 4.0 4.0 4.0 4.0 4.0]

Double (F64)

tda Vector of derivative time constants Td

⊙[1.0 1.0 1.0 1.0 1.0 1.0]

Double (F64)

nda Vector of derivative �ltering parameters N
⊙[10.0 10.0 10.0 10.0 10.0 10.0]

Double (F64)

ba Setpoint weighting factors � proportional part
⊙[1.0 1.0 1.0 1.0 1.0 1.0]

Double (F64)

ca Setpoint weighting factors � derivative part
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

tta Vector of tracking time constants
⊙[1.0 1.0 1.0 1.0 1.0 1.0]

Double (F64)

thrsha Vector of thresholds for switching the parameters
⊙[0.1 0.2 0.3 0.4 0.5 0]

Double (F64)

203

PIDMA � PID controller with moment autotuner

Block Symbol Licence: AUTOTUNING

PIDMA

dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv
de

SAT
TBSY
TE
ite

trem
pk
pti
ptd
pnd
pb
pc

Function Description

The PIDMA block has the same control function as the PIDU block. Additionally it is
equipped with the moment autotuning function.

In the automatic mode (MAN = off), the block PIDMA implements the PID control
law with two degrees of freedom in the form

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output)
is limited by parameters hilim, lolim. The parameter dz determines the dead zone in
the integral part of the controller. The integral part of the control law can be switched
o� and �xed on the current value by the integrator hold input IH = on. For the proper
function of the controller it is necessary to connect the output mv of the controller to the
controller input tv and properly set the tracking time constant tt.

The rule of thumb for a PID controller is tt ≈
√
TiTd. For a PI controller the formula

is tt ≈ Ti/2. In this way we obtain the bumpless operation of the controller in the case of
the mode switching (manual, automatic) and also the correct operation of the controller
when saturation of the output mv occurs (antiwindup).

The additional outputs dmv, de and SAT generate the velocity output (di�erence of
mv), deviation error and saturation �ag, respectively.

If the PIDMA block is connected with the block SCUV to con�gure the 3-point step
controller without the positional feedback, then the parameter icotype must be set to 4

and the meaning of the outputs mv and dmv and SAT is modi�ed in the following way: mv

204 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

and dmv give the PD part and di�erence of I part of the control law, respectively, and
SAT provides the information for the SCUV block whether the deviation error is less than
the dead zone dz in the automatic mode. In this case, the setpoint weighting factor c
should be zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDMA block is quite clear from the following
diagram:

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+�1

+�1c

K+�1b

7

6

5

4

3

2

1

The block PIDMA extends the control function of the standard PID controller by the
built in autotuning feature. Before start of the autotuner the operator have to reach the
steady state of the process at a suitable working point (in manual or automatic mode)
and specify the required type of the controller ittype (PI or PID) and other tuning
parameters (iainf, DGC, tdg, tn, amp, dy and ispeed). The identi�cation experiment is
started by the input TUNE (input TBRK �nishes the experiment). In this mode (TBSY = on),
�rst of all the noise and possible drift gradient (DGC = on) are estimated during the user
speci�ed time (tdg+tn) and then the rectangle pulse is applied to the input of the process
and the �rst three process moments are identi�ed from the pulse response. The amplitude
of the pulse is set by the parameter amp. The pulse is �nished when the process variable
pv deviates from the steady value more than the dy threshold de�nes. The threshold is
an absolute di�erence, therefore it is always a positive value. The duration of the tuning
experiment depends on the dynamic behavior of the process. The remaining time to the
end of the tuning is provided by the output trem.

If the identi�cation experiment is properly �nished (TE = off) and the input ips

is equal to zero, then the optimal parameters immediately appear on the block outputs
pk, pti, ptd, pnd, pb, pc. In the opposite case (TE = on) the output ite speci�es the
experiment error more closely. Other values of the ips input are reserved for custom
speci�c purposes.

The function of the autotuner is illustrated in the following picture.

205

mv0+amp

mv0

pv0+dy

sp

pv0

TBSY

phase 0 1 2 3 4

0 t1 t2 t3 t4 t5

During the experiment, the output ite indicates the autotuner phases. In the phase of
estimation of the response decay rate (ite = -4) the tuning experiment may be �nished
manually before its regular end. In this case the controller parameters are designed but
the potential warning is indicated by setting the output ite=100.

At the end of the experiment (TBSY on→off), the function of the controller depends
on the current controller mode. If the TAFF = on the designed controller parameters are
immediately accepted.

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

TUNE Start the tuning experiment (off→on) or force transition to the
next tuning phase (see the description of the ite output)

Bool

TBRK Stop the tuning experiment Bool

TAFF Tuning a�rmation; determines the way the computed
parameters are handled

Bool

off . . . Parameters are only computed
on Parameters are set into the control law

206 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ips Meaning of the output signals pk, pti, ptd, pnd, pb and pc Long (I32)

0 Designed parameters k, ti, td, nd, b and c of the
PID control law

1 Process moments: static gain (pk), resident time
constant (pti), measure of the system response
length (ptd)

2 Three-parameter �rst-order plus dead-time model:
static gain (pk), dead-time (pti), time constant
(ptd)

3 Three-parameter second-order plus dead-time model
with double time constant: static gain (pk),
dead-time (pti), time constant (ptd)

4 Estimated boundaries for manual �ne-tuning of the
PID controller (irtype = 7) gain k: upper boundary
khi (pk), lower boundary klo (pti)

>99 . . . Reserved for diagnostic purposes

Outputs

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy �ag Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occurred during the experiment

ite Error code Long (I32)

Tuning error codes (after the experiment):

0 No error or waiting for steady state
1 Too small pulse getdown threshold
2 Too large pulse amplitude
3 Steady state condition violation
4 Too small pulse aplitude
5 Peak search procedure failure
6 Output saturation occurred during experiment
7 Selected controller type not supported
8 Process not monotonous
9 Extrapolation failure
10 Unexpected values of moments (fatal)
11 Abnormal manual termination of tuning
12 Wrong direction of manipulated variable
100 . . . Manual termination of tuning (warning)

207

Tuning phases codes (during the experiment):

0 Steady state reaching before the start of the
experiment

-1 Drift gradient and noise estimation phase
-2 Pulse generation phase
-3 Searching the peak of system response
-4 Estimation of the system response decay rate

Remark about terminating the tuning phases

TUNE . . The rising edge of the TUNE input during the phases
-2, -3 and -4 causes the �nishing of the current
phase and transition to the next one (or �nishing
the experiment in the phase -4).

trem Estimated time to �nish the tuning experiment [s] Double (F64)

pk Proposed controller gain K (ips = 0) Double (F64)

pti Proposed integral time constant Ti (ips = 0) Double (F64)

ptd Proposed derivative time constant Td (ips = 0) Double (F64)

pnd Proposed derivative component �ltering N (ips = 0) Double (F64)

pb Proposed weighting factor � proportional component (ips = 0) Double (F64)

pc Proposed weighting factor � derivative component (ips = 0) Double (F64)

Parameters

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K. By de�nition, the value 0 turns the controller
o�. Negative values are not allowed, use the RACT parameter for
such a purpose. ↓0.0 ⊙1.0

Double (F64)

ti Integral time constant Ti. The value 0 disables the integrating
part (the same e�ect as disabling it by the irtype parameter).

↓0.0 ⊙4.0

Double (F64)

td Derivative time constant Td. The value 0 disables the derivative
part (the same e�ect as disabling it by the irtype parameter).

↓0.0 ⊙1.0

Double (F64)

nd Derivative �ltering parameter N . The value 0 disables the
derivative part (the same e�ect as disabling it by the irtype

parameter). ↓0.0 ⊙10.0

Double (F64)

b Setpoint weighting � proportional part ↓0.0 ↑2.0 ⊙1.0 Double (F64)

c Setpoint weighting � derivative part ↓0.0 ↑2.0 Double (F64)

208 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

tt Tracking time constant. The value 0 stands for an implicit
value, which is Ti/2 or

√
TiTd (see above) for controllers with

integrating part. For controllers without integrating part, the
value 0 disables tracking. If tracking is needed for a P or PD

controller, it can be enabled by entering a positive value greater
than the sampling time. It is not possible to turn o� tracking for
controllers with the integrating part (due to the windup e�ect).

↓0.0 ⊙1.0

Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

ittype Controller type to be designed ⊙6 Long (I32)

6 PI controller
7 PID controller

iainf Type of apriori information ⊙1 Long (I32)

1 Static process
2 Astatic process

DGC Drift gradient compensation ⊙on Bool

off . . . Disabled
on Enabled

tdg Drift gradient estimation time [s] ⊙60.0 Double (F64)

tn Length of noise estimation period [s] ⊙5.0 Double (F64)

amp Tuning pulse amplitude ⊙0.5 Double (F64)

dy Tuning pulse get down threshold (absolute di�erence from the
steady pv value) ↓0.0 ⊙0.1

Double (F64)

ispeed Desired closed loop speed ⊙2 Long (I32)

1 Slow closed loop
2 Normal (middle fast) closed loop
3 Fast closed loop

ipid PID controller form ⊙1 Long (I32)

1 Parallel form
2 Series form

209

PIDU � PID controller unit

Block Symbol Licence: STANDARD

PIDU

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

Function Description

The PIDU block is a basic block for creating a complete PID controller (or P, I, PI, PD,
PID, PI+S). In the most simple case it works as a standalone unit with the standard
PID controller functionality with two degrees of freedom. It can operate in automatic
mode (MAN = off) or manual mode (MAN = on).

In the automatic mode (MAN = off), the block PIDU implements the PID control law
with two degrees of freedom in the form

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output)
is limited by parameters hilim, lolim. The parameter dz determines the dead zone in
the integral part of the controller. The integral part of the control law can be switched
o� and �xed on the current value by the integrator hold input IH (IH = on). For the
proper function of the controller it is necessary to connect the output mv of the controller
to the controller input tv and properly set the tracking time constant tt.

The rule of thumb for a PID controller is tt ≈
√
TiTd. For a PI controller the formula

is tt ≈ Ti/2. In this way we obtain the bumpless operation of the controller in the case of
the mode switching (manual, automatic) and also the correct operation of the controller
when saturation of the output mv occurs (antiwindup).

By adjusting the tt parameter, it is possible to tune the behaviour at saturation limits
(so-called bouncing from limits due to noise) and when switching multiple controllers
(bump in the controller output occurs when switching controllers while the control error
is non-zero).

The additional outputs dmv, de and SAT generate the velocity output (di�erence of
mv), deviation error and saturation �ag, respectively.

210 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

If the PIDU block is connected with the SCUV block to con�gure the 3-point step
controller without the positional feedback, then the parameter icotype must be set to
4 and the meaning of the outputs mv and dmv and SAT is modi�ed in the following way:
mv and dmv give the PD part and di�erence of I part of the control law, respectively, and
SAT provides the information for the SCUV block whether the deviation error is less than
the dead zone dz in the automatic mode. In this case, the setpoint weighting factor c
should be zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDU block is quite clear from the following
diagram:

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+�1

+�1c

K+�1b

7

6

5

4

3

2

1

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

Outputs

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

211

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

Parameters

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

k Controller gain K. By de�nition, the value 0 turns the controller
o�. Negative values are not allowed, use the RACT parameter for
such a purpose. ↓0.0 ⊙1.0

Double (F64)

ti Integral time constant Ti. The value 0 disables the integrating
part (the same e�ect as disabling it by the irtype parameter).

↓0.0 ⊙4.0

Double (F64)

td Derivative time constant Td. The value 0 disables the derivative
part (the same e�ect as disabling it by the irtype parameter).

↓0.0 ⊙1.0

Double (F64)

nd Derivative �ltering parameter N . The value 0 disables the
derivative part (the same e�ect as disabling it by the irtype

parameter). ↓0.0 ⊙10.0

Double (F64)

b Setpoint weighting � proportional part ↓0.0 ↑2.0 ⊙1.0 Double (F64)

c Setpoint weighting � derivative part ↓0.0 ↑2.0 Double (F64)

tt Tracking time constant. The value 0 stands for an implicit
value, which is Ti/2 or

√
TiTd (see above) for controllers with

integrating part. For controllers without integrating part, the
value 0 disables tracking. If tracking is needed for a P or PD

controller, it can be enabled by entering a positive value greater
than the sampling time. It is not possible to turn o� tracking for
controllers with the integrating part (due to the windup e�ect).

↓0.0 ⊙1.0

Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

212 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDUI � PID controller unit with variable parameters

Block Symbol Licence: ADVANCED

PIDUI

dv
sp
pv
tv
hv
MAN
IH
k
ti
td
nd
b
c

mv

dmv

de

SAT

Function Description

The functionality of the PIDUI block is completely equivalent to the PIDU block. The only
di�erence is that the PID control algorithm parameters are de�ned by the input signals
and therefore they can depend on the outputs of other blocks. This allows creation of
special adaptive PID controllers.

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

k Controller gain K Double (F64)

ti Integral time constant Ti Double (F64)

td Derivative time constant Td Double (F64)

nd Derivative �ltering parameter N Double (F64)

b Setpoint weighting � proportional part Double (F64)

c Setpoint weighting � derivative part Double (F64)

Outputs

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

213

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

Parameters

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID

4 P
5 PD
6 PI

7 PID

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

tt Tracking time constant ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog output
2 Pulse width modulation (PWM)
3 Step controller unit with position feedback (SCU)
4 Step controller unit without position feedback (SCUV)

214 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

POUT � Pulse output

Block Symbol Licence: STANDARD

POUT

U Y

Function Description

The POUT block shapes the input pulses U in such a way, that the output pulse Y has a
duration of at least dtime seconds and the idle period between two successive output
pulses is at least btime seconds. The input pulse occuring sooner than the period of
btime seconds since the last falling edge of the output signal elapses has no e�ect on the
output signal Y.

Input

U Logical input of the block Bool

Output

Y Logical output of the block Bool

Parameters

dtime Minimum width of the output pulse [s] ⊙1.0 Double (F64)

btime Minimum delay between two successive output pulses [s] ⊙1.0 Double (F64)

215

PRGM � Setpoint programmer

Block Symbol Licence: STANDARD

PRGM

RUN
DEF
spv
HLD
CON
ind
trt
RPT

sp
isc
tsc
tt
rt

CNF
E

Function Description

The PRGM block generates functions of time (programs) composed of n linear parts
de�ned by (n + 1)-dimensional vectors of time (tm = [t0, . . . , tn]) and output values
(y = [y0, . . . , yn]). The generated time-course is continuous piecewise linear, see �gure
below. This block is most commonly used as a setpoint generator for a controller. The
program generation starts when RUN = on. In the case of RUN = off the programmer is
set back to the initial state. The input DEF = on sets the output sp to the value spv.
It follows a ramp to the nearest future node of the time function when DEF = off. The
internal time of the generator is not a�ected by this input. The input HLD = on freezes
the output sp and the internal time, thus also the outputs tsc, tt and rt. The program
follows from freezing point as planned when HLD = off unless the input CON = on at the
moment when the signal HLD on→off. In that case the program follows a ramp to reach
the node with index ind in time trt. The node index ind must be equal to or higher
than the index of current sector isc (at the moment when HLD on→off). If RPT = on,
the program is generated repeatedly.

isc 1 2 n

t1

y0

y
1

y2 yn-1

yn

t0 t2 tn-1 tn
tsc

tt rt

current

instant

Inputs

RUN Enable execution Bool

DEF Initialize sp to the value of spv Bool

spv Initializing constant Double (F64)

HLD Output and timer freezing Bool

216 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

CON Continue from de�ned node Bool

ind Index of the node to continue from Long (I32)

trt Time to reach the de�ned node with index ind Double (F64)

RPT Repetition �ag Bool

Outputs

sp Setpoint variable (function value of the time function at given
time)

Double (F64)

isc Current function sector Long (I32)

tsc Time elapsed since the start of current sector Double (F64)

tt Time elapsed since the start of program generation Double (F64)

rt Remaining time till the end of program Double (F64)

CNF Flag indicating that the con�gured curve is being followed Bool

E Error �ag � the node times are not ascending Bool

Parameters

nmax Reserved (allocated) size of the tm, y vectors
↓4 ↑10000000 ⊙10

Long (I32)

tmunits Time units ⊙1 Long (I32)

1 seconds
2 minutes
3 hours

tm (n+ 1)-dimensional vector of ascending node times ⊙[0 1 2] Double (F64)

y (n + 1)-dimensional vector of node values (values of the time
function) ⊙[0 1 0]

Double (F64)

217

PSMPC � Pulse-step model predictive controller

Block Symbol Licence: ADVANCED

PSMPC

sp

pv

tv

hv

MAN

mv
dmv
de

SAT
pve
iE

Function Description

The PSMPC block can be used for control of hardly controllable linear time-invariant
systems with manipulated value constraints (e.g. time delay or non-minimum phase
systems). It is especially well suited for the case when fast transition without overshoot
from one level of controlled variable to another is required. In general, the PSMPC block
can be used where the PID controllers are commonly used.

0 Ts 2Ts 3Ts 4Ts N Ts
time

y
(t

)

g(1)

g(3)

g(2)

g(4) g(N)

h(1)

h(2)

h(3)

h(4)

The PSMPC block is a predictive controller with explicitly de�ned constraints on the
amplitude of manipulated variable.

The prediction is based on the discrete step response g(j), j = 1, . . . , N is used. The
�gure above shows how to obtain the discrete step response g(j), j = 0, 1, . . . , N and the
discrete impulse response h(j), j = 0, 1, . . . , N with sampling period TS from continuous
step response. Note that N must be chosen such that N ·TS > t95, where t95 is the time
to reach 95 % of the �nal steady state value.

For stable, linear and t-invariant systems with monotonous step response it is also
possible to use the moment model set approach [4] and describe the system by only
3 characteristic numbers κ, µ, and σ2, which can be obtained easily from a very short

218 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

and simple experiment. The controlled system can be approximated by �rst order plus
dead-time system

FFOPDT (s) =
K

τs+ 1
· e−Ds, κ = K, µ = τ +D, σ2 = τ2 (7.1)

or second order plus dead-time system

FSOPDT (s) =
K

(τs+ 1)2
· e−Ds, κ = K, µ = 2τ +D, σ2 = 2τ2 (7.2)

with the same characteristic numbers. The type of approximation is selected by the
imtype parameter.

To lower the computational burden of the open-loop optimization, the family of
admissible control sequences contains only sequences in the so-called pulse-step shape
depicted below:

N
c

n
2

n
1

u
�

u
+

u
�

n
1

n
2

N
c

u
�

u
+

u
�

p
0
=1

p
0
=0

Note that each of these sequences is uniquely de�ned by only four numbers n1, n2 ∈
{0, . . . , NC}, p0 and u∞ ∈ ⟨u−, u+⟩, where NC ∈ {0, 1, . . .} is the control horizon and
u−, u+ stand for the given lower and upper limit of the manipulated variable. The on-line
optimization (with respect to p0, n1, n2 and u∞) minimizes the criterion

I =

N2∑
i=N1

ê(k + i|k)2 + λ

NC∑
i=0

∆û(k + i |k)2 → min, (7.3)

where ê(k + i|k) is the predicted control error at time k over the coincidence interval
i ∈ {N1, N2}, ∆û(k + i|k) are the di�erences of the control signal over the interval i ∈
{0, NC} and λ penalizes the changes in the control signal. The algorithm used for solving
the optimization task (7.3) combines brute force and the least squares method. The value
u∞ is determined using the least squares method for all admissible combinations of p0,
n1 and n2 and the optimal control sequence is selected afterwards. The selected sequence
in the pulse-step shape is optimal in the open-loop sense. To convert from open-loop to
closed-loop control strategy, only the �rst element of the computed control sequence is
applied and the whole optimization procedure is repeated in the next sampling instant.

The parameters N1, N2, HC , and λ in the criterion (7.3) take the role of design
parameters. Only the last parameter λ is meant for manual tuning of the controller.
In the case the model in the form (7.1) or (7.2) is used, the parameters N1 and N2

are determined automatically with respect to the µ and σ2 characteristic numbers. The

219

controller can be then e�ectively tuned by adjusting the characteristic numbers κ, µ and
σ2.

Warning

It is necessary to set the sr array su�ciently large to avoid Matlab/Simulink crash
when using the PSMPC block for simulation purposes. Especially when using FOPDT
or SOPDT model, the sr array size must be greater than the length of the internally
computed discrete step response.

Inputs

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable (applied control signal) Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Outputs

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

pve Predicted process variable based on the controlled process model Double (F64)

iE Error code Long (I32)

0 No error
1 Incorrect FOPDT model
2 Incorrect SOPDT model
3 Invalid step response sequence

Parameters

nc Control horizon length (NC) ⊙5 Long (I32)

np1 Start of coincidence interval (N1) ⊙1 Long (I32)

np2 End of coincidence interval (N2) ⊙10 Long (I32)

lambda Control signal penalization coe�cient (λ) ⊙0.05 Double (F64)

umax Upper limit of the controller output (u+) ⊙1.0 Double (F64)

umin Lower limit of the controller output (u−) ⊙-1.0 Double (F64)

220 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

imtype Controlled process model type ⊙3 Long (I32)

1 FOPDT model (7.1)
2 SOPDT model (7.2)
3 Discrete step response

kappa Static gain (κ) ⊙1.0 Double (F64)

mu Resident time constant (µ) ⊙20.0 Double (F64)

sigma Measure of the system response length (
√
σ2) ⊙10.0 Double (F64)

nmax Reserved size of the sr array ↓10 ↑10000 ⊙32 Long (I32)

sr Discrete step response sequence ([g(1), . . . , g(N)])
⊙[0 0.2642 0.5940 0.8009 0.9084 0.9596 0.9826 0.9927 0.9970 0.9988 0.9995]

Double (F64)

221

PWM � Pulse width modulation

Block Symbol Licence: STANDARD

PWM

u
UP

DN

Function Description

The PWM block implements a pulse width modulation algorithm for proportional actua-
tors. In the general, it is assumed the input signal u ranges in the interval from -1 to +1.
The width L of the output pulse is computed by the expression:

L = pertm ∗ |u| ,

where pertm is the modulation time period. If u > 0 (u < 0), the pulse is generated in
the output UP (DN). However, the width of the generated pulses are a�ected by other
parameters of the block. The asymmetry factor asyfac determines the ratio of negative
pulses duration to positive pulses duration. The modi�ed pulse widths are given by:

if u > 0 then L(UP) :=

{
L for asyfac ≤ 1.0
L/asyfac for asyfac > 1.0

if u < 0 then L(DN) :=

{
L ∗ asyfac for asyfac ≤ 1.0
L for asyfac > 1.0

Further, if the computed width is less than minimum pulse duration dtime the width
is set to zero. If the pulse width di�ers from the modulation period pertm less than
minimum pulse break time btime then width of the pulse is set to pertm. In the case the
positive pulse is succeeded by the negative one (or vice versa) the latter pulse is possibly
shifted in such a way that the distance between these pulses is at least equal to the
minimum o� time offtime. If SYNCH = on, then the change of the input value u causes
the immediate recalculation of the current pulse widths if a synchronization condition is
violated.

Input

u Analog input of the block Double (F64)

Outputs

UP The "up" signal Bool

DN The "down" signal Bool

222 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Parameters

pertm Modulation period length [s] ⊙10.0 Double (F64)

dtime Minimum width of the output pulse [s] ⊙0.1 Double (F64)

btime Minimum delay between output pulses [s] ⊙0.1 Double (F64)

offtime Minimum delay when altering direction [s] ⊙1.0 Double (F64)

asyfac Asymmetry factor ⊙1.0 Double (F64)

SYNCH Synchronization �ag of the period start Bool

off . . . Synchronization disabled
on Synchronization enabled

223

RLY � Relay with hysteresis

Block Symbol Licence: STANDARD

RLY

u y

Function Description

The RLY block transforms the input signal u to the output signal y according to the
�gure below.

ep

en

y

ap

an

u

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

ep The value u > ep causes y = ap ("On") ⊙1.0 Double (F64)

en The value u < en causes y = an ("O�") ⊙-1.0 Double (F64)

ap Output value y in the "On" state ⊙1.0 Double (F64)

an Output value y in the "O�" state ⊙-1.0 Double (F64)

y0 Initial output value at start-up Double (F64)

224 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SAT � Saturation with variable limits

Block Symbol Licence: STANDARD

SAT

u
hi
lo

y
HL
LL

Function Description

The SAT block copies the input u to the output y if the input signal satis�es lolim ≤ u

and u ≤ hilim, where lolim and hilim are state variables of the block. If u < lolim

(u > hilim), then y = lolim (y = hilim). The upper and lower limits are either
constants (HLD = on) de�ned by parameters hilim0 and lolim0 respectively or input-
driven variables (HLD = off, hi and lo inputs). The maximal rate at which the active
limits may vary is given by time constants tp (positive slope) and tn (negative slope).
These rates are active even if the saturation limits are changed manually (HLD = on)
using the hilim0 and lolim0 parameters. To allow immediate changes of the saturation
limits, set tp = 0 and tn = 0. The HL and LL outputs indicate the upper and lower
saturation respectively.

If necessary, the hilim0 and lolim0 parameters are used as initial values for the
input-driven saturation limits.

Inputs

u Analog input of the block Double (F64)

hi Upper limit of the output signal (for the case HLD = off) Double (F64)

lo Lower limit of the output signal (for the case HLD = off) Double (F64)

Outputs

y Analog output of the block Double (F64)

HL Upper limit saturation indicator Bool

LL Lower limit saturation indicator Bool

Parameters

tp Time constant de�ning the maximal positive slope of active limit
changes ⊙1.0

Double (F64)

tn Time constant de�ning the maximum negative slope of active
limit changes ⊙1.0

Double (F64)

hilim0 Upper limit of the output (valid for HLD = on) ⊙1.0 Double (F64)

lolim0 Lower limit of the output (valid for HLD = on) ⊙-1.0 Double (F64)

225

HLD Fixed saturation limits ⊙on Bool

off . . . Variable limits on Fixed limits

226 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SC2FA � State controller for 2nd order system with frequency
autotuner

Block Symbol Licence: AUTOTUNING

SC2FA

dv
sp
pv
tv
hv
MAN
ID
TUNE
HLD
BRK
SETC
ips
MFR

mv
de

SAT
IDBSY

w
xre
xim
epv
IDE
iIDE
p1
p2
p3
p4
p5
p6

Function Description

The SC2FA block implements a state controller for 2nd order system (7.4) with frequency
autotuner. It is well suited especially for control (active damping) of lightly damped
systems (ξ < 0.1). But it can be used as an autotuning controller for arbitrary system
which can be described with su�cient precision by the transfer function

F (s) =
b1s+ b0

s2 + 2ξΩs+Ω2
, (7.4)

where Ω>0 is the natural (undamped) frequency, ξ, 0<ξ<1, is the damping coe�cient
and b1, b0 are arbitrary real numbers. The block has two operating modes: "Identi�cation
and design mode" and "Controller mode".

The "Identi�cation and design mode" is activated by the binary input ID = on. Two
points of frequency response with given phase delay are measured during the identi�ca-
tion experiment. Based on these two points a model of the controlled system is built.
The experiment itself is initiated by the rising edge of the RUN input. A harmonic sig-
nal with amplitude uamp, frequency ω and bias ubias then appears at the output mv.
The frequency runs through the interval ⟨wb, wf⟩, it increases gradually. The current fre-
quency is copied to the output w. The rate at which the frequency changes (sweeping) is
determined by the cp parameter, which de�nes the relative shrinking of the initial period
Tb =

2π
wb

of the exciting sine wave in time Tb, thus

cp =
wb

ω(Tb)
=

wb

wbeγTb
= e−γTb .

The cp parameter usually lies within the interval cp ∈ ⟨0,95; 1). The lower the damping
coe�cient ξ of the controlled system is, the closer to one the cp parameter must be.

227

At the beginning of the identi�cation period the exciting signal has a frequency of
ω = wb. After a period of stime seconds the estimation of current frequency response
point starts. Its real and imaginary parts are available at the xre and xim outputs. If
the MANF parameter is set to 0, then the frequency sweeping is stopped two times during
the identi�cation period. This happens when points with phase delay of ph1 and ph2 are
reached for the �rst time. The breaks are stime seconds long. Default phase delay values
are −60◦ and −120◦, respectively, but these can be changed to arbitrary values within the
interval (−360◦, 0◦), where ph1 > ph2. At the end of each break an arithmetic average
is computed from the last iavg frequency point estimates. Thus we get two points of
frequency response which are successively used to compute the controlled process model
in the form of (7.4). If the MANF parameter is set to 1, then the selection of two frequency
response points is manual. To select the frequency, set the input HLD = on, which stops
the frequency sweeping. The identi�cation experiment continues after returning the input
HLD to 0. The remaining functionality is unchanged.

It is possible to terminate the identi�cation experiment prematurely in case of neces-
sity by the input BRK = on. If the two points of frequency response are already identi�ed
at that moment, the controller parameters are designed in a standard way. Otherwise
the controller design cannot be performed and the identi�cation error is indicated by the
output signal IDE = on.

The IDBSY output is set to 1 during the "identi�cation and design" phase. It is set
back to 0 after the identi�cation experiment �nishes. A successful controller design is
indicated by the output IDE = off. During the identi�cation experiment the output iIDE
displays the individual phases of the identi�cation: iIDE = −1 means approaching the
�rst point, iIDE = 1 means the break at the �rst point, iIDE = −2 means approaching
the second point, iIDE = 2 means the break at the second point and iIDE = −3 means
the last phase after leaving the second frequency response point. An error during the
identi�cation phase is indicated by the output IDE = on and the output iIDE provides
more information about the error.

The computed state controller parameters are taken over by the control algorithm
as soon as the SETC input is set to 1 (i.e. immediately if SETC is constantly set to on).
The identi�ed model and controller parameters can be obtained from the p1, p2, . . . , p6
outputs after setting the ips input to the appropriate value. After a successful identi�-
cation it is possible to generate the frequency response of the controlled system model,
which is initiated by a rising edge at the MFR input. The frequency response can be read
from the w, xre and xim outputs, which allows easy confrontation of the model and the
measured data.

The "Controller mode" (binary input ID = off) has manual (MAN = on) and auto-
matic (MAN = off) submodes. After a cold start of the block with the input ID = off it
is assumed that the block parameters mb0, mb1, ma0 and ma1 re�ect formerly identi�ed
coe�cients b0, b1, a0 and a1 of the controlled system transfer function and the state con-
troller design is performed automatically. Moreover if the controller is in the automatic
mode and SETC = on, then the control law uses the parameters from the very beginning.
In this way the identi�cation phase can be skipped when starting the block repeatedly.

228 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

x1=sinwt

x2=coswt

z1=b sin(wt+fi)

z1=b cos(wt+fi)

wb,wf,cp

w xre xim

ID=1

ID=0

hv

MAN=1

MAN=0

uco

uamp ubias
hilim
lolim

p1 p2 p3 p4 p5 p6

mv pv=y

y^=epv
y

y^ eps

controller

design

estimate

b0,b1,a0,a1

estimate

F(jw)

RCN_SIN

b1.s+b0

s +a1.s+a02

PROCESS

GEN_SIN

Demux

Demux
em

em

The diagram above is a simpli�ed inner structure of the frequency autotuning part
of the controller. The diagram below shows the state feedback, observer and integra-
tor anti-wind-up. The diagram does not show the fact, that the controller design block
automatically adjusts the observer and state feedback parameters f1, . . . , f5 after iden-
ti�cation experiment (and SETC = on).

229

-de

v1^

v2^

v3

dv

tv=mv

uco

v4

v5

mv

pv

sp

disturb.

model

observer

1

tt

1
s

f5

f4

f3

f2

f1

em

em

The controlled system is assumed in the form of (7.4). Another forms of this transfer
function are

F (s) =
(b1s+ b0)

s2 + a1s+ a0
(7.5)

and

F (s) =
K0Ω

2(τs+ 1)

s2 + 2ξΩs+Ω2
. (7.6)

The coe�cients of these transfer functions can be found at the outputs p1,...,p6 after the
identi�cation experiment (IDBSY = off). The output signals meaning is switched when
a change occurs at the ips input.

Inputs

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

230 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

MAN Manual or automatic mode Bool

off . . . Automatic mode on Manual mode

ID Identi�cation or controller operating mode Bool

off . . . Controller mode
on Identi�cation and design

mode

TUNE Start the tuning experiment (off→on), the exciting harmonic
signal is generated

Bool

HLD Stop frequency sweeping Bool

BRK Termination signal Bool

SETC Flag for accepting the new controller parameters and updating
the control law

Bool

off . . . Parameters are only computed
on Parameters are accepted as soon as computed
off→on One-shot con�rmation of the computed parameters

ips Switch for changing the meaning of the output signals Long (I32)

0 Two points of frequency response
p1 . . . frequency of the 1st measured point in rad/s
p2 . . . real part of the 1st point
p3 . . . imaginary part of the 1st point
p4 . . . frequency of the 2nd measured point in rad/s
p5 . . . real part of the 2nd point
p6 . . . imaginary part of the 2nd point

1 Second order model in the form (7.5)
p1 . . . b1 parameter
p2 . . . b0 parameter
p3 . . . a1 parameter
p4 . . . a0 parameter

2 Second order model in the form (7.6)
p1 . . . K0 parameter
p2 . . . τ parameter
p3 . . . Ω parameter in rad/s
p4 . . . ξ parameter
p5 . . . Ω parameter in Hz
p6 . . . resonance frequency in Hz

3 State feedback parameters
p1 . . . f1 parameter
p2 . . . f2 parameter
p3 . . . f3 parameter
p4 . . . f4 parameter
p5 . . . f5 parameter

MFR Generation of the parametric model frequency response at the w,
xre and xim outputs (off→on triggers the generator)

Bool

Outputs

mv Manipulated variable (controller output) Double (F64)

de Deviation error Double (F64)

231

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

IDBSY Identi�cation running Bool

off . . . Identi�cation not running
on Identi�cation in progress

w Frequency response point estimate - frequency in rad/s Double (F64)

xre Frequency response point estimate - real part Double (F64)

xim Frequency response point estimate - imaginary part Double (F64)

epv Reconstructed pv signal Double (F64)

IDE Identi�cation error indicator Bool

off . . . Successful identi�cation experiment
on Identi�cation error occurred

iIDE Error code Long (I32)

101 . . . Sampling period too low
102 . . . Error identifying one or both frequency response

point(s)
103 . . . Manipulated variable saturation occurred during the

identi�cation experiment
104 . . . Invalid process model

p1..p6 Results of identi�cation and design phase Double (F64)

Parameters

ubias Static component of the exciting harmonic signal Double (F64)

uamp Amplitude of the exciting harmonic signal ⊙1.0 Double (F64)

wb Frequency interval lower limit [rad/s] ⊙1.0 Double (F64)

wf Frequency interval upper limit [rad/s] ⊙10.0 Double (F64)

isweep Frequency sweeping mode ⊙1 Long (I32)

1 Logarithmic
2 Linear (not implemented yet)

cp Sweeping rate ↓0.5 ↑1.0 ⊙0.995 Double (F64)

iavg Number of values for averaging ⊙10 Long (I32)

alpha Relative positioning of the observer poles (in identi�cation
phase) ⊙2.0

Double (F64)

xi Observer damping coe�cient (in identi�cation phase) ⊙0.707 Double (F64)

MANF Manual frequency response points selection Bool

off . . . Disabled
on Enabled

ph1 Phase delay of the 1st point in degrees ⊙-60.0 Double (F64)

ph2 Phase delay of the 2nd point in degrees ⊙-120.0 Double (F64)

stime Settling period [s] ⊙10.0 Double (F64)

ralpha Relative positioning of the observer poles ⊙4.0 Double (F64)

rxi Observer damping coe�cient ⊙0.707 Double (F64)

acl1 Relative positioning of the 1st closed-loop poles couple ⊙1.0 Double (F64)

xicl1 Damping of the 1st closed-loop poles couple ⊙0.707 Double (F64)

232 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

INTGF Integrator �ag ⊙on Bool

off . . . State-space model without integrator
on Integrator included in the state-space model

apcl Relative position of the real pole ⊙1.0 Double (F64)

DISF Disturbance �ag Bool

off . . . State space model without disturbance model
on Disturbance model is included in the state space

model
dom Disturbance model natural frequency ⊙1.0 Double (F64)

dxi Disturbance model damping coe�cient Double (F64)

acl2 Relative positioning of the 2nd closed-loop poles couple ⊙2.0 Double (F64)

xicl2 Damping of the 2nd closed-loop poles couple ⊙0.707 Double (F64)

tt Tracking time constant ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

mb1p Controlled system transfer function coe�cient b1 Double (F64)

mb0p Controlled system transfer function coe�cient b0 ⊙1.0 Double (F64)

ma1p Controlled system transfer function coe�cient a1 ⊙0.2 Double (F64)

ma0p Controlled system transfer function coe�cient a0 ⊙1.0 Double (F64)

233

SCU � Step controller with position feedback

Block Symbol Licence: STANDARD

SCU

sp
pv
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

de

Function Description

The SCU block implements the secondary (inner) position controller of the step controller
loop. PIDU function block or some of the derived function blocks (PIDMA, etc.) is assumed
as the primary controller.

The SCU block processes the control deviation sp− pv by a three state element with
parameters (thresholds) thron and throff (see the TSE block, use parameters ep =
thron, epoff = throff, en = -thron and enoff = -throff). The parameter RACT

determines whether the UP or DN pulse is generated for positive or negative value of the
controller deviation. Two pulse outputs of the three state element are further shaped so
that minimum pulse duration dtime and minimum pulse break time btime are guaranteed
at the block UP and DN outputs. If signals from high and low limit switches of the valve
are available, they should be connected to the HS and LS inputs.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment/decrement request by the mdv input. In this case the request must be con�rmed
by a rising edge (off→on) in the DVC input signal.

The control function of the SCU block is quite clear from the following diagram.

sp

pv

MUP

MDN

mdv

HS

LS

UP

de

DN

DVC

MAN

0

1

0

1

0

1

0

1

3

2

1

PWM

OR

AND
NOT

AND
NOT

AND
NOT

AND
NOT

9

8

7

6

5

4

3

2

1

The complete structure of the three-state step controller is depicted in the following

234 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

�gure.

Position Feedback Signal

Process ValueSetpoint

MAN/AUT
Valve Drive

Optional Connections

sp
pv
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

de

SCU

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU

UP

DN

y

HS

LS

MVD
Motorized
Valve Drive

u y

MDL
Process

Inputs

sp Setpoint (output of the primary controller) Double (F64)

pv Controlled variable (position of the motorized valve drive) Double (F64)

HS Upper end switch (detects the upper limit position of the valve) Bool

LS Lower end switch (detects the lower limit position of the valve) Bool

MUP Manual UP signal Bool

MDN Manual DN signal Bool

mdv Manual di�erential value (requested position
increment/decrement with higher priority than direct signals
MUP/MDN)

Double (F64)

DVC Di�erential value change command (off→on) Bool

MAN Manual or automatic mode Bool

off . . . Automatic mode on Manual mode

Outputs

UP The "up" signal Bool

DN The "down" signal Bool

de Deviation error Double (F64)

Parameters

thron Switch-on value ↓0.0 ⊙0.02 Double (F64)

throff Switch-o� value ↓0.0 ⊙0.01 Double (F64)

dtime Minimum width of the output pulse [s] ↓0.0 ⊙0.1 Double (F64)

btime Minimum delay between two subsequent output pulses [s] to do
↓0.0 ⊙0.1

Double (F64)

235

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

trun Motor time constant (determines the time during which the
motor position changes by one unit) ↓0.0 ⊙10.0

Double (F64)

236 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SCUV � Step controller unit with velocity input

Block Symbol Licence: STANDARD

SCUV

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

Function Description

The block SCUV substitutes the secondary position controller SCU in the step controller
loop when the position signal is not available. The primary controller PIDU (or some of
the derived function blocks) is connected with the block SCUV using the block inputs mv,
dmv and SAT.

If the primary controller uses PI or PID control law (CWOI = off), then all three
inputs mv, dmv and SAT of the block SCUV are sequentially processed by the special
integration algorithm and by the three state element with parameters thron and throff

(see the TSE block, use parameters ep = thron, epoff = throff, en = -thron and
enoff = -throff). Pulse outputs of the three state element are further shaped in such
a way that the minimum pulse duration time dtime and minimum pulse break time
btime are guaranteed at the block outputs UP and DN. The parameter RACT determines
the direction of motor moving. Note, the velocity output of the primary controller is
reconstructed from input signals mv and dmv. Moreover, if the deviation error of the
primary controller with icotype = 4 (working in automatic mode) is less than its dead
zone (SAT = on), then the output of the corresponding internal integrator is set to zero.

The position pos of the valve is estimated by an integrator with the time constant
trun. If signals from high and low limit switches of the valve are available, they should
be connected to the inputs HS and LS.

If the primary controller uses P or PD control law (CWOI = on), then the deviation
error of the primary controller can be eliminated by the bias ub manually. In this case,
the control algorithm is slightly modi�ed, the position of the motor pos is used and the
proper settings of thron, throff and the tracking time constant tt are necessary for the
suppressing of up/down pulses in the steady state.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment/decrement request by the mdv input. In this case the request must be con�rmed
by a rising edge (off→on) in the DVC input signal.

237

The overall control function of the SCUV block is obvious from the following diagram:

mv

dmv

MUP

MDN

MAN

HS

LS

UP

pos

DN

1

0

0

ub

CWOI

0

CWOI

�1

mdv

DVC

MR

0

MR

01

0

10

1

SAT

1

0

1

0

1

1

1 0

1

0
1

0

0

0

4

3

2

1

1

trun

1

tt

PWM

OR

OR

AND
NOT

AND
NOT

AND

s

1

s

1

diff

11

10

9

8

7

6

5

4

3

2

1

The complete structures of the three-state controllers are depicted in the following
�gures:

Process ValueSetpoint

Valve Drive
MAN/AUT

Optional Connections

Primary controller with integration: I, PI, PID

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV
(CWOI=0)

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
(icotype=4)

UP

DN

y

HS

LS

MVD
Motorized
Valve Drive

u y

MDL
Process

Process ValueSetpoint

Valve Drive
MAN/AUT

Optional Connections

Manual Bias

Primary controller without integration: P, PD

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV
(CWOI=1)

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
(icotype=4)

UP

DN

y

HS

LS

MVD
Motorized
Valve Drive

u y

MDL
Process

Inputs

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

238 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ub Bias (only for P or PD primary controller) Double (F64)

SAT Internal integrator reset (connected to the SAT output of the
primary controller)

Bool

HS Upper end switch (detects the upper limit position of the valve) Bool

LS Lower end switch (detects the lower limit position of the valve) Bool

MUP Manual UP signal Bool

MDN Manual DN signal Bool

mdv Manual di�erential value (requested position
increment/decrement with higher priority than direct signals
MUP/MDN)

Double (F64)

DVC Di�erential value change command (off→on) Bool

MAN Manual or automatic mode Bool

off . . . Automatic mode on Manual mode

Outputs

UP The "up" signal Bool

DN The "down" signal Bool

pos Position output of motor simulator Double (F64)

MR Request to move the motor Bool

off . . . Motor idle (UP = off and DN = off)
on Request to move (UP = on or DN = on)

Parameters

thron Switch-on value ↓0.0 ⊙0.02 Double (F64)

throff Switch-o� value ↓0.0 ⊙0.01 Double (F64)

dtime Minimum width of the output pulse [s] ↓0.0 ⊙0.1 Double (F64)

btime Minimum delay between two subsequent output pulses [s]
↓0.0 ⊙0.1

Double (F64)

RACT Reverse action �ag Bool

off . . . Higher mv → higher pv
on Higher mv → lower pv

trun Motor time constant (determines the time during which the
motor position changes by one unit) ↓0.0 ⊙10.0

Double (F64)

CWOI Controller without integration �ag Bool

off . . . The primary controller has an integrator (I, PI, PID)
on The primary controller does not have an integrator

(P, PD)
tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

239

SELU � Controller selector unit

Block Symbol Licence: STANDARD

SELU

u1
u2
u3
u4
iSW
SW1
SW2

y

U1

U2

U3

U4

Function Description

The SELU block is tailored for selecting the active controller in selector control. It chooses
one of the input signals u1, u2, u3, u4 and copies it to the output y. For BINF = off the
active signal is selected by the iSW input. In the case of BINF = on the selection is based
on the binary inputs SW1 and SW2 according to the following table:

iSW SW1 SW2 y U1 U2 U3 U4

0 off off u1 off on on on

1 off on u2 on off on on

2 on off u3 on on off on

3 on on u4 on on on off

This table also explains the meaning of the binary outputs U1, U2, U3 and U4, which
are used by the inactive controllers in selector control for tracking purposes (via the SWU
blocks).

Inputs

u1..u4 Signals to be selected from Double (F64)

iSW Active signal selector in case of BINF = off Long (I32)

SW1 Binary signal selector, used when BINF = on Bool

SW2 Binary signal selector, used when BINF = on Bool

Outputs

y Analog output of the block Double (F64)

U1..U4 Binary output signal for selector control Bool

Parameter

BINF Enable the binary selectors Bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

240 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SMHCC � Sliding mode heating/cooling controller

Block Symbol Licence: ADVANCED

SMHCC

sp

pv

hv

MAN

mv
mve
de

SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv

Function Description

The sliding mode heating/cooling controller SMHCC is a novel high quality control al-
gorithm intended for temperature control of heating-cooling (possibly asymmetrical)
processes with ON-OFF heaters and/or ON-OFF coolers. The plastic extruder is a typ-
ical example of such process. However, it can also be applied to many similar cases, for
example in thermal systems where a conventional thermostat is employed. To provide
the proper control function the block SMHCC must be combined with the block PWM (Pulse
Width Modulation) as depicted in the following �gure.

sp

pv

hv

MAN

mv
mve
de
SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv

SMHCC

u
UP

DN

PWM

[cooler_contactor]

[heater_contactor]

[MAN_AUT_switch]

[hand_value]

[process_temperature]

[setpoint]

It is important to note that the block SMHCC works with two time periods. The �rst
period TS is the sampling time of the process temperature, and this period is equal
to the period with which the block SMHCC itself is executed. The second period TC =
ipwmcTS is the control period with which the block SMHCC generates manipulated variable.
This period TC is also equal to the cycle time of PWM block. At every instant when the
manipulated variable mv is changed by SMHCC the PWM algorithm recalculates the width
of the output pulse and starts a new PWM cycle. The time resolution TR of the PWM

block is third time period involved with. This period is equal to the period with which
the block PWM is run and generally may be di�erent from TS . To achieve the high quality
of control it is recommended to choose TS as minimal as possible (ipwmc as maximal as
possible), the ratio TC/TS as maximal as possible but TC should be su�ciently small
with respect to the process dynamics. An example of reasonable values for an extruder
temperature control is as follows:

TS = 0.1, ipwmc = 100, TC = 10s, TR = 0.01s.

241

The control law of the block SMHCC in automatic mode (MAN = off) is based on the dis-
crete dynamic sliding mode control technique and special 3rd order �lters for estimation
of the �rst and second derivatives of the control error.

The �rst control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

sk
△
= ëk + 2ξΩėk +Ω2ek

is forced to zero. In the above de�nition of the sliding variable, ek, ėk, ëk denote the
�ltered deviation error (pv−sp) and its �rst and second derivatives in the control period
k, respectively, and ξ,Ω are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and vice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sk = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s
△
= ë+ 2ξΩė+Ω2e

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order di�erential equation

s
△
= ë+ 2ξΩė+Ω2e = 0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters ξ,Ω. For stable behavior, it must hold ξ > 0,Ω > 0.
A typical optimal value of ξ ranges in the interval [4, 8] and ξ about 6 is often a satis-
factory value. The optimal value of Ω strongly depends on the controlled process. The
slower processes the lower optimal Ω. The recommended value of Ω for start of tuning
is π/(5TC).
The manipulated variable mv usually ranges in the interval [−1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p

and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is signi�cant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude u0_p (u0_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set u0_p = hilim_p and u0_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of sk alternately changes its value. In such a case the controller output isv alternates
the values 1 and −1. The rate of adaptation of the heating (cooling) amplitude is given
by the time constant taup (taum). Both of these time constants have to be su�ciently
high to provide the proper function of adaptation but the �ne tuning is not necessary.

242 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sk < 0.0) then mv = uk_p else mv = −uk_m.

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary �ne tuning is required then it may be tried to
�nd the better value for the bandwidth parameter beta of derivative �lter, otherwise the
default value 0.1 is preferred. In the manual mode (MAN = on) the controller input hv is
(after limitation to the range [−hilim_m, hilim_p]) copied to the manipulated variable
mv.

Inputs

sp setpoint variable Double (F64)

pv process variable Double (F64)

hv manual value Double (F64)

MAN controller mode Bool

0 automatic mode 1 manual mode

Outputs

mv manipulated variable (position controller output) Double (F64)

mve equivalent manipulated variable Double (F64)

de deviation error Double (F64)

SAT saturation �ag Bool

0 the controller implements a linear control law
1 the controller output is saturated, mv ≥ hilim_p or

mv ≤ -hilim_m

isv number of the positive (+) or negative (−) sliding variable steps Long (I32)

t_ukp current amplitude of heating Double (F64)

t_ukm current amplitude of cooling Double (F64)

t_sk discrete dynamic sliding variable sk Double (F64)

t_pv �ltered control error -de Double (F64)

t_dpv �ltered �rst derivative of the control error t_ek Double (F64)

t_d2pv �ltered second derivative of the control error t_ek Double (F64)

Parameters

ipwmc PWM cycle in the sampling periods of SMHCC (TC/TS) Long (I32)

xi relative damping ξ of sliding zero dynamics xi ≥ 0 Double (F64)

om natural frequency Ω of sliding zero dynamics ↓(0.0) Double (F64)

taup time constant for adaptation of heating action amplitude in
seconds

Double (F64)

243

taum time constant for adaptation of cooling action amplitude in
seconds

Double (F64)

beta bandwidth parameter of the derivative �lter ↓0 Double (F64)

hilim_p high limit of the heating action amplitude ↓0.0 ↑1.0 Double (F64)

hilim_m high limit of the cooling action amplitude ↓0.0 ↑1.0 Double (F64)

u0_p initial value of the heating action amplitude after setpoint change
and start of the block

Double (F64)

u0_m initial value of the cooling action amplitude after setpoint change
and start of the block

Double (F64)

sp_dif Setpoint di�erence threshold ⊙10.0 Double (F64)

tauf Equivalent manipulated variable �lter time constant ⊙400.0 Double (F64)

244 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SMHCCA � Sliding mode heating/cooling controller with auto-
tuner

Block Symbol Licence: AUTOTUNING

SMHCCA

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve
de

SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv
TBSY
TE
ite
p1
p2
p3
p4
p5
p6

Function Description

The sliding mode heating/cooling controller (SMHCCA) is a novel high quality control
algorithm with a built-in autotuner for automatic tuning of the controller parameters.
The controller is mainly intended for temperature control of heating-cooling (possibly
asymmetrical) processes with ON-OFF heaters and/or ON-OFF coolers. The plastic
extruder heating/cooling system is a typical example of such process. However, it can also
be applied to many similar cases, for example, to thermal systems where a conventional
thermostat is normally employed. To provide the proper control function, the SMHCCA

block must be combined with the PWM block (Pulse Width Modulation) as depicted in
the following �gure.

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve
de
SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv
TBSY
TE
ite
p1
p2
p3
p4
p5
p6

SMHCCA

u
UP

DN

PWM

[cooler_contactor]

[heater_contactor]
[setpoint]

[process_temperature]

[hand_value]

[MAN_AUT_switch]

[tuning_mode]

[start_of_tuning]

[tuning_break]

[affirmation_of_parameters]

[selection_of_parameter_set]

It is important to note that the block SMHCCA works with two time periods. The �rst
period TS is the sampling time of the process temperature, and this period is equal to the
period with which the block SMHCCA itself is executed. The other period TC = ipwmcTS is
the control period with which the block SMHCCA generates the manipulated variable. This
period TC is equal to the cycle time of PWM block. At every instant when the manipulated
variable mv is changed by SMHCCA the PWM algorithm recalculates the width of the output

245

pulse and starts a new PWM cycle. The time resolution TR of the PWM block is third
time period involved in. This period is equal to the period with which the block PWM is
executed and generally may be di�erent from TS . To achieve the high quality of control
it is recommended to choose TS as minimal as possible (ipwmc as maximal as possible),
the ratio TC/TS as maximal as possible but TC should be su�ciently small with respect
to the process dynamics. An example of reasonable values for an extruder temperature
control is as follows:

TS = 0.1, ipwmc = 50, TC = 5s, TR = 0.1s.

Notice however that for a faster controlled system the sampling periods TS , TC and
TR must be shortened! More precisely, the three minimal time constant of the process
are important for selection of these time periods (all real thermal process has at least
three time constants). For example, the sampling period TS = 0.1 is su�ciently short for
such processes that have at least three time constants, the minimal of them is greater
than 10s and the maximal is greater than 100s. For the proper function of the controller
it is necessary that these time parameters are suitably chosen by the user according
to the actual dynamics of the process! If SMHCCA is implemented on a processor with
�oating point arithmetic then the accurate setting of the sampling periods TS , TC , TR

and the parameter beta is critical for correct function of the controller. Also, some other
parameters with the clear meaning described below have to be chosen manually. All the
remaining parameters (xi, om, taup, taum, tauf) can be set by the built-in autotuner
automatically. The autotuner uses the two methods for this purpose.

• The �rst one is dedicated to situations where the asymmetry of the process is
not enormous (approximately, it means that the gain ratio of heating/cooling or
cooling/heating is less than 5).

• The second method provides the tuning support for the strong asymmetric pro-
cesses and is not implemented yet (So far, this method has been developed and
tested in Simulink only).

Despite the fact that the �rst method of the tuning is based only on the heating
regime, the resulting parameters are usually satisfactory for both heating and cooling
regimes because of the strong robustness of sliding mode control. The tuning proce-
dure is very quick and can be accomplished during the normal rise time period of the
process temperature from cold state to the setpoint usually without any temporization
or degradation of control performance. Thus the tuning procedure can be included in
every start up from cold state to the working point speci�ed by the su�ciently high
temperature setpoint. Now the implemented procedure will be described in detail. The
tuning procedure starts in the tuning mode or in the manual mode. If the tuning mode
(TMODE = on) is selected the manipulated variable mv is automatically set to zero and
the output TBSY is set to 1 for indication of the tuning stage of the controller. The cold
state of the process is preserved until the initialization pulse is applied to the input TUNE
(0 → 1). After some time (depending on beta), when the noise amplitude is estimated,

246 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

the heating is switched on with the amplitude given by the parameter ut_p. The process
temperature pv and its two derivatives (outputs t_pv, t_dpv, t_d2pv) are observed to
obtain the optimal parameters of the controller. If the tuning procedure ends without
errors, then TBSY is set to 0 and the controller begins to work in manual or automatic
mode according to the input MAN. If MAN = off and a�rmation input TAFF is set to 1,
then the controller starts to work in automatic mode with the new parameter set pro-
vided by the tuner (if TAFF = off, then the new parameters are only displayed on the
outputs p1..p6). If some error occurs during the tuning, then the tuning procedure stops
immediately or stops after the condition pv>sp is ful�lled, the output TE is set to 1 and
ite indicate the type of error. Also in this case, the controller starts to work in the mode
determined by the input MAN. If MAN = off then works in automatic mode with the initial
parameters before tuning! The tuning errors are usually caused either by an inappropri-
ate setting of the parameter beta or by the too low value of sp. The suitable value of
beta ranges in the interval (0.001,0.1). If a drift and noise in pv are large the small beta
must be chosen especially for the tuning phase. The default value (beta=0.01) should
work well for extruder applications. The correct value gives properly �ltered signal of
the second derivative of the process temperature t_d2pv. This well-�ltered signal (cor-
responding to the low value of beta) is mainly necessary for proper tuning. For control,
the parameter beta may be sometimes slightly increased. The tuning procedure may be
also started from manual mode (MAN = off) with any constant value of the input hv.
However, the steady state must be provided in this case. Again, the tuning is started
by the initialization pulse at the input TUNE (0 → 1) and after the stop of tuning the
controller continues in the manual mode. In both cases the resulting parameters appear
on the outputs p1,...,p6.

247

The control law of the block SMHCCA in automatic mode (MAN = off) is based on
the discrete dynamic sliding mode control technique and special 3rd order �lters for
estimation of the �rst and second derivatives of the control error.

The �rst control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

sk
△
= ëk + 2ξΩėk +Ω2ek

is forced to zero. In the above de�nition of the sliding variable, ek, ėk, ëk denote the
�ltered deviation error (pv−sp) and its �rst and second derivatives in the control period
k, respectively, and ξ,Ω are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and vice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sk = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s
△
= ë+ 2ξΩė+Ω2e

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order di�erential equation

s
△
= ë+ 2ξΩė+Ω2e = 0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters ξ,Ω. For stable behavior, it must hold ξ > 0,Ω >
0. A typical optimal value of ξ ranges in the interval [4, 8] and ξ about 6 is often a
satisfactory value. The optimal value of Ω strongly depends on the controlled process.
The slower processes the lower optimal Ω. The recommended value of Ω for start of
tuning is π/(5TC).

The manipulated variable mv usually ranges in the interval [−1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p

248 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is signi�cant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude u0_p (u0_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set u0_p = hilim_p and u0_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of sk alternately changes its value. In such a case the controller output isv alter-
nates the values 1 and −1. The rate of adaptation of the heating (cooling) amplitude is
given by time constant taup (taum). Both of these time constants have to be su�ciently
high to provide the proper function of adaptation but the �ne tuning is not necessary.
Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sk < 0.0) then mv = uk_p else mv = −uk_m.

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary �ne tuning is required then it may be tried
to �nd the better value for the bandwidth parameter beta of derivative �lter, otherwise
the default value 0.1 is preferred.

In the manual mode (MAN = on) the controller input hv is (after limitation to the
range [−hilim_m, hilim_p]) copied to the manipulated variable mv. The controller output
mve provides the equivalent amplitude-modulated value of the manipulated variable mv

for informative purposes. The output mve is obtained by the �rst order �lter with the
time constant tauf applied to mv.

Inputs

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

0 Automatic mode 1 Manual mode

TMODE Tuning mode Bool

TUNE Start the tuning experiment: TUNE off→on Bool

TBRK Stop the tuning experiment: TBRK off→on Bool

TAFF A�rmation of the parameter set provided by the tuning
procedure: TAFF = on

Bool

249

ips Meaning of the output signals p1,. . . ,p6 Long (I32)

0 Controller parameters
p1 . . . recommended control period TC

p2 . . . xi
p3 . . . om
p4 . . . taup
p5 . . . taum
p6 . . . tauf

1 Auxiliary parameters
p1 . . . htp2 � time of the peak in the second
derivative of pv
p2 . . . hpeak2 � peak value in the second derivative
of pv
p3 . . . d2 � peak to peak amplitude of t_d2pv
p4 . . . tgain

Outputs

mv Manipulated variable (controller output) Double (F64)

mve Equivalent manipulated variable Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

0 Signal not limited
1 Saturation limits active, mv ≥ hilim_p or mv ≤

-hilim_m

isv Number of the positive (+) or negative (−) sliding variable steps Long (I32)

t_ukp Current amplitude of heating Double (F64)

t_ukm Current amplitude of cooling Double (F64)

t_sk Discrete dynamic sliding variable Double (F64)

t_pv Filtered process variable pv by 3rd order �lter Double (F64)

t_dpv Filtered �rst derivative of pv by 3rd order �lter Double (F64)

t_d2pv Filtered second derivative of pv by 3rd order �lter Double (F64)

TBSY Tuner busy �ag (TBSY = on) Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occured during the experiment

250 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ite Error code Long (I32)

0 No error
1 Noise level in pv too high, check the temperature

input
2 Incorrect parameter ut_p
3 Setpoint sp too low
4 The two minimal process time constants are probably

too small with respect to the sampling period TS OR
too high level of noise in the second derivative of pv
(try to decrease the beta parameter)

5 Premature termination of the tuning procedure
(TBRK)

pi Identi�ed parameters with respect to ips, i = 1, ..., 6 Double (F64)

Parameters

ipwmc PWM cycle (in sampling periods of the block, TC/TS) ⊙100 Long (I32)

xi Relative damping of sliding zero dynamics ↓0.5↑8.0⊙1.0 Double (F64)

om Natural frequency ω of sliding zero dynamics ↓0.0⊙0.01 Double (F64)

taup Time constant for adaptation of heating action amplitude [s]
⊙700.0

Double (F64)

taum Time constant for adaptation of cooling action amplitude [s]
⊙400.0

Double (F64)

beta Bandwidth parameter of the derivative �lter ⊙0.01 Double (F64)

hilim_p Upper limit of the heating action amplitude ↓0.0 ↑1.0 ⊙1.0 Double (F64)

hilim_m Upper limit of the cooling action amplitude ↓0.0 ↑1.0 ⊙1.0 Double (F64)

u0_p Initial amplitude of the heating action ⊙1.0 Double (F64)

u0_m Initial amplitude of the cooling action ⊙1.0 Double (F64)

sp_dif Setpoint di�erence threshold for blocking of heating/cooling
amplitudes reset ⊙10.0

Double (F64)

tauf Time constant of the �lter for obtaining the equivalent
manipulated variable ⊙400.0

Double (F64)

itm Tuning method ⊙1 Long (I32)

1 Restricted to symmetrical processes
2 Asymmetrical processes (not implemented yet)

ut_p Amplitude of heating for tuning experiment ↓0.0 ↑1.0 ⊙1.0 Double (F64)

ut_m Amplitude of cooling for tuning experiment ↓0.0 ↑1.0 ⊙1.0 Double (F64)

251

SWU � Switch unit

Block Symbol Licence: STANDARD

SWU

uc
uo
OR1
OR2
OR3
OR4

y

Function Description

The SWU block is used to select the appropriate signal which should be tracked by the
inactive PIDU and MCU units in complex control structures. The input signal uc is copied
to the output y when all the binary inputs OR1, . . . , OR4 are off, otherwise the output
y takes over the uo input signal.

Inputs

uc This input is copied to output y when all the binary inputs OR1,
OR2, OR3 and OR4 are off

Double (F64)

uo This input is copied to output y when any of the binary inputs
OR1, OR2, OR3, OR4 is on

Double (F64)

OR1 First logical output of the block Bool

OR2 Second logical output of the block Bool

OR3 Third logical output of the block Bool

OR4 Fourth logical output of the block Bool

Output

y Analog output of the block Double (F64)

252 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

TSE � Three-state element

Block Symbol Licence: STANDARD

TSE

u
UP

DN

Function Description

The TSE block transforms the analog input u to a three-state signal ("up", "idle" and
"down") according to the diagram below.

epoff ep

DN

UP

enoffen

u

1

1

Input

u Analog input of the block Double (F64)

Outputs

UP The "up" signal Bool

DN The "down" signal Bool

Parameters

ep The input value u > ep results in UP = on and DN = off ⊙1.0 Double (F64)

en The input value u < en results in UP = off and DN = off

⊙-1.0
Double (F64)

epoff UP switch o� value; if UP = on and u < epoff then UP = off

⊙0.5
Double (F64)

enoff DN switch o� value; if DN = on and u > enoff then DN = off

⊙-0.5
Double (F64)

Chapter 8

LOGIC � Logic control

Contents

AND � Logical product of two signals 254

ANDQUAD, ANDOCT, ANDHEXD � Logical product of multiple signals . . 255

ATMT � Finite-state automaton . 256

BDOCT, BDHEXD � Bitwise demultiplexers 259

BITOP � Bitwise operation . 260

BMOCT, BMHEXD � Bitwise multiplexers 262

COUNT � Controlled counter . 263

EATMT � Extended �nite-state automaton 265

EDGE � Falling/rising edge detection in a binary signal 268

EQ � Equivalence of two signals . 269

INTSM � Integer number bit shift and mask 270

ISSW � Simple switch for integer signals 271

ITOI � Transformation of integer and binary numbers 272

NOT � Boolean complementation . 273

OR � Logical sum of two signals . 274

ORQUAD, OROCT, ORHEXD � Logical sum of multiple signals 275

RS � Reset-set �ip-�op circuit . 276

SR � Set-reset �ip-�op circuit . 277

TIMER � Multipurpose timer . 278

253

254 CHAPTER 8. LOGIC � LOGIC CONTROL

AND � Logical product of two signals

Block Symbol Licence: STANDARD

AND_

U1
U2

Y
NY

Function Description

The AND block computes the logical product of two input signals U1 and U2.
If you need to work with more input signals, use the ANDOCT block.

Inputs

U1 First logical input of the block Bool

U2 Second logical input of the block Bool

Outputs

Y Output signal, logical product (U1 ∧ U2) Bool

NY Boolean complementation of Y (NY = ¬Y) Bool

255

ANDQUAD, ANDOCT, ANDHEXD � Logical product of multiple signals

Block Symbols Licence: STANDARD

ANDQUAD

U1

U2

U3

U4

Y

NY

ANDOCT

U1

U2

U3

U4

U5

U6

U7

U8

Y

NY

ANDHEXD

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14

U15

U16

Y

NY

Function Description

The ANDQUAD, ANDOCT and ANDHEXD blocks compute the logical product of up to sixteen
input signals U1, U2, . . . , U16. The signals listed in the nl parameter are negated prior
to computing the logical product.

For an empty nl parameter a simple logical product Y = U1∧U2∧U3∧U4∧U5∧U6∧
U7 ∧ U8 is computed. For e.g. nl=1,3..5, the logical function is Y = ¬U1 ∧ U2 ∧ ¬U3 ∧
¬U4 ∧ ¬U5 ∧ U6 ∧ . . . U16.

If you have less than 4/8/16 signals, use the nl parameter to handle the unconnected
inputs. If you have only two input signals, consider using the AND_ block.

Inputs

U1..U16 Logical inputs of the block Bool

Outputs

Y Result of the logical operation Bool

NY Boolean complementation of Y Bool

Parameter

nl List of signals to negate. The format of the list is e.g. 1,3..5,8.
Third-party programs (Simulink, OPC clients etc.) work with
an integer number, which is a binary mask, i.e. 157 (binary
10011101) in the mentioned case.

Long (I32)

256 CHAPTER 8. LOGIC � LOGIC CONTROL

ATMT � Finite-state automaton

Block Symbol Licence: STANDARD

ATMT

R1
ns0
SET
HLD
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
ksa
tstep
TOUT

Function Description

The ATMT block implements a �nite state machine with at most 16 states and 16 transition
rules.

The current state of the machine i, i = 0, 1, . . . , 15 is indicated by the binary outputs
Q0, Q1, . . . , Q15. If the state i is active, the corresponding output is set to Qi=on. The
current state is also indicated by the ksa output (ksa ∈ {0, 1, . . . , 15}).

The transition conditions Ck, k = 0, 1, . . . , 15 are activated by the binary inputs C0,
C1, . . . , C15. If Ck = on the k-th transition condition is ful�lled. The transition cannot
happen when Ck = off.

The automat function is de�ned by the following table of transitions:

S1 C1 FS1
S2 C2 FS2

. . .
Sn Cn FSn

Each row of this table represents one transition rule. For example the �rst row

S1 C1 FS1

has the meaning

If (S1 is the current state AND transition condition C1 is ful�lled)
then proceed to the following state FS1.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The

257

R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the Ci input signals and the tstep

timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits TOi for individual states are de�ned
by the touts array. There is no time limit for the given state when TOi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REXYGEN system include also the SFCEditor program.
You can create SFC schemes graphically using this tool. Run this editor from REXYGEN

Studio by clicking the Con�gure button in the parameter dialog of the ATMT block.

Inputs

R1 Reset signal, R1 = on brings the automat to the initial state S0;
the R1 input overpowers the SET input

Bool

ns0 This state is reached when rising edge occurs at the the SET input Long (I32)

SET The rising edge of this signal forces the transition to the ns0

state
Bool

HLD The HLD = on freezes the automat, no transitions occur
regardless of the input signals, tstep is not increasing

Bool

C0...C15 The transition conditions; Ci = on means that the i-th condition
was ful�lled and the corresponding transition rule can be
executed

Bool

Outputs

Q0...Q15 Output signals indicating the current state of the automat; the
current state i is indicated by Qi = on

Bool

ksa Integer code of the active state Long (I32)

tstep Time elapsed since the current state was reached; the timer is
set to 0 whenever a state transition occurs

Double (F64)

TOUT Flag indicating that the time limit for the current state was
exceeded

Bool

Parameters

morestps Allow multiple transitions in one cycle of the automat Bool

off . . . Disabled
on Enabled

sfcname Filename of block con�gurator data �le (�lename is generated
by system if parameter is empty)

String

STT State transition table (matrix)
⊙[0 0 1; 1 1 2; 2 2 3; 3 3 0]

Byte (U8)

258 CHAPTER 8. LOGIC � LOGIC CONTROL

touts Vector of timeouts TO0, TO1, . . . , TO15 for the states S0, S1,
. . . , S15 ⊙[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

Double (F64)

259

BDOCT, BDHEXD � Bitwise demultiplexers

Block Symbols Licence: STANDARD

BDOCT

iu

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

BDHEXD

iu

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

Y15

Function Description

Both BDOCT and BDHEXD are bitwise demultiplexers for easy decomposition of the input
signal to individual bits. The only di�erence is the number of outputs, the BDOCT block
has 8 Boolean outputs while the BDHEXD block o�ers 16-bit decomposition. The output
signals Yi correspond with the individual bits of the input signal iu, the Y0 output is the
least signi�cant bit.

Input

iu Input signal to be decomposed Long (I32)

Outputs

Y0...Y15 Individual bits of the input signal Bool

Parameter

shift Bit shift of the input signal ↓0 ↑31 Long (I32)

vtype Input numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

260 CHAPTER 8. LOGIC � LOGIC CONTROL

BITOP � Bitwise operation

Block Symbol Licence: STANDARD

BITOP

i1

i2
n

Function Description

The BITOP block performs bitwise operation i1 ◦ i2 on the signals i1 and i2, resulting
in an integer output n. The type of operation is selected by the iop parameter described
below. In case of logical negation or 2's complements the input i2 is ignored (i.e. the
operation is unary).

Inputs

i1 First integer input of the block Long (I32)

i2 Second integer input of the block Long (I32)

Output

n Result of the bitwise operation iop Long (I32)

Parameter

iop Bitwise operation ⊙1 Long (I32)

1 Bitwise negation (Bit NOT)
2 Bitwise logical sum (Bit OR)
3 Bitwise logical product (Bit AND)
4 Bitwise logical exclusive sum (Bit XOR)
5 Shift of the i1 signal by i2 bits to the left (Shift

Left)
6 Shift of the i1 signal by i2 bits to the right (Shift

Right)
7 2's complement of the i1 signal on 8 bits (2's

Complement - Byte)
8 2's complement of the i1 signal on 16 bits (2's

Complement - Word)
9 2's complement of the i1 signal on 32 bits (2's

Complement - Long)

261

vtype Input and output numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

262 CHAPTER 8. LOGIC � LOGIC CONTROL

BMOCT, BMHEXD � Bitwise multiplexers

Block Symbols Licence: STANDARD

BMOCT

U0
U1
U2
U3
U4
U5
U6
U7

iy

BMHEXD

U0
U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15

iy

Function Description

Both BMOCT and BMHEXD are bitwise multiplexers for easy composition of the output
signal from individual bits. The only di�erence is the number of inputs, the BMOCT block
has 8 Boolean inputs while the BMHEXD block o�ers 16-bit composition. The input signals
Ui correspond with the individual bits of the output signal iy, the U0 input is the least
signi�cant bit.

Inputs

U0...U15 Individual bits of the output signal Bool

Output

iy Composed output signal Long (I32)

Parameter

shift Bit shift of the output signal ↓0 ↑31 Long (I32)

vtype Output numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

263

COUNT � Controlled counter

Block Symbol Licence: STANDARD

COUNT

R1

n0

SETH

UP

DN

HLD

nmax

cnt

SGN

Q

E

Function Description

The COUNT block is designed for bidirectional pulse counting � more precisely, counting
rising edges of the UP and DN input signals. When a rising edge occurs at the UP (DN)
input, the cnt output is incremented (decremented) by 1. Simultaneous occurrence of
rising edges at both inputs is indicated by the error output E set to on. The R1 input
resets the counter to 0 and no addition or subtraction is performed unless the R1 input
returns to off again. It is also possible to set the output cnt to the value n0 by the SETH
input. Again, no addition or subtraction is performed unless the SETH input returns to off
again. The R1 input has higher priority than the SETH input. The input HLD = on prevents
both incrementing and decrementing. When the counter reaches the value cnt ≥ nmax,
the Q output is set to on.

Inputs

R1 Block reset (R1 = on) Bool

n0 Value to set the counter to (using the SETH input) Long (I32)

SETH Set the counter value to n0 (SETH = on) Bool

UP Incrementing input signal Bool

DN Decrementing input signal Bool

HLD Counter freeze Bool

off . . . Counter is running
on Counter is locked

nmax Counter target value Long (I32)

Outputs

cnt Total number of pulses Long (I32)

SGN Sign of the cnt output Bool

off . . . for cnt < 0
on for cnt ≥ 0

Q Target value indicator Bool

off . . . for cnt < nmax

on for cnt ≥ nmax

264 CHAPTER 8. LOGIC � LOGIC CONTROL

E Indicator of simultaneous occurrence of rising edges at both
inputs UP and DN

Bool

265

EATMT � Extended �nite-state automaton

Block Symbol Licence: ADVANCED

EATMT

R1
ns0
SET
HLD
c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15

q0
q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13
q14
q15
ksa
tstep
TOUT

Function Description

The EATMT block implements a �nite automat with at most 256 states and 256 transition
rules, thus it extends the possibilities of the ATMT block.

The current state of the automat i, i = 0, 1, . . . , 255 is indicated by individual bits
of the integer outputs q0, q1, . . . , q15. Only a single bit with index iMOD 16 of the
q(iDIV 16) output is set to 1. The remaining bits of that output and the other outputs
are zero. The bits are numbered from zero, least signi�cant bit �rst. Note that the
DIV and MOD operators denote integer division and remainder after integer division
respectively. The current state is also indicated by the ksa ∈ {0, 1, . . . , 255} output.

The transition conditions Ck, k = 0, 1, . . . , 255) are activated by individual bits of the
inputs c0, c1, . . . , c15. The k-th transition condition is ful�lled when the (kMOD 16)-th
bit of the input c(kDIV 16) is equal to 1. The transition cannot happen otherwise.

The BMHEXD or BMOCT bitwise multiplexers can be used for composition of the input
signals c0, c1, . . . , c15 from individual Boolean signals. Similarly the output signals q0,
q1, . . . , q15 can be decomposed using the BDHEXD or BDOCT bitwise demultiplexers.

The automat function is de�ned by the following table of transitions:

S1 C1 FS1
S2 C2 FS2

. . .
Sn Cn FSn

Each row of this table represents one transition rule. For example the �rst row

S1 C1 FS1

has the meaning

If (S1 is the current state AND transition condition C1 is ful�lled)
then proceed to the following state FS1.

266 CHAPTER 8. LOGIC � LOGIC CONTROL

The above described meaning of the table row holds for C1 < 1000. Negation of the
(C1− 1000)-th transition condition is assumed for C1 ≥ 1000.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The
R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the ci input signals and the tstep

timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits TOi for individual states are de�ned
by the touts array. There is no time limit for the given state when TOi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REXYGEN system include also the SFCEditor program.
You can create SFC schemes graphically using this tool. Run this editor from REXYGEN

Studio by clicking the Con�gure button in the parameter dialog of the EATMT block.

Inputs

R1 Reset signal, R1 = on brings the automat to the initial state S0;
the R1 input overpowers the SET input

Bool

ns0 This state is reached when rising edge occurs at the the SET input Long (I32)

SET The rising edge of this signal forces the transition to the ns0

state
Bool

HLD The HLD = on freezes the automat, no transitions occur
regardless of the input signals, tstep is not increasing

Bool

c0...c15 Transition conditions, each input signal contains 16 transition
conditions, see details above

Outputs

q0...q15 Output signals indicating the current state of the automat, see
details above

Long (I32)

ksa Integer code of the active state Long (I32)

tstep Time elapsed since the current state was reached; the timer is
set to 0 whenever a state transition occurs

Double (F64)

TOUT Flag indicating that the time limit for the current state was
exceeded

Bool

267

Parameters

morestps Allow multiple transitions in one cycle of the automat Bool

off . . . Disabled
on Enabled

sfcname Filename of block con�gurator data �le (�lename is generated
by system if parameter is empty)

String

STT State transition table (matrix)
⊙[0 0 1; 1 1 2; 2 2 3; 3 3 0]

Short (I16)

touts Vector of timeouts TO0, TO1, . . . , TO255 for the states S0, S1,
. . . , S255 ⊙[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

Double (F64)

268 CHAPTER 8. LOGIC � LOGIC CONTROL

EDGE � Falling/rising edge detection in a binary signal

Block Symbol Licence: STANDARD

EDGE_

U Y

Function Description

The EDGE block detects rising (off→on) and/or falling (on→off) edges in the binary
input signal U. The type of edges to detect is determined by the iedge parameter. As
long as the input signal remains constant, the output Y is off. In the case when an edge
corresponding with the iedge parameter is detected, the output Y is set to on for one
sampling period.

Input

U Logical input of the block Bool

Output

Y Logical output of the block Bool

Parameter

iedge Type of edges to detect ⊙1 Long (I32)

1 Rising edge
2 Falling edge
3 Both edges

269

EQ � Equivalence of two signals

Block Symbol Licence: STANDARD

EQ

u1

u2
Y

Function Description

The block compares two input signals and Y=on is set if both signals have the same value.
Both signals must be either of a numeric type or strings. A conversion between numeric
types is performed: for example 2.0 (double) and 2 (long) are evaluated as equivalent.
Comparison of matrices or other complex types is not supported.

Inputs

u1 Block input signal Any

u2 Block input signal Any

Output

Y Output signal Bool

NY Boolean complementation of Y (NY = ¬Y) Bool

270 CHAPTER 8. LOGIC � LOGIC CONTROL

INTSM � Integer number bit shift and mask

Block Symbol Licence: STANDARD

INTSM

i n

Function Description

The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is �lled with
zeros.

Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a

given position in integer register which was read from some external system.

Input

i Integer value to shift and mask ↓-9.22337E+18 ↑9.22337E+18 Large (I64)

Parameters

shift Bit shift (negative=left, positive=right) ↓-63 ↑63 Long (I32)

mask Bit mask (applied after bit shift)
↓0 ↑4294970000 ⊙4294967295

Large (I64)

vtype Output numeric type ⊙4 Long (I32)

�-
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
�-
�-
�-
10 Large (I64)

Output

n Resulting integer value Large (I64)

271

ISSW � Simple switch for integer signals

Block Symbol Licence: STANDARD

ISSW

i1

i2

SW

n

Function Description

The ISSW block is a simple switch for integer input signals i1 and i2 whose decision
variable is the binary input SW. If SW is off, then the output n is equal to the i1 signal.
If SW is on, then the output n is equal to the i2 signal.

Inputs

i1 First integer input of the block Long (I32)

i2 Second integer input of the block Long (I32)

SW Signal selector Bool

off . . . The i1 signal is selected
on The i2 signal is selected

Output

n Integer output of the block Long (I32)

272 CHAPTER 8. LOGIC � LOGIC CONTROL

ITOI � Transformation of integer and binary numbers

Block Symbol Licence: STANDARD

ITOI

k

U0

U1

U2

U3

nk

Y0

Y1

Y2

Y3

Function Description

The ITOI block transforms the input number k, or the binary number (U3 U2 U1 U0)2,
from the set {0, 1, 2, . . . , 15} to the output number nk and its binary representation
(Y3 Y2 Y1 Y0)2 from the same set. The transformation is described by the following table

k 0 1 2 . . . 15

nk n0 n1 n2 . . . n15

where n0, . . . , n15 are given by the mapping table target vector fktab.
If BINF = off, then the integer input k is active, while for BINF = on the input is

de�ned by the binary inputs (U3 U2 U1 U0)2.

Inputs

k Integer input of the block Long (I32)

U0 Binary input digit, weight of 1 Bool

U1 Binary input digit, weight of 2 Bool

U2 Binary input digit, weight of 4 Bool

U3 Binary input digit, weight of 8 Bool

Outputs

nk Integer output of the block Long (I32)

Y0 Binary output digit, weight of 1 Bool

Y1 Binary output digit, weight of 2 Bool

Y2 Binary output digit, weight of 4 Bool

Y3 Binary output digit, weight of 8 Bool

Parameters

BINF Enable the binary selectors ⊙on Bool

off . . . Disabled (integer input k)
on Enabled (binary input signals U3. . . U0)

fktab Vector of mapping table target values
⊙[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

Byte (U8)

273

NOT � Boolean complementation

Block Symbol Licence: STANDARD

NOT_

U Y

Function Description

The NOT block negates the input signal.

Input

U Logical input of the block Bool

Output

Y Logical output of the block (Y = ¬U) Bool

274 CHAPTER 8. LOGIC � LOGIC CONTROL

OR � Logical sum of two signals

Block Symbol Licence: STANDARD

OR_

U1
U2

Y
NY

Function Description

The OR block computes the logical sum of two input signals U1 and U2.
If you need to work with more input signals, use the OROCT block.

Inputs

U1 First logical input of the block Bool

U2 Second logical input of the block Bool

Outputs

Y Logical output of the block (U1 ∨ U2) Bool

NY Boolean complementation of Y (NY = ¬Y) Bool

275

ORQUAD, OROCT, ORHEXD � Logical sum of multiple signals

Block Symbols Licence: STANDARD

ORQUAD

U1

U2

U3

U4

Y

NY

OROCT

U1

U2

U3

U4

U5

U6

U7

U8

Y

NY

ORHEXD

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14

U15

U16

Y

NY

Function Description

The ORQUAD, OROCT and ORHEXD blocks compute the logical sum of up to sixteen input
signals U1, U2, . . . , U16. The signals listed in the nl parameter are negated prior to
computing the logical sum.

For an empty nl parameter a simple logical sum Y = U1 ∨ U2 ∨ U3 ∨ U4 ∨ U5 ∨ U6 ∨
U7 ∨ . . . ∨ U16 is computed. For e.g. nl=1,3..5, the logical function is Y = ¬U1 ∨ U2 ∨
¬U3 ∨ ¬U4 ∨ ¬U5 ∨ U6 ∨ . . . ∨ U16.

If you have only two input signals, consider using the OR_ block.

Inputs

U1..U16 Logical inputs of the block Bool

Outputs

Y Result of the logical operation Bool

NY Boolean complementation of Y Bool

Parameter

nl List of signals to negate. The format of the list is e.g. 1,3..5,8.
Third-party programs (Simulink, OPC clients etc.) work with
an integer number, which is a binary mask, i.e. 157 (binary
10011101) in the mentioned case.

Long (I32)

276 CHAPTER 8. LOGIC � LOGIC CONTROL

RS � Reset-set �ip-�op circuit

Block Symbol Licence: STANDARD

RS

S

R1

Q

NQ

Function Description

The RS block is a �ip-�op circuit, which sets its output permanently to on as soon as
the input signal S is equal to on. The other input signal R1 resets the Q output to off

even if the S input is on. The NQ output is simply the negation of the signal Q.
The block function is evident from the inner block structure depicted below.

2

NQ

1

Q

U1

U2

Y

NY

OR

U Y

NOT

U1

U2

Y

NY

AND2

R1

1

S

Inputs

S Flip-�op set, sets the Q output to on Bool

R1 Priority �ip-�op reset, sets the Q output to off, overpowers the
S input

Bool

Outputs

Q Flip-�op circuit state Bool

NQ Boolean complementation of Q Bool

277

SR � Set-reset �ip-�op circuit

Block Symbol Licence: STANDARD

SR

S1

R

Q

NQ

Function Description

The SR block is a �ip-�op circuit, which sets its output permanently to on as soon as
the input signal S1 is on. The other input signal R resets the Q output to off, but only
if the S1 input is off. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

2

NQ

1

QU1

U2

Y

NY

OR
U Y

NOT

U1

U2

Y

NY

AND

2

R

1

S1

Inputs

S1 Priority �ip-�op set, sets the Q output to on, overpowers the R

input
Bool

R Flip-�op reset, sets the Q output to off Bool

Outputs

Q Flip-�op circuit state Bool

NQ Boolean complementation of Q Bool

278 CHAPTER 8. LOGIC � LOGIC CONTROL

TIMER � Multipurpose timer

Block Symbol Licence: STANDARD

TIMER_

U
HLD
R1

Q
et
rt

Function Description

The TIMER block either generates an output pulse of the given width pt (in seconds)
or �lters narrow pulses in the U input signal whose width is less than pt seconds. The
operation mode is determined by the mode parameter.

The graph illustrates the behaviour of the block in individual modes for pt = 3:

0 2 3 4 5 7 9 10 11 13 14 15

mode 4

mode 3

mode 2

mode 1

U

time [s]

The timer can be paused by the HLD input. The R1 input resets the timer. The reset
signal overpowers the U input.

Inputs

U Trigger of the timer Bool

HLD Timer hold Bool

R1 Block reset (R1 = on) Bool

Outputs

Q Timer output Bool

et Elapsed time [s] Double (F64)

rt Remaining time [s] Double (F64)

279

Parameters

mode Timer mode ⊙1 Long (I32)

1 Pulse � an output pulse of the length pt is generated
upon rising edge at the U input. All input pulses
during the generation of the output pulse are ignored.

2 Delayed ON � the input signal U is copied to the Q

output, but the start of the pulse is delayed by pt

seconds. Any pulse shorter than pt is does not pass
through the block.

3 Delayed OFF � the input signal U is copied to the
Q output, but the end of the pulse is delayed by pt

seconds. If the break between two pulses is shorter
than pt, the output remains on for the whole time.

4 Delayed change � the Q output is set to the value
of the U input no sooner than the input remains
unchanged for pt seconds

pt Timer interval [s] ⊙1.0 Double (F64)

280 CHAPTER 8. LOGIC � LOGIC CONTROL

Chapter 9

TIME � Blocks for handling time

Contents

DATE � Current date . 282

DATETIME � Get, set and convert time 283

TC � Timer control and status . 285

TIME � Current time . 287

WSCH � Weekly schedule . 288

281

282 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

DATE � Current date

Block Symbol Licence: STANDARD

DATE_

year
month
day
dow

Function Description

The outputs of the DATE function block correspond with the actual date of the operating
system. Use the DATETIME block for advanced operations with date and time.

Outputs

year Year Long (I32)

month Month Long (I32)

day Day Long (I32)

dow Day of week, �rst day of week is Sunday (1) Long (I32)

Parameter

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

283

DATETIME � Get, set and convert time

Block Symbol Licence: STANDARD

DATETIME

uyear

umonth

uday

uhour

umin

usec

unsec

SET

GET

yyear
ymonth
yday
yhour
ymin
ysec
ynsec
ydow
ywoy
tday
tsec
tnsec
dsec

Function Description

The DATETIME block is intended for advanced date/time operations in the REXYGEN

system.
It allows synchronization of the operating system clock and the clock of the REXYGEN

system. When the executive of the REXYGEN system is initialized, both clocks are the
same. But during long-term operation the clocks may loose synchronization (e.g. due to
daylight saving time). If re-synchronization is required, the rising edge (off→on) at the
SET input adjusts the clock of the REXYGEN system according to the block inputs and
parameters.

It is highly recommended not to adjust the REXYGEN system time when the con-
trolled machine/process is in operation. Unexpected behavior might occur.

If date/time reading or conversion is required, the rising edge (off→on) at the GET

input triggers the action and the block outputs are updated. The outputs starting with
't' denote the total number of respective units since January 1st, 2000 UTC.

Both reading and adjusting clock can be repeated periodically if set by getper and
setper parameters.

If the di�erence of the two clocks is below the tolerance limit settol, the clock of
the REXYGEN system is not adjusted at once, a gradual synchronization is used instead.
In such a case, the timing of the REXYGEN system executive is negligibly altered and
the clocks synchronization is achieved after some time. Afterwards the timing of the
REXYGEN executive is reverted back to normal.

For simple date/time reading use the DATE_ and TIME function blocks.

Inputs

uyear Input for setting year Long (I32)

umonth Input for setting month Long (I32)

uday Input for setting day Long (I32)

uhour Input for setting hours Long (I32)

umin Input for setting minutes Long (I32)

284 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

usec Input for setting seconds Long (I32)

unsec Input for setting nanoseconds ↓-9.22E+18 ↑9.22E+18 Large (I64)

SET Trigger for setting time Bool

GET Trigger for getting time Bool

Outputs

yyear Year Long (I32)

ymonth Month Long (I32)

yday Day Long (I32)

yhour Hours Long (I32)

ymin Minutes Long (I32)

ysec Seconds Long (I32)

ynsec Nanoseconds Long (I32)

ydow Day of week Long (I32)

ywoy Week of year Long (I32)

tday Total number of days Long (I32)

tsec Total number of seconds Long (I32)

tnsec Total number of nanoseconds Large (I64)

dsec Number of seconds since midnight Long (I32)

Parameters

isetmode Source for setting time ⊙1 Long (I32)

1 OS clock
2 Block inputs
3 The unsec input
4 The usec input
5 The unsec input, relative

igetmode Source for getting or converting time ⊙6 Long (I32)

1 OS clock
2 Block inputs
3 The unsec input
4 The usec input
5 The uday input
6 REXYGEN clock

settol Tolerance for setting the REXYGEN clock [s] ⊙1.0 Double (F64)

setper Period for setting time [s] (0=not periodic) Double (F64)

getper Period for getting time [s] (0=not periodic) ⊙0.001 Double (F64)

FDOW First day of week is Sunday Bool

off . . . Week starts on Monday
on Week starts on Sunday

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

285

TC � Timer control and status

Block Symbol Licence: STANDARD

TC

OsPer
TsPer
OsAdj
TsAdj

per
over
ticks
SIM

Function Description

The TC function block controls the internal timer of REXYGEN. It is possible to modify
the actual basic tick period (e.g. the value set in the tick parameter of the EXEC block)
or logical tick period (e.g. the time added to the timestamp of each tick if timer =

CORETIMER is selected). By default, the logical and physical period is the same and is the
EXEC:tick parameter. The discretization period of the blocks in the control algorithm
is not a�ected by the TC block.

The actual period can be changed in two ways: set the desired value to the OsPer

input or set OsAdj for one tick. OsAdj will temporarily increase or decrease the actual
period until the total shift set on the OsAdj input is realized. How much the period
increases is controlled by the OsMax parameter.

Example: Let's expect the tick period to be 0.1s and OsMax=0.2, so let's set OsAdj=1.0
to temporarily increase the real period to 0.12s (e.g. 20% de�ned in the OsMax parameter)
until a total shift of 1s is realized, e.g. for 50 ticks.

Logical period control is the same using inputs/parameter TsPer, TsAdj, TsMax.
Note 1: The unconnected input or the input with a value of 0 is ignored.
Note 2: The actual period adjustment is not supported on Windows targets.
Note 3: The primary reason for this block is to synchronize with another controller

in time-critical application, so the period should only be changed by a few percent. It
is also possible to dramatically change the actual period to slow down or speed up the
execution (for debugging and simulation reasons), but in this case some warning about
missed tick or incorrect period could appear.

Inputs

OsPer Physical tick period [s] Double (F64)

TsPer Logical (timestamp) tick period [s] Double (F64)

OsAdj Physical tick shift [s] Double (F64)

TsAdj Logical (timestamp) tick shift [s] Double (F64)

Parameters

OsMax Maximal relative quantum for physical adjustment
↓0.0 ↑1.0 ⊙0.1

Double (F64)

286 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

TsMax Maximal relative quantum for logical adjustment
↓0.0 ↑1.0 ⊙0.1

Double (F64)

Outputs

per Last physical tick period [s] Double (F64)

over Number of lost periods in the last tick Long (I32)

ticks Number of ticks since start Large (I64)

SIM Timer in simulation mode Double (F64)

287

TIME � Current time

Block Symbol Licence: STANDARD

TIME

hour

min

sec

Function Description

The outputs of the TIME function block correspond with the actual time of the operating
system. Use the DATETIME block for advanced operations with date and time.

Outputs

hour Hours Long (I32)

min Minutes Long (I32)

sec Seconds Long (I32)

Parameter

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

288 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

WSCH � Weekly schedule

Block Symbol Licence: STANDARD

WSCH

SET

val

fsch

iy
y

isch
trem
ynext

Function Description

The WSCH function block is a weekly scheduler for e.g. heating (day, night, eco), ventilation
(high, low, o�), lighting, irrigation etc. Its outputs can be used for switching individual
appliances on/o� or adjusting the intensity or power of the connected devices.

During regular weekly schedule the outputs iy and y re�ect the values from the wst
table. This table contains triplets day-hour-value. E.g. the notation [2 6.5 21.5] states
that on Tuesday, at 6:30 in the morning (24-hour format), the output y will be set to 21.5.
The output iy will be set to 22 (rounding to nearest integer). The individual triplets are
separated by semicolons.

The days in a week are numbered from 1 (Monday) to 7 (Sunday). Higher values
can be used for special daily schedules, which can be forced using the fsch input or the
specdays table. The active daily program is indicated by the isch output.

Alternatively it is possible to temporarily force a speci�c output value using the val
input and a rising edge at the SET input (off→on). When a rising edge occurs at the
SET input, the val input is copied to the y output and the isch output is set to 0. The
forced value remains set until:

• the next interval as de�ned by the wst table, or

• another rising edge occurs at the SET input, or

• a di�erent daily schedule is forced using the fsch input.

The list of special days (specdays) can be used for forcing a special daily schedule
at given dates. E.g. you can force a Sunday daily schedule on holidays, Christmas, New
Year, etc. The date is entered in the YYYYMMDD format. The notation [20160328 7] thus
means that on March 28th, 2016, the Sunday daily schedule should be used. Individual
pairs are separated by semicolons.

The trem and ynext outputs can be used for triggering speci�c actions in advance,
before the y and iy are changed.

The iy output is meant for direct connection to function blocks with Boolean inputs
(the conversion from type long to type bool is done automatically).

The nmax parameter de�nes memory allocation for the wst and specdays arrays.
For nmax = 100 the wst list can contain up to 100 triplets day-hour-value. In typical
applications there is no need to modify the nmax parameter.

289

Inputs

SET Trigger for setting the y and iy outputs Bool

val Temporary value to set the y and iy outputs to Double (F64)

fsch Forced schedule Long (I32)

0 standard weekly schedule
1 Monday
2 Tuesday

.
7 Sunday
8 and above additional daily programs as de�ned by the

wst table

Outputs

iy Integer output value Long (I32)

y Output value Double (F64)

isch Daily schedule identi�er Long (I32)

trem Time remaining in the current section (in seconds) Double (F64)

ynext Output in the next section Double (F64)

Parameters

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

nmax Allocated size of arrays ↓10 ↑1000000 ⊙100 Long (I32)

wst Weekly schedule table (list of triplets day-hour-value)
⊙[1 0.01 18.0; 2 6.0 22.0; 2 18.0 18.0; 3 6.0 22.0; 3 18.0 18.0; 4 6.0 22.0; 4 18.0 18.0; 5 6.0 22.0; 5 18.0 18.0; 6 6.0 22.0; 6 18.0 18.0; 1 0.01 18.0]

Double (F64)

specdays List of special days (list of pairs date-daily program)
⊙[20150406 1; 20151224 1; 20151225 1; 20151226 1; 20160101 1; 20160328 1; 20170417 1; 20180402 1; 20190422 1; 20200413 1]

Long (I32)

290 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

Chapter 10

ARC � Data archiving

Contents

10.1 Functionality of the archiving subsystem 292

10.2 Generating alarms and events . 293

ALB, ALBI � Alarms for Boolean value 293

ALM, ALMI � Alarm activation . 295

ALN, ALNI � Alarms for numerical value 296

ARS � Archive store value . 299

10.3 Trends recording . 301

ACD � Archive compression using Delta criterion 301

TRND � Real-time trend recording 303

TRNDV � Real-time trend recording with vector input 306

TRNDLF � ∗ Real-time trend recording (lock-free) 308

TRNDVLF � ∗ Real-time trend recording (for vector signals, lock-free)310

10.4 Archive management . 311

AFLUSH � Forced archive �ushing . 311

The RexCore executive of the REXYGEN system consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.). One of
these subsystems is the archiving subsystem.

The archiving subsystem takes care of recording the history of the control algorithm.
The �rst chapter describes the functionality of the archiving subsystem while the subse-
quent chapters describe the function blocks of the REXYGEN system.

The function blocks can be divided into groups by their use:

• Blocks for generating alarms and events

• Blocks for recording trends

• Blocks for handling archives

291

292 CHAPTER 10. ARC � DATA ARCHIVING

10.1 Functionality of the archiving subsystem

The archive in the REXYGEN system stores the history of events, alarms and trends
of selected signals. There can be up to 15 archives in each target device. The types or
archives are listed below:

RAM memory archive � Suitable for short-term data storage. The data access rate
is very high but the data is lost on reboot.

Archive in a backed-up memory � Similar to the RAM archive but the data is not
lost on restart. Data can be accessed fast but the capacity is usually quite limited
(depends on the target platform).

Disk archive The disk archives are �les in a proprietary binary format. The �les are
easily transferrable among individual platforms and the main advantage is the size,
which is limited only by the capacity of the storage medium. On the other hand,
the drawback is the relatively slow data access.

Not all hardware platforms support all types of archives. The individual types which are
supported by the platform can be displayed in REXYGEN Studio in the Diagnostics tree
view panel after clicking on the name of the target device (IP address). The supported
types are listed in the lower left part of the Target tab.

10.2. GENERATING ALARMS AND EVENTS 293

10.2 Generating alarms and events

ALB, ALBI � Alarms for Boolean value

Block Symbols Licence: STANDARD

ALB

U iac

ALBI

U

men

tout

iACK

iac

HA

LA

NACK

Function Description

The ALB and ALBI blocks generate alarms or events when a Boolean input signal U
changes. The men parameter selects whether the rising or falling or both edges in the
input signal should be indicated. The iac output shows the current alarm (event) code.

The ALBI block is an extension of the ALB block as the alarms (events) are indicated
also by Boolean output signals HA, LA and NACK. The type of edges to watch is selected by
the men input signal and the alarms are acknowledged by the iACK input signal instead
of parameters with the same name and meaning.

The events and alarms are di�erentiated by the lvl parameter in the REXYGEN sys-
tem. The range 1 ≤ lvl ≤ 127 is reserved for alarms. All starts, ends and acknowledge-
ments of the alarms are stored in the archive. On the contrary, the range 128 ≤ lvl ≤ 255
indicates events. Only the start (the time instant) of the event is stored in the archive.

Note: The input (parameter) iACK is set back to 0 immediately by the block algo-
rithm. The funcionality is similar to the parameter BSTATE of the block MP.

Inputs

U Logical input of the block whose changes are watched Bool

men Enable alarms Long (I32)

0 All alarms disabled
1 Low-alarm enabled (LA) (falling edge in the input

signal U)
2 High-alarm enabled (HA)(rising edge in the input

signal U)
3 All alarms enabled

tout Alarm activation delay time [s] ↓0.0 Double (F64)

iACK Acknowledge alarm Byte (U8)

1 Low-alarm acknowledge
2 High-alarm acknowledge
3 Both alarms acknowledge

Alarm is acknowledged on rising edge

294 CHAPTER 10. ARC � DATA ARCHIVING

Outputs

iac Current alarm code Long (I32)

0 All alarms inactive
1 Low-alarm active (LA)
2 High-alarm active (HA)
256 . . . Low-alarm not acknowledged (NACK)
512 . . . High-alarm not acknowledged (NACK)

HA High-alarm indicator Bool

LA Low-alarm indicator Bool

NACK Alarm-not-acknowledged indicator Bool

Parameters

arc List of archives to store the events. The format of the list is
e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Word (U16)

id Identi�cation code of the alarm in the archive. This identi�er
must be unique in the whole target device with the REXYGEN

control system (i.e. in all archiving blocks). Disabled for id = 0.
⊙1

Word (U16)

lvl The level of the alarms (HA and LA) which di�erentiates alarms
from events and de�nes the severity of the alarm/event ↓1 ⊙1

Byte (U8)

Desc Extended description of the alarm which is displayed by the
diagnostic tools of the REXYGEN system

⊙Alarm Description

String

10.2. GENERATING ALARMS AND EVENTS 295

ALM, ALMI � Alarm activation

Block Symbols Licence: STANDARD

ALM

U iE

ALMI

U

ACK

av1

av2

av3

av4

av5

av6

av7

av8

iE

Function Description

The ALM and ALMI block is used to generate an alarm. The alarm is active when the input
U=on. The alarm must be de�ned by the ALARMS block and is uniquely identi�ed using
the id parameter. Active alarms can be displayed by special component in HMI. Status
change of the alarm and its acknowledgment is also stored in the archive (if de�ned
in con�guration in the ALARMS block). The alarm can be acknowledged by setting the
parameter ACK=on.

Remark: The system displays the acknowledgment status, allows the user to acknowl-
edge the ongoing alarm and can display the acknowledgment status in the HMI and in
the archive. Acknowledging alarms has no further meaning for REXYGEN itself and noth-
ing depends on it. Whether alarms will be acknowledged depends on the �lter settings
in the visualization and the design of the entire system.

Inputs

U Alarm is active when U = on Bool

Outputs

iE Error code Error

Parameters

id Unique identi�cation number of the alarm. Alarm is disabled for
id = 0. Value id = −1 means that alarm is identi�ed by name
(e.g. name of the block without ALM(I) pre�x) not by id.

↓-1 ↑65535 ⊙-1

Long (I32)

ACK Set ACK = on acknowledge alarm. The algorithm immediately
reverts the parameter to ACK = off.

Bool

av1..av8 Value associated with alarm. See description of the ALARMS block
to clarify how this value is propagate into alarm description.

↓1.79769e+308 ⊙-1.79769e+308

Double (F64)

296 CHAPTER 10. ARC � DATA ARCHIVING

ALN, ALNI � Alarms for numerical value

Block Symbols Licence: STANDARD

ALN

u iac

ALNI

u
men
hys
hh
h
l
ll
tout
iACK

iac

E

HHA

HA

LA

LLA

NACK

Function Description

The ALN and ALNI blocks generate two-level alarms or events when a limit value is
exceeded (or not reached). There are four limit values the input signal u is compared to,
namely high-limits h and hh and low-limits l and ll. The iac output shows the current
alarm (event) code.

The ALNI block is an extension of the ALN block as the alarms (events) are indicated
also by Boolean output signals HHA, HA, LA and LLA and the variables of the alarm
algorithm are given by the input signals hys, hh, h, l and ll instead of parameters with
the same name and meaning.

The events and alarms are di�erentiated by the lvl parameter in the REXYGEN sys-
tem. The range 1 ≤ lvl ≤ 127 is reserved for alarms. All starts, ends and acknowledge-
ments of the alarms are stored in the archive. On the contrary, the range 128 ≤ lvl ≤ 255
indicates events. Only the start (the time instant) of the event is stored in the archive.

Note 1: The input (parameter) iACK is set back to 0 immediately by the block algo-
rithm. The functionality is similar to the parameter BSTATE of the block MP.

Note2: The parameter Desc can include formatting characters (multilingual texts,
associated variables). Formatting rules are described in the ALARMS block.

Inputs

u Analog input of the block which is checked to remain within the
given limits

Double (F64)

hys Alarm hysteresis for switching the alarm o� ↓1e-10 ↑1e+10 Double (F64)

hh The second high-alarm limit, must be greater than h Double (F64)

h High-alarm limit, must be greater than l Double (F64)

l Low-alarm limit, must be greater than ll Double (F64)

ll The second low-alarm limit Double (F64)

tout Alarm activation delay time [s] ↓0.0 Double (F64)

iACK Alarm is acknowledged on rising edge of the individual bits of
this input/parameter. E.g. value 15 acknowledges all alarms.

10.2. GENERATING ALARMS AND EVENTS 297

Byte (U8)

1 Second low-alarm acknowledge
2 Low-alarm acknowledge
4 High-alarm acknowledge
8 Second high-alarm acknowledge

In case a one-level alarm is required, it is su�cient to set lvl2=0 or set the hh and ll

limits to extreme values which can never be reached by the input signal.

Outputs

iac Current alarm code. Additional bitwise combinations of the codes
may appear. E.g. 12 means both high alarms.

Long (I32)

0 Signal within limits
1 Low-alarm active
2 High-alarm active
4 Second low-alarm active
8 Second high-alarm active
256 . . . Low-alarm not acknowledged
512 . . . High-alarm not acknowledged
1024 . . Second low-alarm not acknowledged
2048 . . Second high-alarm not acknowledged
-1 Invalid alarm limits

E Error �ag Bool

off . . . No error
on An error occurred, alarm limits disordered

HHA The second high-alarm indicator Bool

HA High-alarm indicator Bool

LA Low-alarm indicator Bool

LLA The second low-alarm indicator Bool

NACK Alarm-not-acknowledged indicator Bool

Parameters

acls Alarm class (data type to store) ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)

5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)

�-
10 Large (I64)

arc List of archives to store the events. The format of the list is
e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Word (U16)

298 CHAPTER 10. ARC � DATA ARCHIVING

id Identi�cation code of the alarm in the archive. This identi�er
must be unique in the whole target device with the REXYGEN

control system (i.e. in all archiving blocks). Disabled for id = 0.
⊙1

Word (U16)

lvl1 The level of �rst high- and low-alarms (HA and LA) which
di�erentiates alarms from events and de�nes the severity of the
alarm/event ↓1 ⊙1

Byte (U8)

lvl2 The level of second high- and low-alarms (HHA and LLA) which
di�erentiates alarms from events and de�nes the severity of the
alarm/event ↓1 ⊙10

Byte (U8)

Desc Extended description of the alarm which is displayed by the
diagnostic tools of the REXYGEN system

⊙Alarm Description

String

10.2. GENERATING ALARMS AND EVENTS 299

ARS � Archive store value

Block Symbol Licence: STANDARD

ARS

u

RUN
iE

Function Description

The block allow to store value into archive subsystem. Written value must be connected
to the u input. Value could be simple like bool, int or �oat, string or matrix/vector. Type
of value must be set by the type parameter. The the parameter codetype=13:Reference
must be set for vector or matrix. There is one archive item for each column of the matrix.
Data are stored only if the input RUN=on is set. The parameter subtype allow write alarm
type that write other alarm blocks (for example L->H for bool alarm, HiHi for numeric
alarm). the value of this parameter is in range 0 to 7 and is not used in vector/matrix
items. This parameter is usualy not needed.

Note 1: The archive subsystem is limited for 255 values, but no more then 512 bytes
in one archive item (e.g. 128 values of type Short, 64 values of type Long, 32 values of
type Double). Vector (matrix's column) is truncated to this size and stored into archive
and no error nor warning is indicated, if the input array is bigger.

Note 2: The string value is limited to 65535 byte (i.e. characters if only characters
from english keyboard is used; UTF-8 encoding is used). String is truncated to this size
and stored into archive and no error nor warning is indicated, if the input string is bigger.
It is recomended to not overcome 4000 bytes, because some reading functions has limited
bu�er and could failed for long strings.

Note 3: The parameter id is intended as bind source block (and also source signal)
with item in archive (and with alarm subsystem in same cases). So REXYGENcheck
unique this binding. The ARS block is intend to be low-level-function writing into archive,
therefore parameters are not checked (mainly unique of id is not checked).

Inputs

u Value to store into archive Any

RUN Enable execution Bool

300 CHAPTER 10. ARC � DATA ARCHIVING

Parameters

type Type of all trend bu�ers ⊙12 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference

arc List of archives to write the events to Word (U16)

id Archive item ID. The block not check if id is unique in whole
con�guration. ⊙1

Word (U16)

lvl Alarm level ⊙1 Word (U16)

Desc Event description string ⊙Value Description String

subtype alarm subtype (for special ussage only)

Output

iE Error code Error

10.3. TRENDS RECORDING 301

10.3 Trends recording

ACD � Archive compression using Delta criterion

Block Symbol Licence: STANDARD

ACD

u
delta

y
E

Function Description

The ACD block is meant for storing compressed analog signals to archives using archive
events.

The main idea is to store the input signal u only when it changes signi�cantly. The
interval between two samples is in the range ⟨tmin,tmax⟩ seconds (rounded to the nearest
multiple of the sampling period). A constant input signal is stored every tmax seconds
while rapidly changing signal is stored every tmin seconds.

When the execution of the block is started, the �rst input value is stored. This value
will be referred to as u0 in the latter. The rules for storing the following samples are
given by the delta and TR input signals.

For TR = off the condition |u−u0| > delta is checked. If it holds and the last stored
sample occurred more than tmin seconds ago, the value of input u is stored and u0=u
is set. If the condition is ful�lled sooner than tmin seconds after the last stored value,
the error output E is set to 1 and the �rst value following the tmin interval is stored. At
that time the output E is set back to 0 and the whole procedure is repeated.

For TR = on the input signal values are compared to a signal with compensated trend.
The condition for storing the signal is the same as in the previous case.

The following �gure shows the archiving process for both cases: a) TR = off, b)
TR = on. The stored samples are marked by the symbol ×.

TS 2TS (k-1)TS kTS0 time

u

u
0

u -
0

delta

u +
0

delta

a)

TS 2TS (k-1)TS kTS0 time

u

u
0

u -
0

delta

u +
0

delta

b)

Inputs

u Signal to compress and store Double (F64)

delta Threshold for storing the signal ↓0.0 ↑1e+10 Double (F64)

302 CHAPTER 10. ARC � DATA ARCHIVING

Outputs

y The last value stored in the archive Double (F64)

E Error �ag � indicates that a signi�cant change in the input signal
occurred sooner than the tmin interval passes

Bool

off . . . No error on An error occurred

Parameters

acls Archive class determining the variable type to store ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)

5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)

�-
10 Large (I64)

arc List of archives to store the events. The format of the list is
e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Word (U16)

id Identi�cation code of the event in the archive. This identi�er
must be unique in the whole target device with the REXYGEN

control system (i.e. in all archiving blocks). Disabled for id = 0.
⊙1

Word (U16)

tmin The shortest interval between two samples of the u input signal
stored in the archive [s] ↓0.001 ↑1000000.0 ⊙1.0

Double (F64)

tmax The longest interval between two samples of the u input signal
stored in the archive [s] ↓1.0 ↑1000000.0 ⊙1000.0

Double (F64)

TR Trend evaluation �ag ⊙on Bool

off . . . The deviation of the input signal from the last stored
value is evaluated

on The deviation of the input signal from the last value's
trend is evaluated

Desc Extended description of the event which is displayed by the
diagnostic tools of the REXYGEN system

⊙Value Description

String

10.3. TRENDS RECORDING 303

TRND � Real-time trend recording

Block Symbol Licence: STANDARD

TRND

u1
u2
u3
u4
RUN
R1

y1

y2

y3

y4

iE

Function Description

The TRND block is designed for storing of up to 4 input signals (u1 to u4) in cyclic
bu�ers in the memory of the target device. The main advantage of the TRND block is
the synchronization with the real-time executive, which allows trending of even very fast
signals (i.e. with very high sampling frequency). In contrary to asynchronous data storing
in the higher level operator machine (host), there are no lost or multiply stored samples.

The number of stored signals is determined by the parameter n. In case the trend
bu�er of length l samples gets full, the oldest samples are overwritten. Data can be
stored once in pfac executions of the block (decimation) and the data can be further
processed according to the ptype1 to ptype4 parameters. The other decimation factor
afac can be used for storing data in archives.

The type of trend bu�ers can be speci�ed in order to conserve memory of the target
device. The memory requirements of the trend bu�ers are de�ned by the formula s ·n ·l,
where s is the size of the corresponding variable in bytes. The default type Double

consumes 8 bytes per sample, thus for storing n = 4 trends of this type and length
l = 1000, 8 · 4 · 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 18 of this reference guide.

It can happen that the processed input value exceeds the representable limits when
using di�erent type of bu�er than Double. In such a case the highest (lowest) repre-
sentable number of the corresponding type is stored in the bu�er and an error is binary
encoded to the iE output according to the following table (the unused bits are omitted):

Error Range under�ow Range over�ow
Input u4 u3 u2 u1 u4 u3 u2 u1

Bit number 11 10 9 8 3 2 1 0
Bit weight 2048 1024 512 256 8 4 2 1

In case of simultaneous errors the resulting error code is given by the sum of the weights
of individual errors. Note that under�ow and over�ow cannot happen simultaneously on
a single input.

304 CHAPTER 10. ARC � DATA ARCHIVING

It is possible to read, display and export the stored data by the REXYGEN Studio

in the Watch mode. After double-clicking on the corresponding TRND block, a new card
with the pre�x Trend will open.

WARNING: set any of the parameters arc, afac, id to 0/empty disable writing data
into archive. The data are available in diagnostic tools only in this case.

Inputs

u1..u4 Analog inputs to be processed and stored in the trend Double (F64)

RUN Enable execution. The data are processed and stored if and only
if RUN = on.

Bool

R1 Input for clearing the trend contents. The bu�ers are cleared
when R1 = on. This �ag overpowers the RUN input.

Bool

Outputs

y1..y4 Analog outputs of the block set once in pfac executions of the
block to the last values stored in the trend bu�ers

Double (F64)

iE Error code, see the table above Long (I32)

Parameters

n Number of signals to process and store in the trend bu�ers
↓1 ↑4 ⊙4

Long (I32)

l Number of samples reserved in memory for each trend bu�er
↓0 ↑268435000 ⊙1000

Long (I32)

btype Type of all n trend bu�ers ⊙8 Long (I32)

1 Bool
2 Byte
3 Short

4 Long
5 Word
6 DWord

7 Float
8 Double
10 Large

ptypei The way the signal ui, i = 1 . . . 4, is processed. The last pfac

samples are processed as selected and the result is stored in the
i-th trend bu�er. ⊙1

Long (I32)

1 No processing, just storing data
2 Minimum from the last pfac samples
3 Maximum from the last pfac samples
4 Sum of the last pfac samples
5 Simple average of the last pfac samples
6 Root mean square of the last pfac samples
7 Variance of the last pfac samples

pfac Multiple of the block execution period de�ning the period for
storing the data in the trend bu�ers. Data are stored with the
period of pfac · TS unless RUN = off, where TS is the block
execution period in seconds. ↓1 ↑1000000 ⊙1

Long (I32)

10.3. TRENDS RECORDING 305

afac Every afac-th sample stored in the trend bu�er is also stored in
the archives speci�ed by the arc parameter. There are no data
stored in the archives for afac = 0. Data are stored with the
period of afac ·pfac ·TS , where TS is the block execution period
in seconds. ↓0 ↑1000000

Long (I32)

arc List of archives to store the trend data. The format of the list is
e.g. 1,3..5,8. The data will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Word (U16)

id Identi�cation code of the trend block. This identi�er must be
unique in the whole target device with the REXYGEN system
(i.e. in all archiving blocks). Disabled for id = 0. ⊙1

Word (U16)

Title Title of the trend to be displayed in the diagnostic tools of the
REXYGEN system, e.g. in the Watch mode in the REXYGEN

Studio program. ⊙Trend Title

String

timesrc Source of timestamps. Each data sample in trend bu�er is stored
with a timestamp. For fast or short term trends where you are
interested in sample-by-sample timing more than in absolute
time, choose CORETIMER � REXYGEN internal technological
time which is incremented by nominal period each base tick. For
long running trends where you are interested mostly in absolute
time shared with operating system (and possibly synchronized
by NTP), choose RTC. Other values are intended for debug or
special purposes. ⊙1

Long (I32)

1 CORETIMER � technological time � at current tick
2 CORETIMER-PRECISE � technological time � at block

execution
3 RTC � real time clock (wallclock) from operating

system � at current tick
4 RTC-PRECISE � real time clock (wallclock) from

operating system � at block execution
4 PFC � raw high precision time (PerFormanceCounter)

SigNames Names of the signals to be displayed in the diagnostic tools of
the REXYGEN system, e.g. in the Watch mode in the REXYGEN
Studio program. Each line is name of one signal respectively.

String

306 CHAPTER 10. ARC � DATA ARCHIVING

TRNDV � Real-time trend recording with vector input

Block Symbol Licence: STANDARD

TRNDV

uVec

HLD

R1

iE

Function Description

The TRNDV block is designed for storing input signals which arrive at the uVec input in
vector form. On the contrary to the TRND block it allows storing more than 4 signals.
The signals are stored in cyclic bu�ers in the memory of the target device. The main
advantage of the TRNDV block is the synchronization with the real-time executive, which
allows trending of even very fast signals (i.e. with very high sampling frequency). In
contrary to asynchronous data storing in the higher level operator machine (host), there
are no samples lost or multiply stored.

The number of stored signals is determined by the parameter n. In case the trend
bu�er of length l samples gets full, the oldest samples are overwritten. Data can be
stored once in pfac executions of the block (decimation). The other decimation factor
afac can be used for storing data in archives.

The type of trend bu�ers can be speci�ed in order to conserve memory of the target
device. The memory requirements of the trend bu�ers are de�ned by the formula s ·n ·l,
where s is the size of the corresponding variable in bytes. The default type Double

consumes 8 bytes per sample, thus for storing e.g. n = 4 trends of this type and length
l = 1000, 8 · 4 · 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 18 of this reference guide.

It is possible to read, display and export the stored data by the REXYGEN Studio in
the Watch mode. After double-clicking on the corresponding TRNDLF block, a new card
with the pre�x Trend will open.

WARNING: set any of the parameters arc, afac, id to 0/empty disable writing data
into archive. The data are available in diagnostic tools only in this case.

Inputs

uVec Vector signal to record Reference

HLD Input for freezing the cyclic bu�ers, no data is appended when
HLD = on

Bool

R1 Input for clearing the trend contents. The bu�ers are cleared
when R1 = on. This �ag overpowers the HLD input.

Bool

10.3. TRENDS RECORDING 307

Output

iE Error code Error

i REXYGEN general error

Parameters

n Number of signals (trend bu�ers) ↓1 ↑64 ⊙8 Long (I32)

l Number of samples per trend bu�er ↓2 ↑268435000 ⊙1000 Long (I32)

btype Type of all trend bu�ers ⊙8 Long (I32)

1 Bool
2 Byte
3 Short

4 Long
5 Word
6 DWord

7 Float
8 Double
10 Large

pfac Multiple of the block execution period de�ning the period for
storing the data in the trend bu�ers. Data are stored with the
period of pfac · TS unless RUN = off, where TS is the block
execution period in seconds. ↓1 ↑1000000 ⊙1

Long (I32)

afac Every afac-th sample stored in the trend bu�er is also stored in
the archives speci�ed by the arc parameter. There are no data
stored in the archives for afac = 0. Data are stored with the
period of afac ·pfac ·TS , where TS is the block execution period
in seconds. ↓0 ↑1000000

Long (I32)

arc List of archives to store the trend data. The format of the list is
e.g. 1,3..5,8. The data will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Word (U16)

id Identi�cation code of the trend block. This identi�er must be
unique in the whole target device with the REXYGEN system
(i.e. in all archiving blocks). Disabled for id = 0. ⊙1

Word (U16)

Title Title of the trend to be displayed in the diagnostic tools of the
REXYGEN system, e.g. in the Watch mode in the REXYGEN

Studio program. ⊙Trend Title

String

timesrc Source of timestamps. Each data sample in trend bu�er is stored
with a timestamp. For fast or short term trends where you are
interested in sample-by-sample timing more than in absolute
time, choose CORETIMER � REXYGEN internal technological
time which is incremented by nominal period each base tick. For
long running trends where you are interested mostly in absolute
time shared with operating system (and possibly synchronized
by NTP), choose RTC. Other values are intended for debug or
special purposes. ⊙1

Long (I32)

SigNames Names of the signals to be displayed in the diagnostic tools of
the REXYGEN system, e.g. in the Watch mode in the REXYGEN
Studio program. Each line is name of one signal respectively.

String

308 CHAPTER 10. ARC � DATA ARCHIVING

TRNDLF � ∗ Real-time trend recording (lock-free)

Block Symbol Licence: ADVANCED

TRNDLF

u1
u2
u3
u4
u5
u6
u7
u8
RUN
R1

y1
y2
y3
y4
y5
y6
y7
y8
iE

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

u1 ..u8 Analog inputs of the block Double (F64)

RUN Enable execution Bool

R1 Input for clearing the trend contents. The bu�ers are cleared
when R1 = on. This �ag overpowers the RUN input.

Bool

Parameters

n Number of signals (trend bu�ers) ↓1 ↑8 ⊙8 Long (I32)

l Number of samples per trend bu�er ↓0 ↑268435000 ⊙1024 Long (I32)

btype Type of all trend bu�ers ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
�-
10 Large (I64)

Title Trend title string ⊙Trend Title String

timesrc Source of timestamps ⊙1 Long (I32)

SigNames Names of the signals to be displayed in the diagnostic tools of
the REXYGEN system, e.g. in the Watch mode in the REXYGEN
Studio program. Each line is name of one signal respectively.

String

10.3. TRENDS RECORDING 309

Outputs

y1 First analog output of the block Double (F64)

y2 Second analog output of the block Double (F64)

y3 Third analog output of the block Double (F64)

y4 Fourth analog output of the block Double (F64)

y5 Fifth analog output of the block Double (F64)

y6 Sixth analog output of the block Double (F64)

y7 Seventh analog output of the block Double (F64)

y8 Eighth analog output of the block Double (F64)

iE Error code (bitwise multiplexed) Long (I32)

310 CHAPTER 10. ARC � DATA ARCHIVING

TRNDVLF � ∗ Real-time trend recording (for vector signals,
lock-free)

Block Symbol Licence: ADVANCED

TRNDVLF

uVec

HLD

R1

iE

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uVec Vector signal to record Reference

HLD Hold Bool

R1 Input for clearing the trend contents. The bu�ers are cleared
when R1 = on. This �ag overpowers the HLD input.

Bool

Parameters

n Number of signals (trend bu�ers) ↓1 ↑64 ⊙8 Long (I32)

l Number of samples per trend bu�er ↓2 ↑268435000 ⊙1024 Long (I32)

btype Type of all trend bu�ers ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
�-
10 Large (I64)

Title Trend title string ⊙Trend Title String

timesrc Source of timestamps ⊙1 Long (I32)

SigNames Names of the signals to be displayed in the diagnostic tools of
the REXYGEN system, e.g. in the Watch mode in the REXYGEN
Studio program. Each line is name of one signal respectively.

String

10.4. ARCHIVE MANAGEMENT 311

Output

iE Error code Error

i REXYGEN general error

10.4 Archive management

AFLUSH � Forced archive �ushing

Block Symbol Licence: STANDARD

AFLUSH

FLUSH

Function Description

The AFLUSH block is intended for immediate storing of archive data to permanent mem-
ory (hard drive, �ash disk, etc.). It is useful when power loss can be anticipated, e.g.
emergency shutdown of the system following some failure. It forces the archive subsystem
to write all archive data to avoid data loss. The write operation is initiated by a rising
edge (off→on) at the FLUSH input regardless of the period parameter of the ARC block.

Input

FLUSH Force archive �ushing Bool

Parameter

arc List of archives to store the events. The format of the list is
e.g. 1,3..5,8. The event will be stored in all listed archives (see
the ARC block for details on archives numbering). Third-party
programs (Simulink, OPC clients etc.) work with an integer
number, which is a binary mask, i.e. 157 (binary 10011101) in
the mentioned case.

Word (U16)

312 CHAPTER 10. ARC � DATA ARCHIVING

Chapter 11

STRING � Blocks for string

operations

Contents

CNS � String constant . 314

CONCAT � Concat string by pattern 315

FIND � Find a Substring . 316

ITOS � Integer number to string conversion 317

LEN � String length . 318

MID � Substring Extraction . 319

PJROCT � Parse JSON string (real output) 320

PJSOCT � Parse JSON string (string output) 322

PJSEXOCT � Parse JSON string (string output) 324

REGEXP � Regular expresion parser 325

REPLACE � Replace substring . 328

RTOS � Real Number to String Conversion 329

SELSOCT � Selector switch for string signals 330

STOR � String to real number conversion 331

313

314 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

CNS � String constant

Block Symbol Licence: STANDARD

scv

CNS

Function Description

The CNS block is a simple string constant with maximal available size. A value of scv is
always truncated to nmax.

Parameters

scv String (constant) value String

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

sy String output value String

315

CONCAT � Concat string by pattern

Block Symbol Licence: STANDARD

CONCAT

su1
su2
su3
su4
su5
su6
su7
su8

sy

Function Description

Concatenates up to 8 input strings su1 to su8 by pattern speci�ed in ptrn parameter.

Inputs

su1..8 String input value String

Parameters

ptrn Concatenation pattern ⊙%1%2%3%4 String

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

sy String output value String

316 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

FIND � Find a Substring

Block Symbol Licence: STANDARD

FIND

su1

su2
pos

Function Description

The FIND block searches for the string su2 in the string su1 and returns a one-based
index into su1 if a su2 is found or zero otherwise. Both su1 and su2 are truncated to
nmax.

Inputs

su1 String input value String

su2 String input value String

Parameter

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

pos Position of substring Long (I32)

iE Error code Error

317

ITOS � Integer number to string conversion

Block Symbol Licence: STANDARD

ITOS

n sy

Function Description

The ITOS block is used for converting an integer into text. The len parameter speci�es
the minimum length of the output string. If the number has a smaller number of digits,
zeroes or spaces will be added according to the mode parameter. The radix parameter
speci�es the numerical system in which the conversion is to be performed. The output
string does not contain any identi�cation of the numerical system used (e.g. the 0x pre�x
for the hexadecimal system).

Input

n Integer input of the block Long (I32)

Output

sy String output value String

Parameters

len Minimum length of output string ↓0 ↑30 Long (I32)

mode Output string format ⊙1 Long (I32)

1 Align right, �ll with spaces
2 Align right, �ll with zeroes
3 Align left, �ll with spaces

radix Radix ⊙10 Long (I32)

2 Binary
8 Octal
10 Decimal
16 Hexadecimal

318 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

LEN � String length

Block Symbol Licence: STANDARD

LEN

sulen

Function Description

The LEN block returns the actual length of the string in su in UTF-8 characters.

Input

su String input value String

Parameter

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

len Length of input string Long (I32)

319

MID � Substring Extraction

Block Symbol Licence: STANDARD

MID

su
l
p

sy

Function Description

The MID block extracts a substring sy from su. The parameters l and p specify position
and length of the string being extracted in UTF-8 characters. The parameter p is one-
based.

Inputs

su String input value String

l Length of output string Long (I32)

p Position of output string (one-based) Long (I32)

Parameter

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

sy String output value String

iE Error code Error

320 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

PJROCT � Parse JSON string (real output)

Block Symbol Licence: STANDARD

PJROCT

jtxt

RUN

y1
y2
y3
y4
y5
y6
y7
y8
iE

Function Description

Parses input JSON string jtxt according to speci�ed name* parameters when the input
RUN is on. Output signals are real type. Value of the yerr parameter is put on the y*

output when error occured (e.g. speci�ed object is not exist or value is not a number).
This block expects text in JSON format on the jtxt input. The outputs of y1 to

y7 then have the values (string) of the objects identi�ed by the parameters name1 to
name7. If one of the parameters name1 to name7 is empty, the corresponding output will
be empty and this is not considered as an error. The input string evaluates only if RUN
= on. An error is indicated on the output iE. The following cases may occur:

• 0 - no error

• -1 - one of the parameters name1 to name7 refers to an object that does not appear
in the input text (at the input jtxt)

• -103 - the text on the input jtxt does not correspond to the JSON format

• -106 - all of the parameters name1 to name7 refer to an object that does not appear
in the input text (on the input jtxt)

Example: Let
jtxt = "{"id": 12345, "params": {"temperature": 23, "pressure": 2.34 },

"description": "reactor1", "values" :[12, 34.5 , 45.0, 30.2]}"

name1 = "params.temperature",
name2 = "values[0]",
name3 = "pressure",
name4 = "description",
then the output y1 will be the "23" string, the output y2 will be the "12" string, output
y3 will remain empty and an error will be signaled, the output y4 will remain empty and
an error will be signaled.

Inputs

jtxt JSON formated string String

321

RUN Enable execution Bool

Parameters

name1..8 Property name of JSON element String

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

yerr Substitute value for an error case Double (F64)

Outputs

y1..8 Block output signal Double (F64)

iE Error code Error

322 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

PJSOCT � Parse JSON string (string output)

Block Symbol Licence: STANDARD

PJSOCT

jtxt

RUN

sy1
sy2
sy3
sy4
sy5
sy6
sy7
sy8
iE

Function Description

Parses input JSON string jtxt according to speci�ed name* parameters when the input
RUN is on. Output signals are string type.

This block expects text in JSON format on the jtxt input. The outputs of sy1 to
sy7 then have the values of the objects identi�ed by the parameters name1 to name7. If
one of the parameters name1 to name7 is empty, the corresponding output will be empty
and this is not considered as an error. The input string evaluates only if RUN = on. An
error is indicated on the output iE. The following cases may occur:

• 0 - no error

• -1 - one of the parameters name1 to name7 refers to an object that does not appear
in the input text (at the input jtxt)

• -103 - the text on the input jtxt does not correspond to the JSON format

• -106 - all of the parameters name1 to name7 refer to an object that does not appear
in the input text (on the input jtxt)

Example: Let
jtxt = "{"id": 12345, "params": {"temperature": 23, "pressure": 2.34 },

"description": "reactor1", "values" :[12, 34.5 , 45.0, 30.2]}"

name1 = "params.temperature",
name2 = "values[0]",
name3 = "pressure",
name4 = "description",
then the output sy1 will be the "23" string, the output sy2 will be the "12" string,
output sy3 will remain empty and an error will be signaled, the output sy4 will be the
"reactor1" string.

Inputs

jtxt JSON formated string String

RUN Enable execution Bool

323

Parameters

name1..8 Name of JSON object String

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Outputs

sy1..8 String output value String

iE Error code Error

324 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

PJSEXOCT � Parse JSON string (string output)

Block Symbol Licence: STANDARD

PJSEXOCT

jtxt
RUN
sn1
sn2
sn3
sn4
sn5
sn6
sn7
sn8

sy1
sy2
sy3
sy4
sy5
sy6
sy7
sy8
iE

Function Description

The block is almost the same as PJSOCT block, except name* parameters can contain
control sequence % + number that is substituted by sn + number input.

Example: Let
sn1 = "2",
sn2 = "rpm",
name1 = "motor[%1].temp",
name2 = "motor[%1].%2",
then name1 is expand to motor[2].temp, name2 is expand to motor[2].rpm.

Inputs

jtxt JSON formated string String

RUN Enable execution Bool

sn1..8 Part of name of JSON object String

Parameters

name1..8 Name of JSON object String

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Outputs

sy1..8 String output value Error

iE Error code Error

325

REGEXP � Regular expresion parser

Block Symbol Licence: ADVANCED

REGEXP

text

RUN

MATCH
cap
cap1
cap2
cap3
cap4
cap5
cap6
cap7
cap8

Function Description

This block implements a subset of Perl or C# or Unix command grep regular expression
syntax.

Supported syntax is :

• (?i) . . .Must be at the beginning of the regex. Makes match case-insensitive

• ^ . . .Match beginning of a bu�er

• $. . .Match end of a bu�er

• () . . . Grouping and substring capturing

• \s . . .Match whitespace

• \S . . .Match non-whitespace

• \d . . .Match decimal digit

• \n . . .Match new line character

• \r . . .Match line feed character

• \f . . .Match form feed character

• \v . . .Match vertical tab character

• \t . . .Match horizontal tab character

• \b . . .Match backspace character

• + . . .Match one or more times (greedy)

• +? . . .Match one or more times (non-greedy)

• * . . .Match zero or more times (greedy)

326 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

• *? . . .Match zero or more times (non-greedy)

• ? . . .Match zero or once (non-greedy)

• x|y . . .Match x or y (alternation operator)

• \meta . . .Match one of the meta characters: ^$().[]*+?|\

• \xHH . . .Match byte with hex value 0xHH, e.g. \x4a

• [...] . . .Match any character from set. Ranges like [a-z] are supported.

• [^...] . . .Match any character except the ones in set. Ranges like [a-z] are sup-
ported.

Examples

• [0-9]+ . . . Find �rst integer in input string (and put it into cap output)

• [-+]?[0-9]*\.[0-9]+([eE][-+]?[0-9]+)? . . . Find �rst real number in input string
(and put it into cap output)

• ^\s*(.*?)\s*$. . . Put trimmed input string into cap1 output

• num\s*:\s*([0-9]*\.[0-9]*) . . . Expect input string in JSON format; �nd inte-
ger parameter num, and put its value into cap1

Inputs

text String to parse String

RUN Enable execution Bool

Parameters

expr Regular expresion pattern String

nmax Allocated size of string ↓0 ↑65534 Long (I32)

bufmax Parser internal bu�er size (0 = autodetect) ↓0 ↑10000000 Long (I32)

Outputs

MATCH Pattern match �ag Bool

cap Whole matching string String

cap1 Captured string (string matched to 1st bracket) String

cap2 Captured string (string matched to 2nd bracket) String

cap3 Captured string (string matched to 3rd bracket) String

cap4 Captured string (string matched to 4th bracket) String

327

cap5 Captured string (string matched to 5th bracket) String

cap6 Captured string (string matched to 6th bracket) String

cap7 Captured string (string matched to 7th bracket) String

cap8 Captured string (string matched to 8th bracket) String

328 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

REPLACE � Replace substring

Block Symbol Licence: STANDARD

REPLACE

su1
su2
l
p

sy

Function Description

The REPLACE block replaces a substring from su1 by the string su2 and puts the result
in sy. The parameters l and p specify position and length of the string being replaced
in UTF-8 characters. The parameter p is one-based.

Inputs

su1 String input value String

su2 String input value String

l Length of origin text Long (I32)

p Position of origin text (one-based) Long (I32)

Parameter

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

sy String output value String

iE Error code Error

329

RTOS � Real Number to String Conversion

Block Symbol Licence: STANDARD

RTOS

u sy

Function Description

The RTOS converts a real number in u into a string value in su. Precision and format are
speci�ed by the prec and mode parameters.

Input

u Analog input of the block Double (F64)

Output

sy String output value String

Parameters

prec Precision (number of digits) ↓0 ↑20 Long (I32)

mode Output string format ⊙1 Long (I32)

1 Best �t � �xed point, but for extremly small or big
numbers exponential format; parameter prec is total
maximum number of characters in output (mantisa
for exponential format)

2 Normal � �xed point format; parameter prec is
number of places after the decimal point

3 Exponential � scienti�c format; parameter prec is
number of places after the decimal pointe

330 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

SELSOCT � Selector switch for string signals

Block Symbol Licence: STANDARD

SELSOCT

su0
su1
su2
su3
su4
su5
su6
su7
iSW
SW1
SW2
SW3

sy

Function Description

The SELSOCT block selects one of the input strings and copy it to the output string
sy. The selection of the active signal u0. . . u15 is based on the iSW input or the binary
inputs SW1. . . SW3. These two modes are distinguished by the BINF binary �ag. The signal
is selected according to the following table:

iSW SW1 SW2 SW3 y

0 off off off u0

1 on off off u1

2 off on off u2

3 on on off u3

4 off off on u4

5 on off on u5

6 off on on u6

7 on on on u7

Inputs

su0..7 String input value String

iSW Active signal selector Long (I32)

SW1..3 Binary signal selector Bool

Parameters

BINF Enable the binary selectors Bool

nmax Allocated size of string [bytes] ↓0 ↑65520 Long (I32)

Output

sy The selected input signal String

331

STOR � String to real number conversion

Block Symbol Licence: STANDARD

STOR

su
y

E

Function Description

The STOR converts a string in su into a real number in y. An error is signaled in E if
unsuccessful.

Input

su String input value String

Parameter

yerr Substitute value for an error case Double (F64)

Outputs

y Analog output of the block Double (F64)

E Error indicator Bool

332 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

Chapter 12

PARAM � Blocks for parameter

handling

Contents

GETPA � Block for remote array parameter acquirement 334

GETPR, GETPI, GETPB � Blocks for remote parameter acquirement . 336

GETPS � ∗ Block for remote string parameter acquirement 338

PARA � Block with input-de�ned array parameter 339

PARE � Block with input-de�ned enumeration parameter 340

PARR, PARI, PARB � Blocks with input-de�ned parameter 341

PARS � ∗ Block with input-de�ned string parameter 343

SETPA � Block for remote array parameter setting 344

SETPR, SETPI, SETPB � Blocks for remote parameter setting 346

SETPS � ∗ Block for remote string parameter setting 348

SGSLP � Set, get, save and load parameters 349

SILO � Save input value, load output value 353

SILOS � Save input string, load output string 355

333

334 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

GETPA � Block for remote array parameter acquirement

Block Symbol Licence: STANDARD

GETPA

GET
arrRef

E

Function Description

The GETPA block is used for acquiring the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the GETF parameter.
For GETF = off the output arrRef is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the block works in single-shot read mode. In that case the remote parameter
is read only when rising edge (off→on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

• Relative � starts at the level where the GETPA block is located. The string has
to be pre�xed with '.' in this case. Examples of relative paths: ".CNDR:yp",
".Lights.ATMT:touts".

• Relative to task � starts at the root level of the task where the SETPA block is
located. The string has to be pre�xed with '%' in this case. Examples of paths:
"%CNDR:yp", "%Lights.ATMT:touts".

• Absolute � complete sequence of hierarchic levels down to the block. For refer-
ring to blocks located in the driver task (see the IOTASK block for details on
con�guration) the '&' followed by the driver's name is used at the beginning
of the absolute path. Examples of absolute paths: "task1.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are presented in a tree-like struc-
ture within the Diagnostics section of the REXYGEN Studio program.

Warning 1: If the remote parameter is in a task other than the GETPA block, block
execution is delayed until the remote task is completed. It is necessary to avoid the
so-called race conditions and guarantee the correct value reading. Therefore, it is recom-
mended to include the GETPA block in a slower task (longer period/execution time) and
read parameter in a faster task (shorter period/execution time). In the opposite situation
(e.g. the GETPA block in a faster task), the SETPA block should be used in a slower task.

Note 1: If parameter GETF = off and source array is in same task as the GETPA block,
data are not copy into intermediate array, but output is direct reference to original array.

335

It save resources (cpu time and memory). The nmax, etype parameters are ignored in
this case.

Note 2: When using multiple GETPA blocks, it is not guaranteed to read all data from
a remote task in the same tick. It is only guaranteed that the previous block will receive
a value in the same or previous period as the next block (the order of blocks execution
can be checked in REXYGEN Diagnostics).

Note 3: The remote parameter must be a primary array (for example CNA:acn,
RTOV:xVec, MX_MAT:ay). The array reference (like CNA:vec, RTOV:yVec, SUBSYSTEM:Outport)
is not supported.

Input

GET Input for initiating one-shot parameter read. Array is read on
rising edge of this input.

Bool

Outputs

arrRef Array reference Reference

E Error �ag Bool

Parameters

sc String connection to the parameter String

GETF Get parameter only when forced to. Bool

off . . . Remote parameter is continuously read
on One-shot mode, the remote parameter is read only

when forced to by the GET input (rising edge)
nmax Maximum size of array ↓10 ⊙256 Long (I32)

etype Type of members of the acquired array. This is type of the
intermediate (state) array where is copy of acquired data. The
conversion is performed if original and intermediate array has
di�erent type. ⊙8

Long (I32)

2 Byte
3 Short
4 Long

5 Word
6 DWord
7 Float

8 Double
10 Large

336 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

GETPR, GETPI, GETPB � Blocks for remote parameter acquire-
ment

Block Symbols Licence: STANDARD

GETPR

GET
y
E

GETPI

GET
k

E

GETPB

GET
Y

E

Function Description

The GETPR, GETPI and GETPB blocks are used for acquiring the parameters of other blocks
in the model remotely . The only di�erence among the three blocks is the type of param-
eter which they are acquiring. The GETPR block is used for obtaining real parameters,
the GETPI block for integer parameters and the GETPB block for Boolean parameters.

The blocks operate in two modes, which are switched by the GETF parameter. For
GETF = off the output y (or k, Y) is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the blocks work in single-shot read mode. In that case the remote parameter
is read only when rising edge (off→on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT:touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be read can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

• Relative � starts at the level where the GETPR block (or GETPI, GETPB) is located.
The string has to be pre�xed with '.' in this case. Examples of relative paths:
".GAIN:k", ".Motor1.Position:ycn".

• Relative to task � starts at the root level of the task where the GETPR block (or
GETPI, GETPB, GETPS) is located. The string has to be pre�xed with '%' in this
case. Examples of paths: "%GAIN:k", "%Motor1.Position:ycn".

• Absolute � complete sequence of hierarchic levels down to the block. For referring to
blocks located in the driver task (see the IOTASK block for details on con�guration)
the '&' followed by the driver's name is used at the beginning of the absolute path.
Examples of absolute paths: "task1.inputs.lin1:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are presented in a tree-like struc-
ture within the Diagnostics section of the REXYGEN Studio program.

337

Warning: If the remote parameter is in a task other than the GETPx block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value reading. Therefore, it is recommended
to include the GETPx block in a slower task (longer period/execution time) and read pa-
rameter in a faster task (shorter period/execution time). In the opposite situation (e.g.
the GETPx block in a faster task), the SETPx block should be used in a slower task.

Note: When using multiple GETPx blocks, it is not guaranteed to read all data from a
remote task in the same tick. It is only guaranteed that the previous block will receive a
value in the same or previous period as the next block (the order of blocks execution can
be checked in REXYGEN Diagnostics). To obtain multiple values in the same period, it
is needed to use the Inport and Outport blocks or the GETPA block.

Input

GET Input for initiating one-shot parameter read (off→on) Bool

Outputs

y Parameter value, output of the GETPR block Double (F64)

k Parameter value, output of the GETPI block Long (I32)

Y Parameter value, output of the GETPB block Bool

E Error �ag Bool

off . . . No error
on An error occurred

Parameters

sc String connection to the remote parameter respecting the above
mentioned notation

String

GETF Continuous or one-shot mode Bool

off . . . Remote parameter is continuously read
on One-shot mode, the remote parameter is read only

when forced to by the GET input (rising edge)

338 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

GETPS � ∗ Block for remote string parameter acquirement

Block Symbol Licence: STANDARD

GETPS

GET
sy
E

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Input

GET Input for initiating one-shot parameter read Bool

Parameters

sc String connection to the parameter String

GETF Get parameter only when forced to Bool

off . . . Remote parameter is continuously read
on One-shot mode

nmax Allocated size of string Long (I32)

Outputs

sy Parameter value String

E Error indicator Bool

off . . . No error
on An error occurred

339

PARA � Block with input-de�ned array parameter

Block Symbol Licence: STANDARD

PARA

uRef
LOC

yRef
E

Function Description

The PARA block allows, additionally to the standard way of parameter setting, changing
one of its parameters by the input signal. The input-parameter pair is uRef and apar.

The Boolean input LOC (LOCal) determines whether the value of the apar parameter
is read from the input uRef or is input-independent (LOC = on). In the local mode
LOC = on the parameter apar contains the last value of input uRef entering the block
right before LOC was set to on.

The output value is equivalent to the value of the parameter (yRef = apar).

Inputs

uRef Array reference Reference

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Output

yRef Array reference Reference

Parameters

SETS Set array size �ag. Use this �ag to adjust the size of array when
setting the parameter.

Bool

nmax Allocated size of the apar array ↓10 ⊙100 Long (I32)

etype Type of members of the apar array ⊙8 Long (I32)

2 Byte
3 Short
4 Long

5 Word
6 DWord
7 Float

8 Double
10 Large

apar Internal value of the parameter
⊙[0.0 1.0 2.0 3.0 4.0 5.0]

Double (F64)

340 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

PARE � Block with input-de�ned enumeration parameter

Block Symbol Licence: STANDARD

PARE

ip
LOC

iy
sy

Function Description

The block is similar to the the PARI block with the additional option to assign texts to
numeric values. The corresponding text is set on the output sy. The block has two modes
and the active mode is selected by the LIST parameter. If LIST=off a corresponding text
for the input value is set on the output sy. If LIST=on the input number is considered as
a bit�eld, texts are de�ned for each bit and the output sy is composed of the texts that
correspond to bits which are set. The behavior for unde�ned values is determined by
the SATF parameter. If SATF=off, unde�ned values are set to output iy and the output
sy is set to empty text. Unde�ned values are ignored if SAT=on. The pupstr parameter
has the same format as in the CNE block: <number1>: <description1>|<number2>:

<description2>|<number3>: <description3> ...

Inputs

ip Parameter value Long (I32)

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Parameters

ipar Internal value of parameter ⊙1 Long (I32)

pupstr Popup list de�nition
⊙1: option A|2: option B|3: option C

String

NUM Number in string outut Bool

LIST Bit�eld mode Bool

SATF Saturation �ag (if unde�ned values are passed to output) Bool

Outputs

iy Integer output of the block Long (I32)

sy String output value String

341

PARR, PARI, PARB � Blocks with input-de�ned parameter

Block Symbols Licence: STANDARD

PARR

p
LOC

y

PARI

ip
LOC

k

PARB

P

LOC
Y

Function Description

The PARR, PARI and PARB blocks allow, additionally to the standard way of parameters
setting, changing one of their parameters by the input signal. The input-parameter pairs
are p and par for the PARR block, ip and ipar for the PARI block and �nally P and PAR

for the PARB block.
The Boolean input LOC (LOCal) determines whether the value of the par (or ipar,

PAR) parameter is read from the input p (or ip, P) or is input-independent (LOC = on).
In the local mode LOC = on the parameter par (or ipar, PAR) contains the last value
of input p (or ip, P) entering the block right before LOC was set to on. Afterwards it is
possible to modify the value manually.

The output value is equivalent to the value of the parameter y = par, (or k = ipar,
Y = PAR). The output of the PARR and PARI blocks can be additionally constrained by
the saturation limits ⟨lolim, hilim⟩. The saturation is active only when SATF = on.

See also the SHLD block, which can be used for storing a numeric value, similarly as
in the PARR block.

Inputs

p Parameter value (the PARR block) Double (F64)

ip Parameter value (the PARI block) Long (I32)

P Parameter value (the PARB block) Bool

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Output

y Logical output of the PARR block Double (F64)

k Logical output of the PARI block Long (I32)

Y Logical output of the PARB block Bool

Parameter

par Initial value of the parameter (the PARR block) ⊙1.0 Double (F64)

ipar Initial value of the parameter (the PARI block) ⊙1 Long (I32)

PAR Initial value of the parameter (the PARB block) ⊙on Bool

342 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SATF Activation of the saturation limits for the PARR and PARI blocks Bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal (the PARR and PARI blocks)
⊙1.0

Double (F64)

lolim Lower limit of the output signal (the PARR and PARI blocks)
⊙-1.0

Double (F64)

343

PARS � ∗ Block with input-de�ned string parameter

Block Symbol Licence: STANDARD

PARS

sp
LOC

sy

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

sp Parameter value String

LOC Activation of local mode Bool

Parameters

spar Internal value of the parameter String

nmax Allocated size of string Long (I32)

Output

sy String output of the block String

344 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SETPA � Block for remote array parameter setting

Block Symbol Licence: STANDARD

SETPA

arrRef

SET
E

Function Description

The SETPA block is used for setting the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the SETF parameter.
For SETF = off the remote parameter cs is set to the value of the input vector signal
arrRef at the start and every time when the input signal changes. If the SETF parameter
is set to on, then the block works in one-shot write mode. In that case the remote
parameter is set only when rising edge (off→on) occurs at the SET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

• Relative � starts at the level where the GETPA block is located. The string has
to be pre�xed with '.' in this case. Examples of relative paths: ".CNDR:yp",
".Lights.ATMT:touts".

• Relative to task � starts at the root level of the task where the SETPA block is
located. The string has to be pre�xed with '%' in this case. Examples of paths:
"%GAIN:k", "%Motor1.Position:ycn".

• Absolute � complete sequence of hierarchic levels down to the block. For refer-
ring to blocks located in the driver task (see the IOTASK block for details on
con�guration) the '&' followed by the driver's name is used at the beginning
of the absolute path. Examples of absolute paths: "task1.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are presented in a tree-like struc-
ture within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the SETPA block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value setting. Therefore, it is recommended to
include the SETPA block in a slower task (longer period/execution time) and set param-
eter in a faster task (shorter period/execution time). In the opposite situation (e.g. the
SETPA block in a faster task), the GETPA block should be used in a slower task.

Note 1: When using multiple SETPA blocks, it is not guaranteed that all data will be
written to the remote task in the same tick. It is only guaranteed that the previous block

345

will set a value in the same or previous period as the next block (the order of blocks
execution can be checked in REXYGEN Diagnostics).

Note 2: The remote parameter must be a primary array (for example CNA:acn,
RTOV:xVec, MX_MAT:ay). The array reference (like CNA:vec, RTOV:yVec, SUBSYSTEM:Outport)
is not supported.

Inputs

arrRef Array reference Reference

SET Input for initiating one-shot parameter write Bool

Output

E Error �ag Bool

Parameters

sc String connection to the parameter String

SETF Continuous or one-shot mode Bool

off . . . Remote parameter is continuously updated
on One-shot mode, the remote parameter is updated

only when forced to by the SET input (rising edge)
SETS Set array size �ag. Use this �ag to adjust the size of array when

setting the parameter.
Bool

346 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SETPR, SETPI, SETPB � Blocks for remote parameter setting

Block Symbols Licence: STANDARD

SETPR

p
SET

y
E

SETPI

ip
SET

k
E

SETPB

P

SET

Y

E

Function Description

The SETPR, SETPI, SETPB and SETPS blocks are used for setting the parameters of other
blocks in the model remotely. The only di�erence among the three blocks is the type of
parameter which they are setting. The SETPR block is used for setting real parameters,
the SETPI block for integer parameters, the SETPB block for Boolean parameters and the
SETPS block for string parameters.

The blocks operate in two modes, which are switched by the SETF parameter. For
SETF = off the remote parameter sc is set to the value of the input signal p (or ip, P)
at the start and every time when the input changes. If the SETF parameter is set to on,
then the blocks work in one-shot write mode. In that case the remote parameter is set
only when rising edge (off→on) occurs at the SET input. Successful modi�cation of the
remote parameter is indicated by zero error output E = off and the output y (or k, Y)
is set to the value of the modi�ed parameter. The error output is set to E = on in case
of write error.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT:touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be set can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

• Relative � starts at the level where the SETPR block (or SETPI, SETPB, SETPS) is
located. The string has to be pre�xed with '.' in this case. Examples of relative
paths: ".GAIN:k", ".Motor1.Position:ycn".

• Relative to task � starts at the root level of the task where the SETPR block (or
SETPI, SETPB, SETPS) is located. The string has to be pre�xed with '%' in this
case. Examples of paths: "%GAIN:k", "%Motor1.Position:ycn".

• Absolute � complete sequence of hierarchic levels down to the block. For referring to
blocks located in the driver task (see the IOTASK block for details on con�guration)
the '&' followed by the driver's name is used at the beginning of the absolute path.
Examples of absolute paths: "task1.inputs.lin1:u2", "&EfaDrv.measurements.DER1:n".

347

The order and names of individual hierarchic levels are displayed in a tree structure
in the REXYGEN Diagnostics program.

Warning: If the remote parameter is in a task other than the SETPx block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value setting. Therefore, it is recommended to
include the SETPx block in a slower task (longer period/execution time) and set param-
eter in a faster task (shorter period/execution time). In the opposite situation (e.g. the
SETPx block in a faster task), the GETPx block should be used in a slower task.

Note: When using multiple SETPx blocks, it is not guaranteed that all data will be
written to the remote task in the same tick. It is only guaranteed that the previous block
will set a value in the same or previous period as the next block (the order of blocks
execution can be checked in REXYGEN Diagnostics). To send multiple values in the
same period, it is needed to use the Inport and Outport blocks or the SETPA block.

Inputs

p Desired parameter value at the SETPR block input Double (F64)

ip Desired parameter value at the SETPI block input Long (I32)

P Desired parameter value at the SETPB block input Bool

SET Input for initiating one-shot parameter write (off→on) Bool

Outputs

y Parameter value (the SETPR block) Double (F64)

k Parameter value (the SETPI block) Long (I32)

Y Parameter value (the SETPB block) Bool

E Error �ag Bool

off . . . No error
on An error occurred

Parameters

sc String connection to the remote parameter respecting the above
mentioned notation

String

SETF Continuous or one-shot mode Bool

off . . . Remote parameter is continuously updated
on One-shot mode, the remote parameter is updated

only when forced to by the SET input (rising edge)

348 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SETPS � ∗ Block for remote string parameter setting

Block Symbol Licence: STANDARD

SETPS

sp
SET

sy
E

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

sp Desired parameter value String

SET Input for initiating one-shot parameter write Bool

Parameters

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

nmax Allocated size of string Long (I32)

Outputs

sy Parameter value String

E Error indicator Bool

349

SGSLP � Set, get, save and load parameters

Block Symbol Licence: ADVANCED

SGSLP

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
ips
SET
GET
SAVE
LOAD

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
E
iE

Function Description

The SGSLP block is a special function block for manipulation with parameters of other
function blocks in the REXYGEN system con�guration. It works also in the Matlab-
Simulink system but its scope is limited to the .mdl �le it is included in.

The block can manage up to 16 parameter sets, which are numbered from 0 to 15. The
number of parameter sets is given by the nps parameter and the active set is de�ned by
the ips input. If the ips input remains unconnected, the active parameter set is ips = 0.
Each set contains up to 16 di�erent parameters de�ned by the string parameters sc0

to sc15. Thus the SGSLP block can work with a maximum of 256 parameters of the
REXYGEN system. An empty sci string means that no parameter is speci�ed, otherwise
one of the following syntaxes is used:

1. <block>:<param> � Speci�es one function block named block and its parameter
param. The same block and parameter are used for all nps parameter sets in this
case.

2. <block>:<param><sep>. . . <block>:<param> � This syntax allows the parameters
to di�er among the parameter sets. In general, each sci string can contain up to
16 items in the form <blok>:<param> separated by comma or semi-colon. E.g. the
third item of these is active for ips = 2. There should be exactly nps items in each
non-empty sci string. If there is less items than nps none of the below described
operations can be executed on the incomplete parameter set.

It is recommended not to use both syntaxes in one SGSLP block, all 16 sci strings
should have the same form. The �rst syntax is for example used when producing nps

types of goods, where many parameters must be changed for each type of production.
The second syntax is usually used for saving user-de�ned parameters to disk (see the

350 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SAVE operation below). In that case it is desirable to arrange automated switching of the
ips input (e.g. using the ATMT block from the LOGIC library).

The broot parameter is suitable when all blocks whose parameters are to be con-
trolled by the SGSLP block reside in the same subsystem or deeper in the hierarchy. It
is inserted in front of each <block> substring in the sci parameters. The '.' character
stands for the subsystem where the SGSLP block is located. No quotation marks are
used to de�ne the parameter, they are used here solely to highlight a single character.
If the broot parameter is an empty string, all <block> items must contain full path.
For example, to create a connection to the CNR block and its parameter ycn located in
the same subsystem as the SGSLP block, broot = . and sc0 = CNR:ycn must be set. Or
it is possible to leave the broot parameter empty and put the '.' character to the sc0

string. See the GETPR or SETPR blocks description for more details about full paths in the
REXYGEN system.

The SGSLP block executes one of the below described operations when a rising edge
(off→on) occurs at the input of the same name. The operations are:

SET � Sets the parameters of the corresponding parameter set ips to the values of the
input signals ui. In case the parameter is successfully set, the same value is also
sent to the yi output.

GET � Gets the parameters of the corresponding parameter set ips. In case the parameter
is successfully read, its value is sent to the yi output.

SAVE � Saves the parameters of the corresponding parameter set ips to a �le on the
target platform. The parameters of the procedure and the format of the resulting
�le are described below.

LOAD � Loads the parameters of the corresponding parameter set ips from a �le on
the target platform. This operation is executed also during the initialization of the
block but only when 0 ≤ ips0 ≤ nps − 1. The parameters of the procedure and
the format of the �le are described below.

The LOAD and SAVE operations work with a �le on the target platform. The name of
the �le is given by the fname parameter and the following rules:

• If no extension is speci�ed in the fname parameter, the .rxs (ReX Status �le)
extension is added.

• A backup �le is created when overwriting the �le. The �le name is preserved, only
the extension is modi�ed by adding the ' ' character right after the '.' (e.g. when
no extension is speci�ed, the backup �le has a . rxs extension.

• The path is relative to the folder where the archives of the REXYGEN system are
stored. The �le should be located on a media which is not erased by system restart
(�ash drive or hard drive, not RAM).

351

The SAVE operation stores the data in a text �le. Two lines are added for each
parameter sci, i = 0, . . . ,m, where m < 16 de�nes the nonempty scm string with the
highest number. The lines have the form:

"<block>:<param>", . . . , "<block>:<param>"

<value>, . . . , <value>

There are nps individual items "<block>:<param>" which are separated by commas.
The second line contains the same number of <value> items which contain the value
of the parameter at the same position in the line above. Note that the format of the
�le remains the same even for sci containing only one <block>:<param> item (see the
syntax no. 1 above). The "<block>:<param>" item is always listed nps-times in the �le,
which allows seamless switching of the sci parameters syntax without modifying the �le.

Consider using the SILO block if working with only a few values.

Inputs

ui i-th analog input signal, i = 0, . . . , 15 Double (F64)

ips Parameter set index (numbered from zero) Long (I32)

SET Set the parameters of the ips parameter set according to the
values of the ui inputs. The values can be found at the yi outputs
after a successful operation.

Bool

GET Get the parameters of the ips parameter set. The values can be
found at the yi outputs after a successful operation.

Bool

SAVE Save the ips parameter set to a �le on the target device Bool

LOAD Load the ips parameter set from a �le on the target device Bool

Outputs

yi i-th analog output signal, i = 0, . . . , 15 Double (F64)

E Error �ag Bool

off . . . No error
on An error occurred (see iE)

352 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

iE Error or warning code of the last operation Long (I32)

0 Operation successful
1 Fatal error of the Matlab system (only in Simulink),

the block is no longer executed
2 Error opening the �le for reading (LOAD operation)
3 Error opening the �le for writing (SAVE operation)
4 Incorrect �le format
5 The ips parameter set not found in the �le
6 Parameter not found in the con�guration, name

mismatch (LOAD operation)
7 Unexpected end of �le
8 Error writing to �le (disk full?)
9 Parameter syntax error (the ':' character not found)
10 Only whitespace in the parameter name
11 Error creating the backup �le
12 Error obtaining the parameter value by the GET

operation (non-existing parameter?)
13 Error setting the parameter value by the SET

operation (non-existing parameter?)
14 Timeout during obtaining/setting the parameter
15 The speci�ed parameter is read-only
16 The ips parameter is out of range

Parameters

nps Number of parameter sets ↓1 ↑16 ⊙1 Long (I32)

ips0 Index of parameter set to load and set during the block
initialization. No set is read for ips0 < 0 or ips0 ≥ nps

↓-1 ↑15

Long (I32)

iprec Precision (number of digits) for storing the values of double type
in a �le ↓2 ↑15 ⊙12

Long (I32)

icolw Requested column width in the status �le. Spaces are appended
to the parameter value when necessary. ↓0 ↑22

Long (I32)

fname Name of the �le the SAVE and LOAD operations work with
⊙status

String

broot Root block in hierarchy, inserted at the beginning of all sci
parameters, see the description above ⊙.

String

sci Strings de�ning the connection of ui inputs and yi outputs to
the parameters, i = 0, . . . , 15, see details above

String

353

SILO � Save input value, load output value

Block Symbol Licence: STANDARD

SILO

u
SAVE
LOAD

y
E

lastErr

Function Description

The SILO block can be used to export or import a single value to/from a �le. The value
is saved when a rising edge (off→on) occurs at the SAVE input and the value is also set
to the y output. The value is loaded at startup and when a rising edge (off→on) occurs
at the LOAD input.

The outputs E and lastErr indicate an error during disk operation. The E indicator is
reset on falling edge at the SAVE or LOAD input while the lastErr output holds the value
until another disk operation is invoked. If the error occurs during the LOAD operation, a
substitute value yerr is set to the y output.

Alternatively it is possible to write or read the value continuously if the corresponding
�ag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter de�nes the location of the �le on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Use the SGSLP function block for advanced and complex operations.

Inputs

u Input signal Double (F64)

SAVE Save value to �le Bool

LOAD Load value from �le Bool

Parameters

fname Name of persistent storage �le String

CSF Flag for continuous saving Bool

CLF Flag for continuous loading Bool

yerr Substitute value for an error case Double (F64)

Outputs

y Output signal Double (F64)

E Error �ag Bool

354 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

lastErr Result of last operation Long (I32)

355

SILOS � Save input string, load output string

Block Symbol Licence: STANDARD

SILOS

su
SAVE
LOAD
APPEND

sy

E

lastErr

Function Description

The SILOS block can be used to export or import a string to/from a �le. The string is
saved when a rising edge (off→on) occurs at the SAVE input and the string is also set to
the sy output. The string is loaded at startup and when a rising edge (off→on) occurs
at the LOAD input.

If a logical true (on) is brought to the APPEND input, the input string is added to the
end of the �le when it is saved. This mode is useful for logging events into text �les. This
input signal has no e�ect on loading from the �le.

The LLO parameter is intended for choosing whether to load the entire �le (off) or
its last line only (on).

The outputs E and lastErr indicate an error during disk operation. The E indicator
is reset on falling edge at the SAVE or LOAD input while the lastErr output holds the
value until another disk operation is invoked.

Alternatively it is possible to write or read the string continuously if the corresponding
�ag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter de�nes the location of the �le on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Inputs

su String input of the block ⊙0 String

SAVE Save string to �le Bool

LOAD Load string from �le Bool

APPEND Append saved string to �le Bool

Outputs

sy String output of the block String

E Error indicator Bool

off . . . No error
on An error occurred

lastErr Result of last operation Long (I32)

356 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

Parameters

fname Name of persistent storage �le String

CSF Continuous saving Bool

CLF Continuous loading Bool

LLO Last line only loading Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Chapter 13

MODEL � Dynamic systems

simulation

Contents

CDELSSM � Continuous state space model of a linear system with
time delay . 358

CSSM � Continuous state space model of a linear system 361

DDELSSM � Discrete state space model of a linear system with time
delay . 363

DFIR � Discrete �nite input response �lter 365

DSSM � Discrete state space model of a linear system 366

EKF � Extended (nonlinear) Kalman �lter 368

FMUCS � ∗ Import modelu FMU CS (pro Co-Simulation) 371

FMUINFO � ∗ Imformace o importovaném modelu FMU 374

FOPDT � First order plus dead-time model 375

MDL � Process model . 376

MDLI � Process model with input-de�ned parameters 377

MVD � Motorized valve drive . 378

NSSM � Nonlinear State-Space Model 379

SOPDT � Second order plus dead-time model 382

357

358 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

CDELSSM � Continuous state space model of a linear system
with time delay

Block Symbol Licence: ADVANCED

CDELSSM

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

Function Description

The CDELSSM block (Continuous State Space Model with time DELay) simulates behavior
of a linear system with time delay del

dx(t)

dt
= Acx(t) +Bcu(t− del), x(0) = x0

y(t) = Ccx(t) +Dcu(t),

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the initial value of the state vector,
u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector. The matrix Ac ∈ Rn×n is
the system dynamics matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the output
matrix and Dc ∈ Rp×m is the direct transmission (feedthrough) matrix.

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is �rst converted to the discrete (discretized) state space model

x((k + 1)T) = Adx(kT) +Bd1u((k − d)T) +Bd2u((k − d+ 1)T), x(0) = x0

y(kT) = Ccx(kT) +Dcu(kT),

where k ∈ {1, 2, . . .} is the simulation step, T is the execution period of the block in
seconds and d is a delay in simulation step such that (d−1)T < del ≤ d.T . The period T
is not entered in the block, it is determined automatically as a period of the task (TASK,
QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = u(kT) for t ∈ [kT, (k + 1)T), then the

359

matrices Ad, Bd1 and Bd2 are determined by

Ad = eAcT

Bd1 = eAc(T−∆)

∫ ∆

0
eAcτBcdτ

Bd2 =

∫ T−∆

0
eAcτBcdτ,

where ∆ = del − (d− 1)T .
Computation of discrete matrices Ad, Bd1 and Bd2 is based on a method described

in [5], which uses Padé approximations of matrix exponential and its integral and scaling
technique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs

R1 Reset signal. When R1 = on, the state vector x is set to its
initial value x0. The simulation continues on the falling edge of
R1 (on→off).

Bool

HLD Simulation output holds its value if HLD=on. Bool

u1..u16 Simulated system inputs. First m simulation inputs are used
where m is the number of columns of the matrix Bc.

Double (F64)

Outputs

iE Block error code Error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
-510 . . the model is badly conditioned (some working matrix

is singular or nearly singular)
xxx . . . error code xxx of REXYGEN, see appendix C for

details
y1..y16 Simulated system outputs. First p simulation outputs are used

where p is the number of rows of the matrix Cc.
Double (F64)

Parameters

UD Matrix Dc usage �ag. If UD=offthen the Dc matrix is not used
for simulation (simulation behaves as if the Dc matrix is zero).

Bool

del Model time delay [s]. ↓0.0 Double (F64)

is Order of the Padé approximation of the matrix exponential for
the computation of the discretized system matrices. ↓0 ↑4 ⊙2

Long (I32)

eps Required accuracy of the Padé approximation.
↓0.0 ↑1.0 ⊙1e-15

Double (F64)

Ac Matrix (n× n) of the continuous linear system dynamics. Double (F64)

360 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Bc Input matrix (n×m) of the continuous linear system. Double (F64)

Cc Output matrix (p× n) of the continuous linear system. Double (F64)

Dc Direct transmission (feedthrough) matrix (p × m) of the
continuous linear system. The matrix is used only if the
parameter UD=on. If UD=off, the dimensions of the Dc matrix
are not checked.

Double (F64)

x0 Initial value of the state vector (of dimension n) of the continuous
linear system.

Double (F64)

361

CSSM � Continuous state space model of a linear system

Block Symbol Licence: ADVANCED

CSSM

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

Function Description

The CSSM block (Continuous State Space Model) simulates behavior of a linear system

dx(t)

dt
= Acx(t) +Bcu(t), x(0) = x0

y(t) = Ccx(t) +Dcu(t),

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the initial value of the state vector,
u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector. The matrix Ac ∈ Rn×n is
the system dynamics matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the output
matrix and Dc ∈ Rp×m is the direct transmission (feedthrough) matrix.

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is �rst converted to the discrete (discretized) state space model

x((k + 1)T) = Adx(kT) +Bdu(kT), x(0) = x0

y(kT) = Ccx(kT) +Dcu(kT),

where k ∈ {1, 2, . . .} is the simulation step, T is the execution period of the block in
seconds. The period T is not entered in the block, it is determined automatically as a
period of the task (TASK, QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = u(kT) for t ∈ [kT, (k + 1)T), then the
matrices Ad and Bd are determined by

Ad = eAcT

Bd =

∫ T

0
eAcτBcdτ

362 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Computation of discrete matrices Ad and Bd is based on a method described in [5],
which uses Padé approximations of matrix exponential and its integral and scaling tech-
nique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs

R1 Reset signal. When R1 = on, the state vector x is set to its
initial value x0. The simulation continues on the falling edge of
R1 (on→off).

Bool

HLD Simulation output holds its value if HLD=on. Bool

u1..u16 Simulated system inputs. First m simulation inputs are used
where m is the number of columns of the matrix Bc.

Double (F64)

Outputs

iE Block error code Error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
-510 . . the model is badly conditioned (some working matrix

is singular or nearly singular)
xxx . . . error code xxx of REXYGEN, see appendix C for

details
y1..y16 Simulated system outputs. First p simulation outputs are used

where p is the number of rows of the matrix Cc.
Double (F64)

Parameters

UD Matrix Dc usage �ag. If UD=offthen the Dc matrix is not used
for simulation (simulation behaves as if the Dc matrix is zero).

Bool

is Order of the Padé approximation of the matrix exponential for
the computation of the discretized system matrices. ↓0 ↑4 ⊙2

Long (I32)

eps Required accuracy of the Padé approximation.
↓0.0 ↑1.0 ⊙1e-15

Double (F64)

Ac Matrix (n× n) of the continuous linear system dynamics. Double (F64)

Bc Input matrix (n×m) of the continuous linear system. Double (F64)

Cc Output matrix (p× n) of the continuous linear system. Double (F64)

Dc Direct transmission (feedthrough) matrix (p × m) of the
continuous linear system. The matrix is used only if the
parameter UD=on. If UD=off, the dimensions of the Dc matrix
are not checked.

Double (F64)

x0 Initial value of the state vector (of dimension n) of the continuous
linear system.

Double (F64)

363

DDELSSM � Discrete state space model of a linear system with
time delay

Block Symbol Licence: ADVANCED

DDELSSM

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

Function Description

The DDELSSM block (Discrete State Space Model with time DELay) simulates behavior
of a linear system with time delay del

x(k + 1) = Adx(k) +Bdu(k − d), x(0) = x0

y(k) = Cdx(k) +Ddu(k),

where k is the simulation step, x(k) ∈ Rn is the state vector, x0 ∈ Rn is the initial
value of the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the output vector.
The matrix Ad ∈ Rn×n is the system dynamics matrix, Bd ∈ Rn×m is the input matrix,
Cd ∈ Rp×n is the output matrix and Dd ∈ Rp×m is the direct transmission (feedthrough)
matrix. Number of steps of the delay d is the largest integer such that d.T ≤ del, where
T is the block execution period.

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs

R1 Reset signal. When R1 = on, the state vector x is set to its
initial value x0. The simulation continues on the falling edge of
R1 (on→off).

Bool

HLD Simulation output holds its value if HLD=on. Bool

u1..u16 Simulated system inputs. First m simulation inputs are used
where m is the number of columns of the matrix Bd.

Double (F64)

364 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Outputs

iE Block error code Error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
xxx . . . error code xxx of REXYGEN, see appendix C for

details
y1..y16 Simulated system outputs. First p simulation outputs are used

where p is the number of rows of the matrix Cd.
Double (F64)

Parameters

UD Matrix Dd usage �ag. If UD=offthen the Dd matrix is not used
for simulation (simulation behaves as if the Dd matrix is zero).

Bool

del Model time delay [s]. ↓0.0 Double (F64)

Ad Matrix (n× n) of the discrete linear system dynamics. Double (F64)

Bd Input matrix (n×m) of the discrete linear system. Double (F64)

Cd Output matrix (p× n) of the discrete linear system. Double (F64)

Dd Direct transmission (feedthrough) matrix (p×m) of the discrete
linear system. The matrix is used only if the parameter UD=on.
If UD=off, the dimensions of the Dd matrix are not checked.

Double (F64)

x0 Initial value of the state vector (of dimension n) of the discrete
linear system.

Double (F64)

365

DFIR � Discrete �nite input response �lter

Block Symbol Licence: ADVANCED

DFIR

u
R1
HLD
u0

y

RDY

Function Description

The DFIR block is a �lter whose impulse response (or response to any �nite length input)
is of �nite duration, because it settles to zero in �nite time. The calculation takes place
in the form of a convolutional integral (sum) - the impulse characteristic is entered in
the hk �eld already in discretized form for the correct period.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

HLD Hold � the block code is not executed if the input is set to on Bool

u0 Initial input value (�ll bu�er) Double (F64)

Output

y Analog output of the block Double (F64)

RDY Ready �ag Bool

Parameters

nmax Allocated size of array ↓10 ↑10000000 ⊙100 Long (I32)

hk hk ⊙[0.6 0.3 0.1] Double (F64)

366 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

DSSM � Discrete state space model of a linear system

Block Symbol Licence: ADVANCED

DSSM

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

Function Description

The DSSM block (Discrete State Space Model) simulates behavior of a linear system

x(k + 1) = Adx(k) +Bdu(k), x(0) = x0

y(k) = Cdx(k) +Ddu(k),

where k is the simulation step, x(k) ∈ Rn is the state vector, x0 ∈ Rn is the initial
value of the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the output vector.
The matrix Ad ∈ Rn×n is the system dynamics matrix, Bd ∈ Rn×m is the input matrix,
Cd ∈ Rp×n is the output matrix and Dd ∈ Rp×m is the direct transmission (feedthrough)
matrix.

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant.

Inputs

R1 Reset signal. When R1 = on, the state vector x is set to its
initial value x0. The simulation continues on the falling edge of
R1 (on→off).

Bool

HLD Simulation output holds its value if HLD=on. Bool

u1..u16 Simulated system inputs. First m simulation inputs are used
where m is the number of columns of the matrix Bd.

Double (F64)

367

Outputs

iE Block error code Error

0 O.K., the simulation runs correctly
-213 . . incompatibility of the state space model matrices

dimensions
xxx . . . error code xxx of REXYGEN, see appendix C for

details
y1..y16 Simulated system outputs. First p simulation outputs are used

where p is the number of rows of the matrix Cd.
Double (F64)

Parameters

UD Matrix Dd usage �ag. If UD=offthen the Dd matrix is not used
for simulation (simulation behaves as if the Dd matrix is zero).

Bool

Ad Matrix (n× n) of the discrete linear system dynamics. Double (F64)

Bd Input matrix (n×m) of the discrete linear system. Double (F64)

Cd Output matrix (p× n) of the discrete linear system. Double (F64)

Dd Direct transmission (feedthrough) matrix (p×m) of the discrete
linear system. The matrix is used only if the parameter UD=on.
If UD=off, the dimensions of the Dd matrix are not checked.

Double (F64)

x0 Initial value of the state vector (of dimension n) of the discrete
linear system.

Double (F64)

368 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

EKF � Extended (nonlinear) Kalman �lter

Block Symbol Licence: MODEL

EKF

funcRef

u

z

nz

Qk

Rk

RST

HLD

x0

P0

x

P

trP

cmd

f

df

err

Function Description

The block implements a nonlinear state estimator known as Extended Kalman �lter.
The goal is to provide estimates of unmeasurable state quantities of a nonlinear dynamic
system described by a state space model dx/dt = f(x, u) + w(t), y = h(x, u) + v(t) for
a continuous-time case and x(k+ 1) = f(x(k), u(k)) +w(k), y(k) = h(x(k), u(k)) + v(k)
for the case of a discrete-time system. The variables w, v are the process and observation
noises which are both assumed to be zero mean multivariate Gaussian processes with
covariance Q and R speci�ed in the block parameters. The Extended Kalman �lter is the
nonlinear version of the Kalman �lter which linearizes the state and output equations
about the current working point. It is a predictor-corrector type algorithm which switches
between open-loop prediction using the state equation and correction of the estimates
by directly measured output quantities. The measurements can be supplied to the �lter
non-equidistantly in an arbitrary execution period of the block.

The prediction step is run in each execution period and solves the state equation
by numerical integration, starting from an initial value x0 and initial covariance P0.
Various numerical methods, chosen by the user speci�ed parameter solver, are available
to perform the integration of the vector state di�erential equation. A special choice of
solver = 1 signalizes the discrete-time system case for which the numerical integration
reduces to simple evaluation of the recursive formula given by the �rst-order di�erence
equation in x(k + 1) = f(x(k), u(k)). Apart from the state vector, also its covariance
matrix P is propagated in time, capturing the uncertainty of the estimates in the form of
their (co)variances. Please refer to the documentation of the NSSM block for more details
about the available numerical integration algorithms.

The �ltering correction step takes place whenever the input of the block is set to
nz > 0. This signalizes that new vector of measurements is available at the z input and
it is used to correct the state and its covariance estimates from the prediction step. Mul-
tiple right sides of the output equation can be implemented in the cooperating REXLANG

block. This may be useful e.g. for systems equipped with various sensors providing their
data asynchronously to each other (and with respect to the block execution times) with
di�erent sampling periods. For the setting nz = 0, the user algorithm signalizes no out-

369

put data available in the current execution period, forcing the �lter to extrapolate the
state estimates by performing the prediction step only.

The Extended Kalman �lter is generally not an optimal �lter in the sense of mini-
mization of the mean-squared error of the obtained state estimates. However, it provides
modest performance for su�ciently smooth nonlinear systems and is considered to be a
de facto standard solution for nonlinear estimation. A special case is obtained by setting
linear state and output equations in the cooperating REXLANG block. This case leads to
standard linear Kalman �lter which is stochastically optimal for the formulated state
estimation problem.

Inputs

funcRef Cooperating REXLANG block reference Reference

u Input vector of the model Reference

z Output (mesurement) vector of the model Reference

nz Index of the actual output vector set ↓1 Long (I32)

Qk State noise covariance matrix Reference

Rk Output noise covariance matrix Reference

RST Block reset Bool

HLD Hold Bool

x0 Initial state vector Reference

P0 Initial covariance matrix Reference

Parameters

nmax Allocated size of output matrix (total number of items)
↓5 ↑10000 ⊙20

Long (I32)

solver Numeric integration method ⊙2 Long (I32)

1 Discrete equation
2 Euler (1st order)
3 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
7 4th order Runge-Kutha
8 Implicit Euler
9 Implicit Euler(more iteration)
10 2nd order Adams-Moulton implicit
11 2nd order Adams-Moulton implicit (more iterations)
12 3rd order Adams-Moulton implicit
13 3nd order Adams-Moulton implicit (more iterations)
14 2nd order RadauIIA implicit
15 2nd order RadauIIA implicit (more iterations)
16 3rd order RadauIIA implicit
17 3rd order RadauIIA implicit (more iterations)

370 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Outputs

x Model state vector Reference

P Model state covariance matrix Reference

trP Trace of model state covariance matrix Reference

cmd Cooperating REXLANG block requested function Long (I32)

f Vector reference set by cooperating REXLANG block Reference

df Matrix reference set by cooperating REXLANG block Reference

err Error code (0 is OK, see SystemLog for details) Long (I32)

371

FMUCS � ∗ Import modelu FMU CS (pro Co-Simulation)

Block Symbol Licence: ADVANCED

FMUCS

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
yFMU

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

R1 Reset bloku Bool

HLD Podrºení aktuálního stavu modelu Bool

u1 Analogový vstupní signál Double (F64)

u2 Analogový vstupní signál Double (F64)

u3 Analogový vstupní signál Double (F64)

u4 Analogový vstupní signál Double (F64)

u5 Analogový vstupní signál Double (F64)

u6 Analogový vstupní signál Double (F64)

u7 Analogový vstupní signál Double (F64)

u8 Analogový vstupní signál Double (F64)

u9 Analogový vstupní signál Double (F64)

u10 Analogový vstupní signál Double (F64)

u11 Analogový vstupní signál Double (F64)

u12 Analogový vstupní signál Double (F64)

u13 Analogový vstupní signál Double (F64)

u14 Analogový vstupní signál Double (F64)

u15 Analogový vstupní signál Double (F64)

u16 Analogový vstupní signál Double (F64)

Parameters

tstop Koncový £as simulace ↓1e-06 ⊙1.0 Double (F64)

372 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

eps P°esnost aproximace ↓0.0 ↑1.0 ⊙1e-06 Double (F64)

loglevel Úrove¬ protokolování knihovny FMI do systémového logu
↓0 ↑7 ⊙2

Long (I32)

0 Nic
1 Fatální
2 Chyba
3 Varování
4 Info
5 Podrobný
6 Lad¥ní
7 V²echno

SelPars Seznam vybraných parametr· FMU String

TUNEALLP Povaºuj v²echny vybrané parametry za laditelné parametry Bool

p1 Analogový parametr bloku Double (F64)

p2 Analogový parametr bloku Double (F64)

p3 Analogový parametr bloku Double (F64)

p4 Analogový parametr bloku Double (F64)

p5 Analogový parametr bloku Double (F64)

p6 Analogový parametr bloku Double (F64)

p7 Analogový parametr bloku Double (F64)

p8 Analogový parametr bloku Double (F64)

p9 Analogový parametr bloku Double (F64)

p10 Analogový parametr bloku Double (F64)

p11 Analogový parametr bloku Double (F64)

p12 Analogový parametr bloku Double (F64)

p13 Analogový parametr bloku Double (F64)

p14 Analogový parametr bloku Double (F64)

p15 Analogový parametr bloku Double (F64)

p16 Analogový parametr bloku Double (F64)

Outputs

iE Kód chyby Error

yFMU Výstupní odkaz na instanci FMU Reference

y1 Analogový výstupní signál Double (F64)

y2 Analogový výstupní signál Double (F64)

y3 Analogový výstupní signál Double (F64)

y4 Analogový výstupní signál Double (F64)

y5 Analogový výstupní signál Double (F64)

y6 Analogový výstupní signál Double (F64)

y7 Analogový výstupní signál Double (F64)

y8 Analogový výstupní signál Double (F64)

y9 Analogový výstupní signál Double (F64)

y10 Analogový výstupní signál Double (F64)

y11 Analogový výstupní signál Double (F64)

373

y12 Analogový výstupní signál Double (F64)

y13 Analogový výstupní signál Double (F64)

y14 Analogový výstupní signál Double (F64)

y15 Analogový výstupní signál Double (F64)

y16 Analogový výstupní signál Double (F64)

374 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

FMUINFO � ∗ Imformace o importovaném modelu FMU

Block Symbol Licence: ADVANCED

FMUINFO

uFMU

iE

InNames

OutNames

ParNames

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Vstup

uFMU Vstupní odkaz na instanci FMU Reference

Parameters

SelPars Seznam vybraných parametr· FMU String

Separ Odd¥lova£ jmen v °et¥zcových výstupech ⊙, String

Outputs

iE Kód chyby Error

InNames Seznam jmen vstup· FMU String

OutNames Seznam jmen výstup· FMU String

ParNames Seznam jmen vybraných parametr· FMU String

375

FOPDT � First order plus dead-time model

Block Symbol Licence: STANDARD

FOPDT

u y

Function Description

The FOPDT block is a discrete simulator of a �rst order continuous-time system with time
delay, which can be described by the transfer function below:

P (s) =
k0

(tau · s+ 1)
· e−del·s

The exact discretization at the sampling instants is used for discretization of the
P (s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the FOPDT block.

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

k0 Static gain ⊙1.0 Double (F64)

del Dead time [s] Double (F64)

tau Time constant ⊙1.0 Double (F64)

nmax Size of delay bu�er (number of samples) for the time delay del.
Used for internal memory allocation. ↓10 ↑10000000 ⊙1000

Long (I32)

376 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

MDL � Process model

Block Symbol Licence: STANDARD

MDL

u y

Function Description

The MDL block is a discrete simulator of continuous-time system with transfer function

F (s) =
K0e

−Ds

(τ1s+ 1)(τ2s+ 1)
,

where K0 > 0 is the static gain k0, D ≥ 0 is the time-delay del and τ1, τ2 > 0 are the
system time-constants tau1 and tau2.

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

k0 Static gain ⊙1.0 Double (F64)

del Dead time [s] Double (F64)

tau1 The �rst time constant ⊙1.0 Double (F64)

tau2 The second time constant ⊙2.0 Double (F64)

nmax Size of delay bu�er (number of samples) for the time delay del.
Used for internal memory allocation. ↓10 ↑10000000 ⊙1000

Long (I32)

377

MDLI � Process model with input-de�ned parameters

Block Symbol Licence: STANDARD

MDLI

u
k0
del
tau1
tau2

y

Function Description

The MDLI block is a discrete simulator of continuous-time system with transfer function

F (s) =
K0e

−Ds

(τ1s+ 1)(τ2s+ 1)
,

where K0 > 0 is the static gain k0, D ≥ 0 is the time-delay del and τ1, τ2 > 0 are the
system time-constants tau1 and tau2. In contrary to the MDL block the system is time
variant. The system parameters are determined by the input signals.

Inputs

u Analog input of the block Double (F64)

k0 Static gain Double (F64)

del Dead time [s] Double (F64)

tau1 The �rst time constant Double (F64)

tau2 The second time constant Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

nmax Size of delay bu�er (number of samples) for the time delay del.
Used for internal memory allocation. ↓10 ↑10000000 ⊙1000

Long (I32)

378 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

MVD � Motorized valve drive

Block Symbol Licence: STANDARD

MVD

UP

DN

y
HS
LS

Function Description

The MVD block simulates a servo valve. The UP (DN) input is a binary command for opening
(closing) the valve at a constant speed 1/tv, where tv is a parameter of the block. The
opening (closing) continues for UP = on (DN = on) until the full open y = hilim (full
closed y = lolim) position is reached. The full open (full closed) position is signalized
by the end switch HS (LS). The initial position at start-up is y = y0. If UP = DN = on or
UP = DN = off, then the position of the valve remains unchanged (neither opening nor
closing).

Inputs

UP Open Bool

DN Close Bool

Outputs

y Valve position Double (F64)

HS Upper end switch Bool

LS Lower end switch Bool

Parameters

y0 Initial valve position Double (F64)

tv Time required for transition between y = 0 and y = 1 [s]
⊙10.0

Double (F64)

hilim Upper limit position (open) ⊙1.0 Double (F64)

lolim Lower limit position (closed) Double (F64)

379

NSSM � Nonlinear State-Space Model

Block Symbol Licence: MODEL

NSSM

funcRef

u

RST

HLD

x0

x

cmd

f

df

err

Function Description

The block provides a solution to a nonlinear continuous-time state-space model in the
form of dx/dt = f(x, u), y = h(x, u) or its discrete-time counterpart de�ned as x(k+1) =
f(x(k), u(k)), y(k) = h(x(k), u(k)). The equation is discretized into a form x(t) =
F (x(t − T), u(t)), where T is sampling period of the NSSM block. The method used
for discretization (i.e. a method to numerically solve the vector di�erential equation)
depends on the solver parameter . Various methods for numerical integration are im-
plemented including one step methods (like Runge-Kutta, Euler), multistep methods
(Adams-Bashforth), and also implicit methods (Adams-Moulton). It is possible to choose
di�erent method order for each kind to �nd a suitable precision vs computational time
trade-o�. The block does not support variable step algorithms (the time-step for the
solver is always the same as the execution period of the task where the block is inserted).

The non-linear-vector function f(x, u) must be implemented in the REXLANG block
that is connected to the NSSM block in a special way. The input funcRef of the NSSM block
must be connected to the output y0 of the REXLANG block and the output y0 can not be
used internally in the code/script of the REXLANG block. The outputs x, f and df of the
NSSM block must be connected to the inputs of the REXLANG block. These inputs must
be processed in the REXLANG code as an input array. The main function of the REXLANG

block must set the value of f(x, u) into the f vector (e.g. into the input array, where f is
connected) and the matrix df(x, u)/dx into the af matrix.

The NSSM block calls the main-function of the REXLANG block when needed for nu-
merical integration of the di�erential equation system (for example the Runge-Kutta
method performs 4 calls in each execution period with di�erent x-vector values). The
REXLANG block should be disabled in the schematics of the algorithm to prevent its exe-
cution REXYGEN system itself. If the REXLANG must be executed by REXYGEN (e.g. for
compute output function y = h(x, u)), it is recommended to connect the output cmd

of the NSSM block into input of the REXLANG block to distinguish between calling by the
NSSM block (cmd = 0) and calling by REXYGEN system (cmd = −1).

Notes:

• computation of the df(x, u)/dx is necessary for implicit methods only (explicit
methods do not use it).

380 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

• size of the vector x (and also f, df) is de�ned by the size of the vector x0. The size
should be changed by reset only (the RST input).

• solver=1: discrete signalizes a discrete-time state space model with the func-
tions f and h designating the right side of the corresponding di�erence equation.
This mode does not require numerical integration and the algorithm reduces to
the execution of the code in the connecnted REXLANG block; the mode is used
mainly for symmetry with the EKF block.

• for NSSM connecting the output cmd is necessary, because cmd>0 indicate number
of measurement and REXLANG must return f = h(x, u), df = dh(x, u)/dx.

Inputs

funcRef Cooperating REXLANG block reference Reference

u Input vector of the model Reference

RST Block reset Bool

HLD Hold Bool

x0 Initial state vector Reference

Parameters

nmax Allocated size of output matrix (total number of items)
↓5 ↑10000 ⊙20

Long (I32)

solver Numeric integration method ⊙2 Long (I32)

1 Discrete equation
2 Euler (1st order)
3 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
7 4th order Runge-Kutta
8 Implicit Euler
9 Implicit Euler(more iteration)
10 2nd order Adams-Moulton implicit
11 2nd order Adams-Moulton implicit (more iterations)
12 3rd order Adams-Moulton implicit
13 3nd order Adams-Moulton implicit (more iterations)
14 2nd order RadauIIA implicit
15 2nd order RadauIIA implicit (more iterations)
16 3rd order RadauIIA implicit
17 3rd order RadauIIA implicit (more iterations)

Outputs

x Model state vector Reference

y Model output vector Reference

381

cmd Cooperating REXLANG block requested function Long (I32)

f Vector reference set by cooperating REXLANG block Reference

df Matrix reference set by cooperating REXLANG block Reference

err Error code (0 is OK, see SystemLog for details) Long (I32)

382 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

SOPDT � Second order plus dead-time model

Block Symbol Licence: STANDARD

SOPDT

u y

Function Description

The SOPDT block is a discrete simulator of a second order continuous-time system with
time delay, which can be described by one of the transfer functions below. The type of
the model is selected by the itf parameter.

itf = 1 : P (s) =
pb1 · s+ pb0

s2 + pa1 · s+ pa0
· e−del·s

itf = 2 : P (s) =
k0 (tau · s+ 1)

(tau1 · s+ 1) (tau2 · s+ 1)
· e−del·s

itf = 3 : P (s) =
k0 · om2 · (tau/om · s+ 1)

(s2 + 2 · xi · om · s+ om2)
· e−del·s

itf = 4 : P (s) =
k0 (tau · s+ 1)

(tau1 · s+ 1) s
· e−del·s

For simulation of �rst order plus dead time systems (FOPDT) use the LLC block with
parameter a set to zero.

The exact discretization at the sampling instants is used for discretization of the
P (s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the SOPDT block.

Input

u Analog input of the block Double (F64)

Output

y Analog output of the block Double (F64)

Parameters

itf Transfer function form ⊙1 Long (I32)

1 A general form
2 A form with real poles
3 A form with complex poles
4 A form with integrator

383

k0 Static gain ⊙1.0 Double (F64)

tau Numerator time constant Double (F64)

tau1 The �rst time constant ⊙1.0 Double (F64)

tau2 The second time constant ⊙1.0 Double (F64)

om Natural frequency ⊙1.0 Double (F64)

xi Relative damping coe�cient ⊙1.0 Double (F64)

pb0 Numerator coe�cient: s0 ⊙1.0 Double (F64)

pb1 Numerator coe�cient: s1 ⊙1.0 Double (F64)

pa0 Denominator coe�cient: s0 ⊙1.0 Double (F64)

pa1 Denominator coe�cient: s1 ⊙1.0 Double (F64)

del Dead time [s] Double (F64)

nmax Size of delay bu�er (number of samples) for the time delay del.
Used for internal memory allocation. ↓10 ↑10000000 ⊙1000

Long (I32)

384 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Chapter 14

MATRIX � Blocks for matrix and

vector operations

Contents

CNA � Array (vector/matrix) constant 388

MB_DASUM � Sum of the absolute values 389

MB_DAXPY � Performs y := a*x + y for vectors x,y 390

MB_DCOPY � Copies vector x to vector y 392

MB_DDOT � Dot product of two vectors 394

MB_DGEMM � Performs C := alpha*op(A)*op(B) + beta*C, where
op(X) = X or op(X) = X^T . 396

MB_DGEMV � Performs y := alpha*A*x + beta*y or y := alpha*A^T*x
+ beta*y . 398

MB_DGER � Performs A := alpha*x*y^T + A 400

MB_DNRM2 � Euclidean norm of a vector 402

MB_DROT � Plain rotation of a vector 403

MB_DSCAL � Scales a vector by a constant 405

MB_DSWAP � Interchanges two vectors 406

MB_DTRMM � Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X^T for triangular matrix A . . . 408

MB_DTRMV � Performs x := A*x or x := A^T*x for triangular
matrix A . 410

MB_DTRSV � Solves one of the system of equations A*x = b or
A^T*x = b for triangular matrix A 413

ML_DGEBAK � Backward transformation to ML_DGEBAL of left or right
eigenvectors . 416

ML_DGEBAL � Balancing of a general real matrix 418

ML_DGEBRD � Reduces a general real matrix to bidiagonal form by
an orthogonal transformation . 420

385

386CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGECON � Estimates the reciprocal of the condition number of
a general real matrix . 422

ML_DGEES � Computes the eigenvalues, the Schur form, and, op-
tionally, the matrix of Schur vectors 424

ML_DGEEV � Computes the eigenvalues and, optionally, the left
and/or right eigenvectors . 426

ML_DGEHRD � Reduces a real general matrix A to upper Hessenberg
form . 428

ML_DGELQF � Computes an LQ factorization of a real M-by-N ma-
trix A . 430

ML_DGELSD � Computes the minimum-norm solution to a real lin-
ear least squares problem . 432

ML_DGEQRF � Computes an QR factorization of a real M-by-N
matrix A . 434

ML_DGESDD � Computes the singular value decomposition (SVD)
of a real M-by-N matrix A . 436

ML_DLACPY � Copies all or part of one matrix to another matrix . 438

ML_DLANGE � Computes one of the matrix norms of a general matrix440

ML_DLASET � Initilizes the o�-diagonal elements and the diagonal
elements of a matrix to given values 442

ML_DTRSYL � Solves the real Sylvester matrix equation for quasi-
triangular matrices A and B . 444

MX_AT � Get Matrix/Vector element 446

MX_ATSET � Set Matrix/Vector element 447

MX_CNADD � Add scalar to each Matrix/Vector element 448

MX_CNMUL � Multiply a Matrix/Vector by a scalar 449

MX_CTODPA � Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations . 450

MX_DIM � Matrix/Vector dimensions 452

MX_DIMSET � Set Matrix/Vector dimensions 453

MX_DSAGET � Set subarray of A into B 455

MX_DSAREF � Set reference to subarray of A into B 457

MX_DSASET � Set A into subarray of B 459

MX_DTRNSP � General matrix transposition: B := alpha*A^T . . . 461

MX_DTRNSQ � Square matrix in-place transposition: A := alpha*A^T463

MX_FILL � Fill real matrix or vector 464

MX_MAT � Matrix data storage block 465

MX_RAND � Randomly generated matrix or vector 466

MX_REFCOPY � Copies input references of matrices A and B to
their output references . 468

MX_SLFS � Save or load a Matrix/Vector into �le or string 469

MX_VEC � Vector data storage block 471

387

MX_WRITE � Write a Matrix/Vector to the console/system log . . 472

RTOV � Vector multiplexer . 474

SWVMR � Vector/matrix/reference signal switch 476

VTOR � Vector demultiplexer . 477

Implementation notice: First element of a matrix has index (0,0), �rst element of a
vector has index (0).

The vector is one-column-matrix, not separate object. One-row-matrix is called a row
vector, but that object should not be used as vector in REXYGEN.

The matrix inputs and outputs are references. It means one block (the MX_MAT block
or the MX_VEC block most often) reserve memory for the matrix and other block (using
same reference) write/read same space. The MB_DCOPY block (and second the MX_MAT

block) must be used to create copy of the matrix.
Some blocks using vector (MB_DCPY, RTOV, VTOR) not check exact dimensions (for

example a 10x10 matrix is regard as 100-elements vector). Matrix is linearize into vector
column by column, because a matrix is stored this way in memory (e.g. for a 10x10
matrix: element (1,0) has index 1 in vector, element (2,0) has index 2 in vector, element
(0,1) has index 10 in vector, element (0,2) has index 11 in vector, etc.) These type of
blocks could not be used with submatrix returned by the MX_DSAREF block. Behavior is
unde�ned in this case.

The most matrix blocks has input and output matrix reference. Both are equal, but
connecting input reference to output reference of previous block de�ne execution order
(the blocks are executed according signal �ow in REXYGEN) and therfore computed
matrix equation.

388CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

CNA � Array (vector/matrix) constant

Block Symbol Licence: STANDARD

CNA

vec

Function Description

The block CNA allocates memory for nmax elements of the type etype of the vector/matrix
referenced by the output vec and initializes all elements to data stored in the parameter
acn.

If the string parameter filename is not empty then it loads initalization data from
the filename �le on the host computer in CSV format. Column separator can be comma
or semicolon or space (but the same in the whole �le), decimal separator have to be dot,
row separator is new line. Empty lines are skipped.

If the parameter TRN = on then the output reference vec contains transposed data.
Note: In case of etype = Large (I64), values loaded from parameter acn are con-

verted to double-precision �oat due to implementation reasons, so you can loose precision
for very large values. If this could be a problem, use external �le for initialization which
does not have this issue.

Parameters

filename CSV data �le String

TRN Transpose loaded matrix Bool

nmax Allocated size of output matrix (total number of items)
↓2 ↑10000000 ⊙100

Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
�-
10 Large (I64)

acn Initial array value ⊙[0 1 2 3] Double (F64)

Output

vec Reference to vector/matrix data Reference

389

MB_DASUM � Sum of the absolute values

Block Symbol Licence: STANDARD

MB_DASUM

uX

n

incx

HLD

yX

value

E

Function Description

The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DASUM is called internally:

value = DASUM(N, uX, INCX);

where the values N and INCX are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx > 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uX is not de�ned (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ INCX+ 1 > CNT.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

HLD Hold Bool

Outputs

yX Output reference to vector x Reference

value Return value of the function Double (F64)

E Error �ag Bool

390CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DAXPY � Performs y := a*x + y for vectors x,y

Block Symbol Licence: STANDARD

MB_DAXPY

uX

uY

a

n

incx

incy

HLD

yX

yY

E

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DAXPY is
called internally:

DAXPY(N, a, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTY referenced by uY.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX,

• (N− 1) ∗ |INCY|+ 1 > CNTY.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

uY Input reference to vector y Reference

a Scalar coe�cient a Double (F64)

n Number of processed vector elements Long (I32)

391

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

Outputs

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

392CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DCOPY � Copies vector x to vector y

Block Symbol Licence: STANDARD

MB_DCOPY

uX

uY

n

incx

incy

HLD

yX

yY

E

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DCOPY is
called internally:

DCOPY(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

uY Input reference to vector y Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

393

Outputs

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

394CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DDOT � Dot product of two vectors

Block Symbol Licence: STANDARD

MB_DDOT

uX

uY

n

incx

incy

HLD

yX

yY

value

E

Function Description

The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DDOT is
called internally:

DDOT(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

uY Input reference to vector y Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

395

Outputs

yX Output reference to vector x Reference

yY Output reference to vector y Reference

value Return value of the function Double (F64)

E Error indicator Bool

396CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DGEMM � Performs C := alpha*op(A)*op(B) + beta*C,
where op(X) = X or op(X) = X^T

Block Symbol Licence: STANDARD

MB_DGEMM

uA

uB

uC

transa

transb

alpha

beta

HLD

yA

yB

yC

E

Function Description

The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the BLAS function DGEMM

is called internally:

DGEMM(sTRANSA, sTRANSB, M, N, KA, alpha, uA, LDA, uB, LDB, beta, uC, LDC);

where parameters of DGEMM are set in the following way:

• Integer inputs transa and transb are mapped to strings sTRANSA and sTRANSB:
{0, 1} → "N", {2} → "T" and {3} → "C".

• M is number of rows of the matrix referenced by uC.

• N is number of columns of the matrix referenced by uC.

• If the input transa is equal to 0 or 1 then KA is number of columns else KA is
number rows of the matrix referenced by uA.

• LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.

The error �ag E is set to on if:

• the reference uA or uB or uC is not de�ned (i.e. input uA or uB or uC is not connected),

• transa or transb is less than 0 or greater than 3

• KA ̸= KB; if the input transb is equal to 0 or 1 then KB is number of rows else KB is
number of columns of the matrix referenced by uB (i.e. matrices op(A) and op(B)
have to be multipliable).

• the call of the function DGEMM returns error using the function XERBLA, see the
system log.

See BLAS documentation [6] for more details.

397

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uC Input reference to matrix C Reference

transa Transposition of matrix A ↓0 ↑3 Long (I32)

transb Transposition of matrix B ↓0 ↑3 Long (I32)

alpha Scalar coe�cient alpha Double (F64)

beta Scalar coe�cient beta Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yC Output reference to matrix C Reference

E Error indicator Bool

398CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DGEMV � Performs y := alpha*A*x + beta*y or y := al-
pha*A^T*x + beta*y

Block Symbol Licence: STANDARD

MB_DGEMV

uA

uX

uY

trans

incx

incy

alpha

beta

HLD

yA

yX

yY

E

Function Description

The output references yA, yX and yY are always set to the corresponding input references
uA, uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DGEMV

is called internally:

DGEMV(sTRANS, M, N, alpha, uA, LDA, uX, INCX, beta, uY, INCY);

where parameters of DGEMV are set in the following way:

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uA or uX or uY is not de�ned (i.e. input uA or uX or uY is not connected),

• trans is less than 0 or greater than 3

• the call of the function DGEMV returns error using the function XERBLA, see the
system log.

See BLAS documentation [6] for more details.

399

Inputs

uA Input reference to matrix A Reference

uX Input reference to vector x Reference

uY Input reference to vector y Reference

trans Transposition of the input matrix ↓0 ↑3 Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

alpha Scalar coe�cient alpha Double (F64)

beta Scalar coe�cient beta Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

400CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DGER � Performs A := alpha*x*y^T + A

Block Symbol Licence: STANDARD

MB_DGER

uX

uY

uA

incx

incy

alpha

HLD

yX

yY

yA

E

Function Description

The output references yX, yY and yA are always set to the corresponding input references
uX, uY and uA. If HLD = on then nothing is computed otherwise the BLAS function DGER

is called internally:

DGER(M, N, alpha, uX, INCX, uY, INCY, uA, LDA);

where parameters of DGER are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

• LDA is the leading dimension of matrix referenced by uA.

The error �ag E is set to on if:

• the reference uX or uY or uA is not de�ned (i.e. input uX or uY or uA is not connected),

• the call of the function DGER returns error using the function XERBLA, see the system
log.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

uY Input reference to vector y Reference

uA Input reference to matrix A Reference

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

401

Outputs

yX Output reference to vector x Reference

yY Output reference to vector y Reference

yA Output reference to matrix A Reference

E Error indicator Bool

402CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DNRM2 � Euclidean norm of a vector

Block Symbol Licence: STANDARD

MB_DNRM2

uX

n

incx

HLD

yX

value

E

Function Description

The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DNRM2 is called internally:

value = DNRM2(N, uX, INCX);

where the values N and INCX are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx > 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uX is not de�ned (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ |INCX|+ 1 > CNT.

See BLAS documentation [6] for more details.

Use the block ML_DLANGE for computation of various norms of a matrix.

Inputs

uX Input reference to vector x Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

HLD Hold Bool

Outputs

yX Output reference to vector x Reference

value Return value of the function Double (F64)

E Error indicator Bool

403

MB_DROT � Plain rotation of a vector

Block Symbol Licence: STANDARD

MB_DROT

uX

uY

n

incx

incy

c

s

HLD

yX

yY

E

Function Description

The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DROT is
called internally:

DROT(N, uX, INCX, uY, INCY, c, s);

where parameters of DROT are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

uY Input reference to vector y Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

404CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

incy Index increment of vector y Long (I32)

c Scalar coe�cient c Double (F64)

s Scalar coe�cient s Double (F64)

HLD Hold Bool

Outputs

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

405

MB_DSCAL � Scales a vector by a constant

Block Symbol Licence: STANDARD

MB_DSCAL

uX

a

n

incx

HLD

yX

E

Function Description

The output references yX is always set to the corresponding input reference uX. If HLD =

on then nothing is computed otherwise the BLAS function DSCAL is called internally:

DSCAL(N, a, uX, INCX);

where parameters of DSCAL are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uX is not de�ned (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ INCX+ 1 > CNT.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

a Scalar coe�cient a Double (F64)

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

HLD Hold Bool

Outputs

yX Output reference to vector x Reference

E Error indicator Bool

406CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DSWAP � Interchanges two vectors

Block Symbol Licence: STANDARD

MB_DSWAP

uX

uY

n

incx

incy

HLD

yX

yY

E

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DSWAP is
called internally:

DSWAP(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [6] for more details.

Inputs

uX Input reference to vector x Reference

uY Input reference to vector y Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

407

Outputs

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

408CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DTRMM � Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X^T for triangular matrix A

Block Symbol Licence: STANDARD

MB_DTRMM

uA

uB

RSIDE

LUPLO

transa

NDIAG

alpha

HLD

yA

yB

E

Function Description

The output references yA and yB are always set to the corresponding input references uA
and uB. If HLD = on then nothing is computed otherwise the BLAS function DTRMM is
called internally:

DTRMM(sRSIDE, sLUPLO, sTRANSA, sNDIAG, M, N, alpha, uA, LDA, uB, LDB);

where parameters of DTRMM are set in the following way:

• If RSIDE = on then the string sRSIDE is set to "R" else it is set to "L".

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input transa is mapped to the string sTRANSA: {0, 1} → "N", {2} → "T"

and {3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• M is number of rows of the matrix referenced by uB.

• N is number of columns of the matrix referenced by uB.

• LDA and LDB are leading dimensions of matrices referenced by uA and uB.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• transa is less than 0 or greater than 3,

• matrix referenced by uA is not square or is not compatible with the matrix refer-
enced by uB,

• the call of the function DTRMM returns error using the function XERBLA, see the
system log.

409

See BLAS documentation [6] for more details.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

RSIDE Operation is applied from right side Bool

LUPLO Matrix A is a lower triangular matrix Bool

transa Transposition of matrix A ↓0 ↑3 Long (I32)

NDIAG Matrix A is not assumed to be unit triangular Bool

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

410CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DTRMV � Performs x := A*x or x := A^T*x for triangular
matrix A

Block Symbol Licence: STANDARD

MB_DTRMV

uA

uX

LUPLO

trans

NDIAG

incx

HLD

yA

yX

E

Function Description

The output references yA and yX are always set to the corresponding input references uA
and uX. If HLD = on then nothing is computed otherwise the BLAS function DTRMV is
called internally:

DTRMV(sLUPLO, sTRANS, sNDIAG, N, uA, LDA, uX, INCX);

where parameters of DTRMV are set in the following way:

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• N is number of rows and columns of the square matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uA or uX is not de�ned (i.e. input uA or uX is not connected),

• trans is less than 0 or greater than 3,

• matrix referenced by uA is not square,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX.

• the call of the function DTRMV returns error using the function XERBLA, see the
system log.

411

See BLAS documentation [6] for more details.

412CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Inputs

uA Input reference to matrix A Reference

uX Input reference to vector x Reference

LUPLO Matrix A is a lower triangular matrix Bool

trans Transposition of the input matrix ↓0 ↑3 Long (I32)

NDIAG Matrix A is not assumed to be unit triangular Bool

incx Index increment of vector x Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yX Output reference to vector x Reference

E Error indicator Bool

413

MB_DTRSV � Solves one of the system of equations A*x = b or
A^T*x = b for triangular matrix A

Block Symbol Licence: STANDARD

MB_DTRSV

uA

uX

LUPLO

trans

NDIAG

incx

HLD

yA

yX

E

Function Description

The output references yA and yX are always set to the corresponding input references uA
and uX. If HLD = on then nothing is computed otherwise the BLAS function DTRSV is
called internally:

DTRSV(sLUPLO, sTRANS, sNDIAG, N, uA, LDA, uX, INCX);

where parameters of DTRSV are set in the following way:

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• N is number of rows and columns of the square matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uA or uX is not de�ned (i.e. input uA or uX is not connected),

• trans is less than 0 or greater than 3,

• matrix referenced by uA is not square,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX.

• the call of the function DTRMV returns error using the function XERBLA, see the
system log.

414CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

See BLAS documentation [6] for more details.

415

Inputs

uA Input reference to matrix A Reference

uX Input reference to vector x Reference

LUPLO Matrix A is a lower triangular matrix Bool

trans Transposition of the input matrix ↓0 ↑3 Long (I32)

NDIAG Matrix A is not assumed to be unit triangular Bool

incx Index increment of vector x Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yX Output reference to vector x Reference

E Error indicator Bool

416CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEBAK � Backward transformation to ML_DGEBAL of left or
right eigenvectors

Block Symbol Licence: MATRIX

ML_DGEBAK

uSCALE

uV

job

RSIDE

ilo

ihi

HLD

ySCALE

yV

E

info

Function Description

The output references ySCALE and yV are always set to the corresponding input references
uSCALE and uV. If HLD = on then nothing is computed otherwise the LAPACK function
DGEBAK is called internally:

DGEBAK(sJOB, sRSIDE, N, ilo, IHI, uSCALE, M, uV, LDV, info);

where parameters of DGEBAK are set in the following way:

• Integer input job is mapped to the string sJOB: {0, 1} → "N", {2} → "P", {3} →
"S" and {4} → "B".

• If RSIDE = on then the string sRSIDE is set to "R" else it is set to "L".

• N is number of elements of the vector referenced by uSCALE.

• If the input ihi ≠ 0 then IHI is set to ihi else IHI is set to N− 1.

• M is number of columns of the matrix referenced by uV.

• LDV is the leading dimension of the matrix referenced by uV.

• info is return code from the function DGEBAK.

The error �ag E is set to on if:

• the reference uSCALE or uV is not de�ned (i.e. input uSCALE or uV is not connected),

• the call of the function DGEBAK returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [7] for more details.

417

Inputs

uSCALE Input reference to vector SCALE Reference

uV Reference to matrix of right or left eigenvectors to be transformed Reference

job Type of backward transformation required ↓0 ↑4 Long (I32)

RSIDE Operation is applied from right side Bool

ilo Zero based low row and column index of working submatrix Long (I32)

ihi Zero based high row and column index of working submatrix Long (I32)

HLD Hold Bool

Outputs

ySCALE Output reference to vector SCALE Reference

yV Reference to matrix of transformed right or left eigenvectors Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

418CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEBAL � Balancing of a general real matrix

Block Symbol Licence: MATRIX

ML_DGEBAL

uA

uSCALE

job

HLD

yA

ySCALE

ilo

ihi

E

info

Function Description

The output references yA and ySCALE are always set to the corresponding input references
uA and uSCALE. If HLD = on then nothing is computed otherwise the LAPACK function
DGEBAL is called internally:

DGEBAL(sJOB, N, uA, LDA, ilo, ihi, uSCALE, info);

where parameters of DGEBAL are set in the following way:

• Integer input job is mapped to the string sJOB: {0, 1} → "N", {2} → "P", {3} →
"S" and {4} → "B".

• N is number of columns of the square matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• ilo and ihi are returned low and high row and column indices of the balanced
submatrix of the matrix referenced by uA.

• info is return code from the function DGEBAL.

The error �ag E is set to on if:

• the reference uA or uSCALE is not de�ned (i.e. input uA or uSCALE is not connected),

• matrix referenced by uA is not square,

• number of elements of the vector referenced by uSCALE is less than N.

• the call of the function DGEBAL returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [7] for more details.

419

Inputs

uA Input reference to matrix A Reference

uSCALE Input reference to vector SCALE Reference

job Speci�es the operations to be performed on matrix A ↓0 ↑4 Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

ySCALE Output reference to vector SCALE Reference

ilo Zero based low row and column index of working submatrix Long (I32)

ihi Zero based high row and column index of working submatrix Long (I32)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

420CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEBRD � Reduces a general real matrix to bidiagonal form
by an orthogonal transformation

Block Symbol Licence: MATRIX

ML_DGEBRD

uA

uD

uE

uTAUQ

uTAUP

uWORK

HLD

yA

yD

yE

yTAUQ

yTAUP

yWORK

E

info

Function Description

The output references yA, yD, yE, yTAUQ, yTAUP and yWORK are always set to the corre-
sponding input references uA, uD, uE, uTAUQ, uTAUP and uWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEBRD is called internally:

DGEBRD(M, N, uA, LDA, uD, uE, uTAUQ, uTAUP, uWORK, info);

where parameters of DGEBRD are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• info is return code from the function DGEBRD.

The error �ag E is set to on if:

• the reference uA or uD or uE or uTAUQ or uTAUP or uWORK is not de�ned (i.e. input
uA or uD or uE or uTAUQ or uTAUP or uWORK is not connected),

• number of elements of any vector referenced by uD, uTAUQ and uTAUP is less than
MINMN, where MINMN is minimum from M and N,

• number of elements of the vector referenced by uE is less than MINMN− 1,

• the call of the function DGEBRD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

421

Inputs

uA Input reference to matrix A Reference

uD Diagonal elements of the bidiagonal matrix B Reference

uE O�-diagonal elements of the bidiagonal matrix B Reference

uTAUQ Reference to a vector of scalar factors of the elementary re�ectors
which represent the orthogonal matrix Q

Reference

uTAUP Reference to a vector of scalar factors of the elementary re�ectors
which represent the orthogonal matrix P

Reference

uWORK Input reference to working vector WORK Reference

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yD Output reference to D Reference

yE Output reference to E Reference

yTAUQ Output reference to TAUQ Reference

yTAUP Output reference to TAUP Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

422CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGECON � Estimates the reciprocal of the condition number
of a general real matrix

Block Symbol Licence: MATRIX

ML_DGECON

uA

uWORK

uIWORK

INORM

anorm

HLD

yA

yWORK

yIWORK

rcond

E

info

Function Description

The output references yA, yWORK and yIWORK are always set to the corresponding input
references uA, uWORK and uIWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGECON is called internally:

DGECON(sINORM, N, uA, LDA, anorm, rcond, uWORK, uIWORK, info);

where parameters of DGECON are set in the following way:

• If INORM = on then the string sINORM is set to "I" else it is set to "1".

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• rcond is returned reciprocal value of the condition number of the matrix referenced
by uA.

• info is return code from the function DGECON.

The error �ag E is set to on if:

• the reference uA or uWORK or uIWORK is not de�ned (i.e. input uA or uWORK or uIWORK
is not connected),

• the matrix referenced by uA is not square,

• number of elements of the vector referenced by uWORK is less than 4 ∗ N,

• number of elements of the integer vector referenced by uIWORK is less than N,

• the call of the function DGECON returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

423

Inputs

uA Input reference to matrix A Reference

uWORK Input reference to working vector WORK Reference

uIWORK Input reference to integer working vector WORK Reference

INORM Use In�nity-norm Bool

anorm Norm of the original matrix A Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yWORK Output reference to working vector WORK Reference

yIWORK Output reference to integer working vector WORK Reference

rcond The reciprocal of the condition number of the matrix A Double (F64)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

424CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEES � Computes the eigenvalues, the Schur form, and,
optionally, the matrix of Schur vectors

Block Symbol Licence: MATRIX

ML_DGEES

uA

uWR

uWI

uVS

uWORK

uBWORK

JOBVS

SORT

HLD

yA

yWR

yWI

yVS

yWORK

yBWORK

sdim

E

info

Function Description

The output references yA, yWR, yWI, yVS, yWORK and yBWORK are always set to the corre-
sponding input references uA, uWR, uWI, uVS, uWORK and uBWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEES is called internally:

DGEES(sJOBVS, sSORT, SELECT, N, uA, LDA, sdim, uWR, uWI, uVS, LDVS,uWORK,

LWORK, uBWORK, info);

where parameters of DGEES are set in the following way:

• If JOBVS = on then the string sJOBVS is set to "V" else it is set to "N".

• If SORT = on then the string sSORT is set to "S" else it is set to "N".

• SELECT is the reference to Boolean eigenvalues sorting function which in this func-
tion block returns always true (i.e. on).

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• sdim is returned number of eigenvalues for which the function SELECT is true.

• LDVS is the leading dimension of the matrix referenced by uVS.

• LWORK is number of elements in the vector referenced by uWORK.

• info is return code from the function DGEES.

The error �ag E is set to on if:

• the reference uA or uWR or uWI or uVS or uWORK or uBWORK is not de�ned (i.e. input
uA or uWR or uWI or uVS or uWORK or uBWORK is not connected),

425

• the matrix referenced by uA is not square,

• number of elements of any vector referenced by uWR, uWI and uBWORK is less than
N,

• number of columns of the matrix referenced by uVS is not equal to N,

• the call of the function DGEES returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uWR Input reference to vector of real parts of eigenvalues Reference

uWI Input reference to vector of imaginary parts of eigenvalues Reference

uVS Input reference to orthogonal matrix of Schur vectors Reference

uWORK Input reference to working vector WORK Reference

uBWORK Input reference to Boolean working vector WORK Reference

JOBVS If true then Schur vectors are computed Bool

SORT If true then eigenvalues are sorted Bool

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yWR Output reference to vector of real parts of eigenvalues Reference

yWI Output reference to vector of imaginary parts of eigenvalues Reference

yVS Output reference to VS Reference

yWORK Output reference to working vector WORK Reference

yBWORK Output reference to Boolean working vector WORK Reference

sdim If SORT then number of eigenvalues for which SELECT is true
else 0

Long (I32)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

426CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEEV � Computes the eigenvalues and, optionally, the left
and/or right eigenvectors

Block Symbol Licence: MATRIX

ML_DGEEV

uA

uWR

uWI

uVL

uVR

uWORK

JOBVL

JOBVR

HLD

yA

yWR

yWI

yVL

yVR

yWORK

E

info

Function Description

The output references yA, yWR, yWI, yVL, yVR and yWORK are always set to the corre-
sponding input references uA, uWR, uWI, uVL, uVR and uWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEEV is called internally:

DGEEV(sJOBVL, sJOBVR, N, uA, LDA, uWR, uWI, uVL, LDVL, uVR, LDVR,

uWORK, LWORK, info);

where parameters of DGEEV are set in the following way:

• If JOBVL = on then the string sJOBVL is set to "V" else it is set to "N".

• If JOBVR = on then the string sJOBVR is set to "V" else it is set to "N".

• N is number of columns of the matrix referenced by uA.

• LDA, LDVL and LDVR are leading dimensions of the matrices referenced by uA, uVL
and uVR.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEEV.

The error �ag E is set to on if:

• the reference uA or uWR or uWI or uVL or uVR or uWORK is not de�ned (i.e. input uA
or uWR or uWI or uVL or uVR or uWORK is not connected),

• the matrix referenced by uA is not square,

• number of elements of vectors referenced by uWR or uWI is less than N,

• number of columns of matrices referenced by uVL or uVR is not equal to N,

427

• the call of the function DGEEV returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uWR Input reference to vector of real parts of eigenvalues Reference

uWI Input reference to vector of imaginary parts of eigenvalues Reference

uVL Input reference to matrix of left eigenvectors Reference

uVR Input reference to matrix of right eigenvectors Reference

uWORK Input reference to working vector WORK Reference

JOBVL If true then left eigenvectors are computed Bool

JOBVR If true then right eigenvectors are computed Bool

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yWR Output reference to vector of real parts of eigenvalues Reference

yWI Output reference to vector of imaginary parts of eigenvalues Reference

yVL Output reference to VL Reference

yVR Output reference to VR Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

428CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEHRD � Reduces a real general matrix A to upper Hes-
senberg form

Block Symbol Licence: MATRIX

ML_DGEHRD

uA

uTAU

uWORK

ilo

ihi

HLD

yA

yTAU

yWORK

E

info

Function Description

The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGEHRD is called internally:

DGEHRD(N, ilo, IHI, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGEHRD are set in the following way:

• N is number of columns of the square matrix referenced by uA.

• If the input ihi ≠ 0 then IHI is set to ihi else IHI is set to N− 1.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEHRD.

The error �ag E is set to on if:

• the reference uA or uTAU or uWORK is not de�ned (i.e. input uA or uTAU or uWORK is
not connected),

• matrix referenced by uA is not square,

• number of elements of the vector referenced by uTAU is less than N− 1.

• the call of the function DGEHRD returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [7] for more details.

429

Inputs

uA Input reference to matrix A Reference

uTAU Input reference to vector of scalar factors of the elementary
re�ectors

Reference

uWORK Input reference to working vector WORK Reference

ilo Zero based low row and column index of working submatrix Long (I32)

ihi Zero based high row and column index of working submatrix Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yTAU Output reference to vector of scalar factors of the elementary
re�ectors

Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

430CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGELQF � Computes an LQ factorization of a real M-by-N
matrix A

Block Symbol Licence: MATRIX

ML_DGELQF

uA

uTAU

uWORK

HLD

yA

yTAU

yWORK

E

info

Function Description

The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGELQF is called internally:

DGELQF(M, N, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGELQF are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGELQF.

The error �ag E is set to on if:

• the reference uA or uTAU or uWORK is not de�ned (i.e. input uA or uTAU or uWORK is
not connected),

• number of elements of the vector referenced by uTAU is less than the minimum of
number of rows and number of columns of the matrix referenced by uA.

• the call of the function DGELQF returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

431

uTAU Input reference to vector of scalar factors of the elementary
re�ectors

Reference

uWORK Input reference to working vector WORK Reference

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yTAU Output reference to vector of scalar factors of the elementary
re�ectors

Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

432CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGELSD � Computes the minimum-norm solution to a real
linear least squares problem

Block Symbol Licence: MATRIX

ML_DGELSD

uA

uB

uS

uWORK

uIWORK

rcond

HLD

yA

yB

yS

yWORK

yIWORK

irank

E

info

Function Description

The output references yA, yB, yS, yWORK and yIWORK are always set to the corresponding
input references uA, uB, uS, uWORK and uIWORK. If HLD = on then nothing is computed
otherwise the LAPACK function DGELSD is called internally:

DGELSD(M, N, NRHS, uA, LDA, uB, LDB, uS, rcond, irank,uWORK,

LWORK, uIWORK, info);

where parameters of DGELSD are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• NRHS is number of columns of the matrix referenced by uB.

• LDA and LDB are leading dimensions of the matrices referenced by uA and uB.

• irank is returned e�ective rank of the matrix referenced by uA.

• LWORK is number of elements in the vector referenced by uWORK.

• info is return code from the function DGELSD.

The error �ag E is set to on if:

• the reference uA or uB or uS or uWORK or uIWORK is not de�ned (i.e. input uA or uB
or uS or uWORK or uIWORK is not connected),

• the number of rows of the matrix referenced by uB is not equal to M,

• number of elements of any vector referenced by uS is less than the minimum of M
and N,

433

• number of elements of the integer vector referenced by uIWORK is not su�cient (see
details in the LAPACK documentation of the function DGELSD),

• the call of the function DGELSD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uS Input reference to vector of singular values Reference

uWORK Input reference to working vector WORK Reference

uIWORK Input reference to integer working vector WORK Reference

rcond Used to determine the e�ective rank of A Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yS Output reference to vector of singular values Reference

yWORK Output reference to working vector WORK Reference

yIWORK Output reference to integer working vector WORK Reference

irank E�ective rank of A Long (I32)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

434CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEQRF � Computes an QR factorization of a real M-by-N
matrix A

Block Symbol Licence: MATRIX

ML_DGEQRF

uA

uTAU

uWORK

HLD

yA

yTAU

yWORK

E

info

Function Description

The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGEQRF is called internally:

DGEQRF(M, N, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGEQRF are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEQRF.

The error �ag E is set to on if:

• the reference uA or uTAU or uWORK is not de�ned (i.e. input uA or uTAU or uWORK is
not connected),

• number of elements of the vector referenced by uTAU is less than the minimum of
number of rows and number of columns of the matrix referenced by uA.

• the call of the function DGEQRF returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

435

uTAU Input reference to vector of scalar factors of the elementary
re�ectors

Reference

uWORK Input reference to working vector WORK Reference

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yTAU Output reference to vector of scalar factors of the elementary
re�ectors

Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

436CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGESDD � Computes the singular value decomposition (SVD)
of a real M-by-N matrix A

Block Symbol Licence: MATRIX

ML_DGESDD

uA

uS

uU

uVT

uWORK

uIWORK

jobz

HLD

yA

yS

yU

yVT

yWORK

yIWORK

E

info

Function Description

The output references yA, yS, yU, yVT, yWORK and yIWORK are always set to the corre-
sponding input references uA, uS, uU, uVT, uWORK and uIWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGESDD is called internally:

DGESDD(sJOBZ, M, N, uA, LDA, uS, uU, LDU, uVT, LDVT, uWORK, LWORK,

uIWORK, info);

where parameters of DGESDD are set in the following way:

• Integer input jobz is mapped to the string sJOBZ: {0, 1} → "A", {2} → "S",
{3} → "O" and {4} → "N".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA, LDU and LDVT are leading dimensions of the matrices referenced by uA, uU and
uVT.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGESDD.

The error �ag E is set to on if:

• the reference uA or uS or uU or uVT or uWORK or uIWORK is not de�ned (i.e. input uA
or uS or uU or uVT or uWORK or uIWORK is not connected),

• number of elements of the vector referenced by uS is less than MINMN, the minimum
of number of rows and number of columns of the matrix referenced by uA,

• number of elements of the integer vector referenced by uIWORK is less than 8∗MINMN,

437

• the call of the function DGESDD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uS Input reference to vector of singular values Reference

uU Input reference to matrix containing left singular vectors of A Reference

uVT Input reference to matrix containing right singular vectors of A Reference

uWORK Input reference to working vector WORK Reference

uIWORK Input reference to integer working vector WORK Reference

jobz Speci�es options for computing Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yS Output reference to vector of singular values Reference

yU Output reference to matrix containing left singular vectors of A Reference

yVT Output reference to matrix containing right singular vectors of
A

Reference

yWORK Output reference to working vector WORK Reference

yIWORK Output reference to integer working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

438CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DLACPY � Copies all or part of one matrix to another matrix

Block Symbol Licence: STANDARD

ML_DLACPY

uA

uB

uplo

HLD

yA

yB

E

Function Description

The output references yA and yB are always set to the corresponding input references uA
and uB. If HLD = on then nothing is computed otherwise the LAPACK function DLACPY

is called internally:

DLACPY(sUPLO, M, N, uA, LDA, uB, LDA);

where parameters of DLACPY are set in the following way:

• Integer input uplo is mapped to the string sUPLO: {0, 1} → "A", {2} → "U" and
{3} → "L".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

The number of rows of the matrix referenced by uB is set to M and the leading
dimension of the matrix referenced by uB is set to LDA

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• the allocated number of elements of the matrix referenced by uA is di�erent from
the allocated number of elements of the matrix referenced by uB.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uplo Part of the matrix to be copied Long (I32)

0 All
1 All
2 Upper
3 Lower

HLD Hold Bool

439

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

440CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DLANGE � Computes one of the matrix norms of a general
matrix

Block Symbol Licence: STANDARD

ML_DLANGE

uA

uWORK

norm

HLD

yA

yWORK

value

E

Function Description

The output references yA and yWORK are always set to the corresponding input references
uA and uWORK. If HLD = on then nothing is computed otherwise the LAPACK function
DLANGE is called internally:

value = DLANGE(sNORM, M, N, uA, LDA, uWORK;

where parameters of DLACPY are set in the following way:

• Integer input norm is mapped to the string sNORM: {0, 1} → "F" (Frobenius norm),
{2} → "M" (max(abs(A(i,j)))), {3} → "1" (one norm) and {4} → "I" (in�nity
norm).

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• uWORK is the working vector of dimension LWORK ≥ M. uWORK is used only for in�nity
norm, otherwise it is not referenced.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

• the reference uWORK is not de�ned for norm = 4 (i.e. input uWORK is not connected).

See LAPACK documentation [7] for more details.

Use the block MB_DNRM2 for computation of Frobenius norm of a vector.

Inputs

uA Input reference to matrix A Reference

uWORK Input reference to working vector WORK Reference

norm The selected matrix norm ↓0 ↑4 Long (I32)

HLD Hold Bool

441

Outputs

yA Output reference to matrix A Reference

yWORK Output reference to working vector WORK Reference

value Return value of the function Double (F64)

E Error indicator Bool

442CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DLASET � Initilizes the o�-diagonal elements and the diag-
onal elements of a matrix to given values

Block Symbol Licence: STANDARD

ML_DLASET

uA

uplo

alpha

beta

HLD

yA

E

Function Description

The output reference yA is always set to the corresponding input references uA. If HLD =

on then nothing is computed otherwise the LAPACK function DLASET is called internally:

DLASET(sUPLO, M, N, alpha, beta,uA, LDA);

where parameters of DLACPY are set in the following way:

• Integer input uplo is mapped to the string sUPLO: {0, 1} → "A", {2} → "U" and
{3} → "L".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uplo Part of the matrix to be set Long (I32)

0 All
1 All
2 Upper
3 Lower

alpha Scalar coe�cient alpha Double (F64)

beta Scalar coe�cient beta Double (F64)

HLD Hold Bool

443

Outputs

yA Output reference to matrix A Reference

E Error indicator Bool

444CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DTRSYL � Solves the real Sylvester matrix equation for
quasi-triangular matrices A and B

Block Symbol Licence: MATRIX

ML_DTRSYL

uA

uB

uC

trana

tranb

isgn

HLD

yA

yB

yC

scale

E

info

Function Description

The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the LAPACK function
DTRSYL is called internally:

DTRSYL(sTRANA, sTRANB, M, N, uA, LDA, uB, LDB, uC, LDC, scale, info);

where parameters of DTRSYL are set in the following way:

• Integer inputs trana and tranb are mapped to strings sTRANA and sTRANB: {0, 1} →
"N", {2} → "T" and {3} → "C".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uB.

• LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.

• scale is returned scaling factor to avoid over�ow.

• info is return code from the function DTRSYL.

The error �ag E is set to on if:

• the reference uA or uB or uC is not de�ned (i.e. input uA or uB or uC is not connected),

• trana or tranb is less than 0 or greater than 3

• number of columns of the matrix referenced by uA is not equal to M

• number of rows of the matrix referenced by uB is not equal to N

• number of rows of the matrix referenced by uC is not equal to N or number of
columns of this matrix is not equal to M,

445

• the call of the function DTRSYL returns error using the function XERBLA, see the
system log.

See LAPACK documentation [7] for more details.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uC Input reference to matrix C Reference

trana Transposition of matrix A ↓0 ↑3 Long (I32)

tranb Transposition of matrix B ↓0 ↑3 Long (I32)

isgn Sign in the equation (1 or -1) ↓-1 ↑1 Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yC Output reference to matrix C Reference

scale Scale Double (F64)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

446CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_AT � Get Matrix/Vector element

Block Symbol Licence: STANDARD

MX_AT

uMV

i

j

yMV

value

E

Function Description

The function block MX_AT returns the value (output value) of the matrix element at the
i-th row and j-th column or the i-th vector element.

The output reference yMV is always set to the corresponding input reference uMV to
the connected matrix/vector.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• the zero based row index i < 0 or i ≥ m, where m is the number of rows,

• the zero based column index j < 0 or j ≥ n, where n is the number of columns.
Note that j must be 0 for a vector.

Inputs

uMV Input reference to a matrix or vector Reference

i Row index of the element ↓0 Long (I32)

j Column index of the element ↓0 Long (I32)

Outputs

yMV Output reference to a matrix or vector Reference

value Value of element at position (i,j) Long (I32)

E Error indicator Bool

447

MX_ATSET � Set Matrix/Vector element

Block Symbol Licence: STANDARD

MX_ATSET

uMV

i

j

value

yMV

E

Function Description

The function block MX_ATSET sets the value (input value) to the matrix element at the
i-th row and j-th column or to the i-th vector element.

The output reference yMV is always set to the corresponding input reference uMV to
the connected matrix/vector.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• the zero based row index i < 0 or i ≥ m, where m is the number of rows,

• the zero based column index j < 0 or j ≥ n, where n is the number of columns.
Note that j must be 0 for a vector.

Inputs

uMV Input reference to a matrix or vector Reference

i Row index of the element ↓0 Long (I32)

j Column index of the element ↓0 Long (I32)

value Value which should be set to the element at position (i,j) Long (I32)

Outputs

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

448CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_CNADD � Add scalar to each Matrix/Vector element

Block Symbol Licence: STANDARD

MX_CNADD

uAX

uBY

alpha

HLD

yAX

yBY

E

Function Description

The function block MX_CNADD adds the value of the input alpha to each matrix/vector
element referenced by uAX and the result is stored to the matrix/vector referenced by
uBY. If HLD = on then nothing is computed.

The output references yAX and yBY are always set to the corresponding input refer-
ences uAX and uBY. The dimensions of the matrix/vector referenced by uBY are set to the
dimensions of the matrix/vector referenced by uAX if they are di�erent.
The error �ag E is set to on if:

• the reference uAX of uBY is not de�ned (i.e. input uAX or uBY is not connected),

• the count of allocated elements of the matrix/vector referenced by uAX is di�erent
from the count of allocated elements of the matrix/vector referenced by uBY.

Inputs

uAX Input reference to the matrix A or vector X Reference

uBY Input reference to the matrix B or vector Y Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Outputs

yAX Output reference to the matrix A or vector X Reference

yBY Output reference to the matrix B or vector Y Reference

E Error indicator Bool

449

MX_CNMUL � Multiply a Matrix/Vector by a scalar

Block Symbol Licence: STANDARD

MX_CNMUL

uAX

uBY

alpha

HLD

yAX

yBY

E

Function Description

The function block MX_CNADD multiplies each matrix/vector element referenced by uAX

by the value of the input alpha and the result is stored to the matrix/vector referenced
by uBY. If HLD = on then nothing is computed.

The output references yAX and yBY are always set to the corresponding input refer-
ences uAX and uBY. The dimensions of the matrix/vector referenced by uBY are set to the
dimensions of the matrix/vector referenced by uAX if they are di�erent.
The error �ag E is set to on if:

• the reference uAX of uBY is not de�ned (i.e. input uAX or uBY is not connected),

• the count of allocated elements of the matrix/vector referenced by uAX is di�erent
from the count of allocated elements of the matrix/vector referenced by uBY.

Inputs

uAX Input reference to the matrix A or vector X Reference

uBY Input reference to the matrix B or vector Y Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Outputs

yAX Output reference to the matrix A or vector X Reference

yBY Output reference to the matrix B or vector Y Reference

E Error indicator Bool

450CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_CTODPA � Discretizes continuous model given by (A,B) to
(Ad,Bd) using Pade approximations

Block Symbol Licence: STANDARD

MX_CTODPA

uA

uB

uAd

uBd

uP

uQ

uR

HLD

yA

yB

yAd

yBd

yP

yQ

yR

E

Function Description

This function block discretizes a continuous state space model using Padé approx-
imations of matrix exponential and its integral and scaling technique ([5]). The used
technique is similar to method 3 Scaling and squaring described in [8].

The output references yA, yB, yAd, yBd, yP , yQ and yR are always set to the corre-
sponding input references uA, uB, uAd, uBd, uP, uQ and uR. If HLD = on then nothing is
computed otherwise the function mCtoD is called internally:

mCtoD(nRes, uAd, uBd, uA, uB, N, M, is, Ts, eps, uP, uQ, uR);

where parameters of mCtoD are set in the following way:

• nRes is return code from the function mCtoD.

• N is number of rows of the square system matrix referenced by uA.

• M is number of columns of the input matrix referenced by uB.

• Ts is sampling period for the discretization, which is equal to sampling period of
the task containing this function block.

The error �ag E is set to on if:

• the reference uA or uB or uAd or uBd or uP or uQ or uR is not de�ned (i.e. input uA
or uB or uAd or uBd or uP or uQ or uR is not connected),

• number of columns of the matrix referenced by uA is not equal to N,

• number of rows of the matrix referenced by uB is not equal to N,

• number of elements of any matrix referenced by uAd, uP, uQ or uR is less than N∗N,

• number of elements of the matrix referenced by uBd is less than N ∗ M,

451

• the return code nRes of the function mCtoD is not equal to zero.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uAd Input reference to discretized matrix A Reference

uBd Input reference to discretized matrix B Reference

uP Input reference to a helper matrix Reference

uQ Input reference to a helper matrix Reference

uR Input reference to a helper matrix Reference

HLD Hold Bool

Parameters

is Pade approximation order ↓0 ↑4 ⊙2 Long (I32)

eps Approximation accuracy ↓1e-20 ↑0.001 ⊙1e-15 Double (F64)

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yAd Output reference to discretized matrix A Reference

yBd Output reference to discretized matrix B Reference

yP Output reference to a helper matrix Reference

yQ Output reference to a helper matrix Reference

yR Output reference to a helper matrix Reference

E Error indicator Bool

452CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DIM � Matrix/Vector dimensions

Block Symbol Licence: STANDARD

MX_DIM

uMV

yMV
m
n
ld
cnt

amax
etype

Function Description

The function block MX_DIM sets its outputs to the dimensions of the matrix or vector
referenced by uMV.

The output reference yMV is always set to the corresponding input reference uMV. The
error �ag E is set to on if the reference uMV is not de�ned (i.e. input uMV is not connected).

Input

uMV Input reference to a matrix or vector Reference

Outputs

yMV Output reference to a matrix or vector Reference

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

ld Leading dimension (>= number of rows) Long (I32)

cnt Count of used matrix/vector elements Long (I32)

amax Count of reserved/allocated matrix/vector elements Long (I32)

etype Matrix/vector element type (double, long, byte etc.) Long (I32)

453

MX_DIMSET � Set Matrix/Vector dimensions

Block Symbol Licence: STANDARD

MX_DIMSET

uMV

m

n

ld

yMV

cnt

amax

E

Function Description

The function block MX_DIMSET sets number rows m of the vector or number of rows m,
number of columns n and the leading dimension ld of the matrix referenced by uMV. If
any of the inputs m, n, ld is not connected, its original value is retained.

The output cnt contains the actual number of occupied elements of the matrix/vector
and is determined by the formula

cnt = ld ∗ (n− 1) + m ≤ amax ,

where the output amax is the allocated count of matrix/vector elements. If this inequality
is ful�lled the output cnt is set to the matrix/vector structure and can be retrieved by
the MX_DIM block, otherwise the value of cnt shows the minimum necessary number of
elements of the matrix/vector.

The output reference yMV is always set to the corresponding input reference uMV.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• the number of rows m < 1 or m > ld,

• the number of columns n < 1,

• the required number of elements cnt > amax.

Inputs

uMV Input reference to a matrix or vector Reference

m Number of matrix rows Long (I32)

ld Leading dimension (>= number of rows) Long (I32)

Outputs

yMV Output reference to a matrix or vector Reference

cnt Count of used matrix/vector elements Long (I32)

amax Number of allocated matrix/vector elements Long (I32)

454CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

E Error indicator Bool

455

MX_DSAGET � Set subarray of A into B

Block Symbol Licence: STANDARD

MX_DSAGET

uA

uB

uplo

i

j

m

n

HLD

yA

yB

E

Function Description

Generally, the function block MX_DSAGET copies the subarray (submatrix) of matrix ref-
erenced by uA into the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing is copied otherwise the submatrix of matrix refer-
enced by uA starting the row with zero based index I and the column with zero based
index J containing M rows and N columns is copied (with respect to the value of the
input uplo) to the matrix referenced by uB. The mentioned variables have the following
meanings:

• If the input i ≤ 0 then I is set to 0 else if i ≥ MA then I is set to MA− 1 else I is
set to i, where MA is the number of rows of the matrix referenced by uA.

• If the input j ≤ 0 then J is set to 0 else if j ≥ NA then J is set to NA− 1 else J is
set to j, where NA is the number of columns of the matrix referenced by uA.

• Number of copied rows M is set in two stages. First, M is set to minimum of MA− I

and number of rows of the matrix referenced by uB. Second, if m > 0 then M is set
to the minimum of m and M.

• Number of copied columns N is set in two stages. First, N is set to minimum of
NA − J and number of columns of the matrix referenced by uB. Second, if n > 0
then N is set to the minimum of n and N.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• uplo is less than 0 or greater than 3,

• the number of elements of the matrix referenced by uB is less than M ∗ N.

456CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uplo Part of the matrix to be copied Long (I32)

0 All
1 All

2 Upper
3 Lower

i Index of the subarray �rst row Long (I32)

j Index of the subarray �rst column Long (I32)

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

457

MX_DSAREF � Set reference to subarray of A into B

Block Symbol Licence: STANDARD

MX_DSAREF

uA

i

j

HLD

yA

yB

E

Function Description

The function block MX_DSAREF creates a reference yB to the subarray (submatrix) of
matrix referenced by uA. This operation is very fast because no matrix element is copied.

The output reference yA is always set to the corresponding input reference uA, the
output reference yB is created inside each instance of this function block. If HLD = on

then no other operation is performed otherwise the reference to the matrix yB is created
with the following properties:

• Number of rows of the submatrix is set to M− i, where M is number of rows of the
matrix referenced by uA.

• Number of columns of the submatrix is set to N− j, where N is number of columns
of the matrix referenced by uA.

• The �rst element in position (0, 0) of the submatrix is the element of the matrix
referenced by uA in position (i, j), all indices are zero based.

• The matrix referenced by yB has the same leading dimension as the matrix refer-
enced by uA.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

• 0 > i ≥ M.

• 0 > j ≥ N.

Inputs

uA Input reference to matrix A Reference

i Index of the subarray �rst row Long (I32)

j Index of the subarray �rst column Long (I32)

HLD Hold Bool

458CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Parameter

ay Output reference of the subarray ⊙[0 0] Double (F64)

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

459

MX_DSASET � Set A into subarray of B

Block Symbol Licence: STANDARD

MX_DSASET

uA

uB

uplo

i

j

m

n

HLD

yA

yB

E

Function Description

Generally, the function block MX_DSASET copies the matrix referenced by uA into the
subarray (submatrix) of the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing is copied otherwise the matrix referenced by uA

is copied (with respect to the value of the input uplo) to the submatrix of the matrix
referenced by uB to the row with zero based index I and the column with zero based
index J containing M rows and N columns. The mentioned variables have the following
meanings:

• If the input i ≤ 0 then I is set to 0 else if i ≥ MB then I is set to MB− 1 else I is
set to i, where MB is the number of rows of the matrix referenced by uB.

• If the input j ≤ 0 then J is set to 0 else if j ≥ NB then J is set to NB− 1 else J is
set to j, where NB is the number of columns of the matrix referenced by uB.

• Number of copied rows M is set in two stages. First, M is set to minimum of MB− I

and number of rows of the matrix referenced by uA. Second, if m > 0 then M is set
to the minimum of m and M.

• Number of copied columns N is set in two stages. First, N is set to minimum of
NB − J and number of columns of the matrix referenced by uA. Second, if n > 0
then N is set to the minimum of n and N.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• uplo is less than 0 or greater than 3,

• the number of elements of the matrix referenced by uB is less than M ∗ N.

460CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uplo Part of the matrix to be copied Long (I32)

0 All
1 All

2 Upper
3 Lower

i Index of the subarray �rst row Long (I32)

j Index of the subarray �rst column Long (I32)

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

461

MX_DTRNSP � General matrix transposition: B := alpha*A^T

Block Symbol Licence: STANDARD

MX_DTRNSP

uA

uB

alpha

HLD

yA

yB

E

Function Description

The function block MX_DTRNSP stores the scalar multiple of the general (i.e. rectangular)
matrix referenced by uA into the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing else is done otherwise the BLAS-like function
X_DTRNSP is called internally:

X_DTRNSP(M, N, ALPHA, uA, LDA, uB, LDB);

where parameters of X_DTRNSP are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• If the input alpha is equal to 0 then ALPHA is set to 1 else ALPHA is set to alpha.

• LDA and LDB are leading dimensions of matrices referenced by uA and uB.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• the call of the function X_DTRNSP returns error using the function XERBLA, see the
system log.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

462CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

yB Output reference to matrix B Reference

E Error indicator Bool

463

MX_DTRNSQ � Square matrix in-place transposition: A := al-
pha*A^T

Block Symbol Licence: STANDARD

MX_DTRNSQ

uA

alpha

HLD

yA

E

Function Description

The function block MX_DTRNSQ transpose the scalar multiple of the square matrix refer-
enced by uA in-place.

The output reference yA is always set to the corresponding input references uA. If
HLD = on then nothing else is done otherwise the BLAS-like function X_DTRNSQ is called
internally:

X_DTRNSQ(N, ALPHA, uA, LDA);

where parameters of X_DTRNSQ are set in the following way:

• N is number of rows and columns of the matrix referenced by uA.

• If the input alpha is equal to 0 then ALPHA is set to 1 else ALPHA is set to alpha.

• LDA is the leading dimension of the matrix referenced by uA.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

• the matrix referenced by uA is not square,

• the call of the function X_DTRNSQ returns error using the function XERBLA, see the
system log.

Inputs

uA Input reference to matrix A Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Outputs

yA Output reference to matrix A Reference

E Error indicator Bool

464CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_FILL � Fill real matrix or vector

Block Symbol Licence: STANDARD

MX_FILL

uMV

value

mode

HLD

yMV

E

Function Description

The function block MX_FILL �lls elements of the matrix or vector referenced by uMV

according to the input mode.
The output reference yMV is always set to the corresponding input references uMV. If

HLD = on then nothing else is done.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• 0 > mode > 4.

Inputs

uMV Input reference to a matrix or vector Reference

value Fill value of matrix/vector Double (F64)

mode Fill mode Long (I32)

0,1 . . . Value � All elements are set to value

2 Ones � All elements are set to 1
3 Diagonal value � Diagonal is set to value, the other

elements to 0
4 Diagonal ones � Initializes identity matrix (eye)

HLD Hold Bool

Outputs

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

465

MX_MAT � Matrix data storage block

Block Symbol Licence: STANDARD

MX_MAT

yMat

Function Description

The function block MX_MAT allocates memory (during the block initialization) for m ∗ n
elements of the type determined by the parameter etype of the matrix referenced by the
output yMat. Also matrix leading dimension can be set by the parameter ld. If ld < m

then the leading dimension is set to m.
Note that the present version of the MATRIX function block set supports only matrices

with the etype equal to 8: Double.

Parameters

m Number of matrix rows ↓1 ↑1000000000 ⊙10 Long (I32)

n Number of matrix columns ↓1 ↑1000000000 ⊙10 Long (I32)

ld Leading dimension (>= number of rows) ↓0 ↑1000000000 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)

6 DWord (U32)
7 Float (F32)
8 Double (F64)
�-
10 Large (I64)

Output

yMat Output reference to a matrix Reference

466CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_RAND � Randomly generated matrix or vector

Block Symbol Licence: STANDARD

MX_RAND

uMV

nseed

SET

HLD

yMV

E

Function Description

The function block MX_RAND generates random elements of the matrix or vector referenced
by uMV.

The output reference yMV is always set to the corresponding input references uMV. If
HLD = on then nothing is generated otherwise pseudo-random values of the matrix or
vector elements referenced by uMV are generated using these rules:

• If the parameter BIP is on then the generated elements are inside the interval
[−scale; scale] else they are inside the interval [0; scale].

• Elements are internally generated using the standard C language function rand()

which generates pseudo-random numbers in the range from 0 to RAND_MAX. Note,
that the value of RAND_MAX can be platform dependent (and it should be at least
32767).

• The rising edge on the input SET causes that the standard C language function
srand(nseed) (initailizes the pseudo-random generator with the value of nseed)
is called before the generation of random elements. The same sequences of pseudo-
random numbers are generated after calls of srand(nseed) for the same values of
nseed.

The error �ag E is set to on if the reference uMV is not de�ned (i.e. input uMV is not
connected).

Inputs

uMV Input reference to a matrix or vector Reference

nseed Random number seed Long (I32)

SET Set initial value of random number generator to nseed on rising
edge

Bool

HLD Hold Bool

Parameters

BIP Bipolar random values �ag Bool

467

scale Random values multiplication factor ⊙1.0 Double (F64)

Outputs

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

468CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_REFCOPY � Copies input references of matrices A and B to
their output references

Block Symbol Licence: STANDARD

MX_REFCOPY

uA

uB

yA

yB

Function Description

The function block MX_REFCOPY is an administrative block of the MATRIX blockset. It does
nothing else than copying the input references uA and uB to the corresponding output
references yA and yB.

But suitable insertion of this block to the function block scheme can substantially in-
�uence (change) the execution order of blocks which can be very advantageous especially
in combination with such blocks as e.g. MX_DSAREF.

Inputs

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

Outputs

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

469

MX_SLFS � Save or load a Matrix/Vector into �le or string

Block Symbol Licence: STANDARD

MX_SLFS

uMV

uStr

LOAD

SAVE

yMV

yStr

iE

Function Description

The block allows to convert a matrix or vector into text form and vice versa. The matrix
is supplied as a reference to the uMV input. The yMV output refers to the same matrix as
the uMV input, and is intended to chain matrix blocks in the correct order, as is common
with all MATRIX blocks. The text can be either in the input uStr (or output yStr for
the opposite direction of conversion) or in the �le. If the text is in a �le, its name is the
string connected to the uStr input. The usual REXYGENsystem �le name rules applies ,
ie it is relative to datadir and ../ is not allowed to leave the directory. If the uStr input
is unattached (or empty string), the path name of the �le is used with the full path (that
is, including the task name and all subsystems) with the .dat extension.

The format of a matrix in a text �le or in text input and output is determined by the
format parameter. Supported English and Czech CSV (i.e., columns separated by comma
or semicolon), JSON format (created by Google and often used in web applications) and
the format used by MATLAB (for entering a matrix in MATLAB scripts).

Conversion from text to matrix/vector or vice versa can be performed at each step
of the algorithm or is triggered by the LOAD and SAVE inputs. The exact method is
determined by the mode parameter and is explained in detail in the description of this
parameter. If an error occurs, it is signaled to the iE output and in the log. After a fatal
error, the conversion from/to the matrix stops. Error reset for mode = 1 .. 4 is done
by setting LOAD = SAVE = off, resetting fatal error cannot be performed for mode = 5

.. 8 (must switch to mode = 1 .. 4 and then back).
The nmax parameter is used to alocate the output string. If nmax> 0, it is allocated

speci�ed number of chars during initialization. If this amount is insu�cient, the block
reports an error. If nmax = 0, the block increases the length of the output string as
needed. If user don't specify the nmax parameter it can lead to full RAM memory in
extreme situations and unpredictable behaviour of entire system.

Inputs

uMV Input reference to a matrix or vector Reference

uStr Input string (to convert into matrix) or �lename String

LOAD Trigger to move data to matrix/vector Bool

SAVE Trigger to move data from matrix/vector Bool

470CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Parameters

mode Triggering mode ⊙2 Long (I32)

1 level-triggered �le
2 edge-triggered �le
3 level-triggered string
4 edge-triggered string
5 continuous string to matrix
6 continuous matrix to string
7 continuous �le to matrix
8 continuous matrix to �le

format String/�le format ⊙1 Long (I32)

1 CSV
2 CSV(semicolon)
3 JSON
4 MATLAB

prec Number of digits for single value ↓0 ↑20 ⊙6 Long (I32)

TRN Transposition �ag Bool

nmax Allocated size of string ↓0 Long (I32)

Outputs

yMV Output reference to a matrix or vector Reference

yStr String representation of the matrix/vector String

iE Error code Error

471

MX_VEC � Vector data storage block

Block Symbol Licence: STANDARD

MX_VEC

yVec

Function Description

The function block MX_VEC allocates memory (during the block initialization) for n ele-
ments of the type determined by the parameter etype of the vector referenced by the
output yVec.

Note that the present version of the MATRIX function block set supports only vectors
with the etype equal to 8: Double.

Parameters

n Number of vector elements ↓1 ↑1000000000 ⊙10 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)

6 DWord (U32)
7 Float (F32)
8 Double (F64)
�-
10 Large (I64)

Output

yVec Output reference to a vector Reference

472CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_WRITE � Write a Matrix/Vector to the console/system log

Block Symbol Licence: STANDARD

MX_WRITE

uMV
RUN

yMV
E

Function Description

This function block can write a vector or matrix to the console or the system log. The
severity of the console/system log output is set by the parameter mode in combination
with settings of system log from REXYGEN Studio, menu Target/Configure System

Log. Written data can be viewed in REXYGEN Studio, after opening the system log
window by the command Target/Show System Log. The function block is very useful
for debugging purposes of matrix/vector algorithms.

The output references yMV is always set to the input reference uMV. If RUN = off

then nothing else is done otherwise matrix or vector is written to the system log if the
con�gured target logging level for function blocks contains the con�gured mode. Format
of each matrix/vector element is determined by parameters mchars and mdec.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• 3 > mchars > 25,

• 0 > mdec > mchars− 2.

Inputs

uMV Input reference to a matrix or vector Reference

RUN Enable execution Bool

Parameters

Symbol Matrix/vector symbolic name for console or log output ⊙A String

mchars Number of characters per single element ↓3 ↑25 ⊙8 Long (I32)

mdec Number of decimal digits per single element ↓0 ↑23 ⊙4 Long (I32)

mode Severity mode of writing ⊙3 Long (I32)

1 None
2 Verbose
3 Information
4 Warning
5 Error

473

Outputs

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

474CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

RTOV � Vector multiplexer

Block Symbol Licence: STANDARD

RTOV

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

Function Description

The RTOV block can be used to create vector signals in the REXYGEN system. It combines
the scalar input signals into one vector output signal.

It is also possible to chain the RTOV blocks to create signals with more than 8 items.
The nmax parameter de�nes the maximal number of items in the vector (in other

words, the size of memory allocated for the signal). The offset parameter de�nes the
position of the �rst input signal u1 in the resulting signal. Only the �rst n input signals
are combined into the resulting yVec vector signal.

ATTENTION: Up to version 2.50.10.x output vector is one-row-matrix. Later version
(2.51.0.9525 and later) use one-column-matrix. This change was necessary for consistance
in matrix operation.

Inputs

uVec Vector signal Reference

u1 Analog input of the block Double (F64)

u2 Analog input of the block Double (F64)

u3 Analog input of the block Double (F64)

u4 Analog input of the block Double (F64)

u5 Analog input of the block Double (F64)

u6 Analog input of the block Double (F64)

u7 Analog input of the block Double (F64)

u8 Analog input of the block Double (F64)

Parameters

nmax Allocated size of vector ↓0 ⊙8 Long (I32)

offset Index of the �rst input in vector ↓0 Long (I32)

n Number of valid inputs ↓0 ↑8 ⊙8 Long (I32)

475

Output

yVec Vector signal Reference

476CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

SWVMR � Vector/matrix/reference signal switch

Block Symbol Licence: STANDARD

SWVMR

uRef0
uRef1
uRef2
uRef3
uRef4
uRef5
uRef6
uRef7
iSW

yRef

Function Description

The SWVMR allows switching of vector or matrix signals. It also allow switching of motion
axes in motion control algorithms (see the RM_Axis block).

Use the SSW block or its alternatives SWR and SELU for switching simple signals.

Inputs

uRef0 Vector signal Reference

uRef1 Vector signal Reference

uRef2 Vector signal Reference

uRef3 Vector signal Reference

uRef4 Vector signal Reference

uRef5 Vector signal Reference

uRef6 Vector signal Reference

uRef7 Vector signal Reference

iSW Active signal selector Long (I32)

Output

yRef Vector signal Reference

477

VTOR � Vector demultiplexer

Block Symbol Licence: STANDARD

VTOR

uVec

y1
y2
y3
y4
y5
y6
y7
y8

Function Description

The VTOR block splits the input vector signal into individual signals. The user de�nes the
starting item and the number of items to feed to the output signals using the offset

and N parameter respectively.

Input

uVec Vector signal Reference

Parameters

n Number of valid outputs ↓0 ↑8 ⊙8 Long (I32)

offset Index of the �rst output ↓0 Long (I32)

Outputs

y1 Analog output of the block Double (F64)

y2 Analog output of the block Double (F64)

y3 Analog output of the block Double (F64)

y4 Analog output of the block Double (F64)

y5 Analog output of the block Double (F64)

y6 Analog output of the block Double (F64)

y7 Analog output of the block Double (F64)

y8 Analog output of the block Double (F64)

478CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Chapter 15

OPTIM � Optimization blocks

Contents

QP_MPC2QP � Conversion of MPC problem to quadratic program-
ming . 480

QP_OASES � Quadratic programming using active set method . . . 487

QP_UPDATE � Update matrices/vectors of quadratic programming 492

479

480 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

QP_MPC2QP � Conversion of MPC problem to quadratic pro-
gramming

Block Symbol Licence: ADVANCED

QP_MPC2QP

np

nc

uA

uBu

uBv

uC

uQ

uW

uR

ul

uH

uGx

uGv

uGw

uSuL

uSv

uT

uScuL

uScv

uTc

uWORK

HLD

yA

yBu

yBv

yC

yQ

yW

yR

yl

yH

yGx

yGv

yGw

ySuL

ySv

yT

yScuL

yScv

yTc

yWORK

E

Function Description

Quadratic Programming (QP) is a standard technique which suites very well to solve
model based predictive control (MPC) problems [9]. Quadratic Programming is an opti-
mization technique that minimizes the sum of quadratic form and linear form.

The QP_MPC2QP block converts a linear MPC problem with quadratic optimization
criterion to a quadratic programming problem. The block is compatible with the block
QP_UPDATE and the QP solver QP_OASES.

MPC problem formulation

The MPC problem consists of a discrete linear time invariant state space model

xk+1 = Axk +Buuk +Bvvk ,

yk = Cxk ,
(15.1)

where x ∈ Rn is the state vector, u ∈ Rmu is the input vector, v ∈ Rmv is the disturbance
vector and y ∈ Rp is the output vector. Matrices A ∈ Rn×n, Bu ∈ Rn×mu , Bv ∈ Rn×mv

and C ∈ Rp×n are referenced by inputs uA, uBu, uBv and uC. The model based predictive
control problem is formulated as an optimization problem � minimization of the quadratic
optimality criterion (cost function) in the form

481

J =

np∑
k=1

{
x̂TkQx̂k + x̂TkW + ûTk−1Rûk−1

}
, (15.2)

where symmetric and positive (semi-)de�nite matrices Q ∈ Rn×n and R ∈ Rmu×mu and
the vector W ∈ Rn are referenced by inputs uQ, uR and uW, and np is the prediction
horizon (input np).

Additional constraints on the state x and the output y may be required for the
minimization process:

xmin ≤ xk ≤ xmax (15.3)

ymin ≤ yk ≤ ymax (15.4)

Predictor

From the state equation with the initial condition x0 it holds

x1 = Ax0 +Buu0 +Bvv0

x2 = Ax1 +Buu1 +Bvv1

= A2x0 +ABuu0 +Buu1 +ABvv0 +Bvv1
...

xk = Akx0 +
[
Ak−1Bu . . . ABu Bu

] u0
...

uk−1

+
[
Ak−1Bv . . . ABv Bv

] v0
...

vk−1

Thus, for the prediction horizon np we have

x1
x2
...

︸︷︷︸
X

xnp

 =

Bu 0 . . . 0
ABu Bu . . . 0
...

...
. . .

...

︸ ︷︷ ︸
Su

Anp−1Bu Anp−2Bu . . . Bu

u0
u1
...

︸ ︷︷ ︸
U

unp−1

+

Bv 0 . . . 0
ABv Bv . . . 0
...

...
. . .

...

︸ ︷︷ ︸
Sv

Anp−1Bv Anp−2Bv . . . Bv

v0
v1
...

︸ ︷︷ ︸
V

vnp−1

+

A
A2

...

︸︷︷︸
T

Anp

x0

482 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

i.e.
X = SuU + SvV + Tx0 (15.5)

Similarly, for the output equation we can get

y1
y2
...

︸︷︷︸
Y

ynp

 =

Cx1
Cx2
...

Cxnp

 =

CBu 0 . . . 0
CABu CBu . . . 0

...
...

. . .
...

︸ ︷︷ ︸
Scu

CAnp−1Bu CAnp−2Bu . . . CBu

u0
u1
...

unp−1

+

CBv 0 . . . 0
CABv CBv . . . 0

...
...

. . .
...

︸ ︷︷ ︸
Scv

CAnp−1Bv CAnp−2Bv . . . CBv

v0
v1
...

vnp−1

+

CA
CA2

...

︸ ︷︷ ︸
Tc

CAnp

x0

i.e.
Y = ScuU + ScvV + Tcx0 (15.6)

and standard QP matrices Aeq and beq

Aeq = ScuL, beq = −ScvV − Tcx0 (15.7)

Predictor for control horizon less than prediction horizon

Until now, it was assumed that optimal control would be sought over the entire prediction
horizon np. For a long prediction horizon, this leads to time-consuming optimization,
which can be accelerated by choosing a control horizon nc (input nc) smaller than the
prediction horizon np. Then U can be written as

U =

u0
u1
...

unc−1

unc−1
...

unc−1

nc

np−nc

np

Note that the input uk is the di�erence of the state and for control horizon nc it holds
uk+nc−1 = uk+nc = uk+nc+1 = · · · = uk+np−1 = 0 (for the step k). Then it can be written

483

as

U =

nc

np−nc

Imu 0
. . .

0 Imu

0

︸ ︷︷ ︸
L

 u0

...
unc−1

 ≜ LUnc (15.8)

where U ∈ Rnp·mu , Unc ∈ Rnc·mu and Imu ∈ Rmu×mu is identity matrix.

The equations (15.5) and (15.6) are modi�ed for Unc to

X = SuLUnc + SvV + Tx0 (15.9)

Y = ScuLUnc + ScvV + Tcx0 (15.10)

Matrices SuL ∈ Rnp·n×nc·mu , Sv ∈ Rnp·n×np·mv , T ∈ Rnp·n×n, ScuL ∈ Rnp·p×nc·mu ,
Scv ∈ Rnp·p×np·mv and Tc ∈ Rnp·p×n are computed by this block, must be allocated e.g.
by the MX_MAT blocks and references to the preallocated matrices must be connected to
the block inputs uSuL, uSv, uT, uScuL, uScv and uTc.

The default value of the matrix L ∈ Rnp·mu×nc·mu in equation 15.8 selects the �rst
nc subvectors ui, i = 0, . . . , nc − 1 from U . The block also allows to select nc subvectors
ui with arbitrary indices from 0, . . . , np, which are contained in the integer vector of
dimension nc referenced by the input ul. The elements of this vector must form an
increasing sequence. If the input ul is not connected, the default value of L is used (the
same value of L is obtained if the vector referenced by ul is equal to [0, 1, . . . , nc−1]T).

Conversion of MPC with the same prediction and control horizons to QP

The standard form of cost function for QP is

JQP = hUTHU + UTG (15.11)

where U a vector of optimal control sequence, H is a symmetric and positive (semi-)
de�nite Hessian matrix, G is a gradient vector and h is a scalar constant which is usually
equal to 1 or 1/2.

484 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

The cost function (15.2) can be modi�ed to the form

J =

np∑
k=1

{
xTkQxk + xTkW + uTk−1Ruk−1

}

=
[
x1 x2 . . . xnp

]

Q

Q
. . .

︸ ︷︷ ︸
Q̄ = Q̄T

Q

x1
x2
...

xnp

+
[
x1 x2 . . . xnp

]

W
W
...

︸︷︷︸
W̄

W

+
[
u0 u1 . . . unp−1

]

R

R
. . .

︸ ︷︷ ︸
R̄ = R̄T

R

u0
u1
...

unp−1

= XT Q̄X +XT W̄ + UT R̄U

= (UTST
u + V TST

v + xT0 T
T)Q̄(SuU + SvV + Tx0)

+ (UTST
u + V TST

v + xT0 T
T)W̄ + UT R̄U

= UTST
u Q̄SuU + UTST

u Q̄SvV + UTST
u Q̄Tx0

+ V TST
v Q̄SuU + V TST

v Q̄SvV + V TST
v Q̄Tx0

+ xT0 T
T Q̄SuU + xT0 T

T Q̄SvV + xT0 T
T Q̄Tx0

+ UTST
u W̄ + V TST

v W̄ + xT0 T
T W̄ + UT R̄U

= UT (ST
u Q̄Su + R̄)U + UTST

u (2Q̄SvV + 2Q̄Tx0 + W̄)

+ ︸ ︷︷ ︸
Jdif

V TST
v (Q̄SvV + 2Q̄Tx0 + W̄) + xT0 T

T (Q̄Tx0 + W̄) ≜ JQP + Jdif

(15.12)

where Jdif is a constant independent of U . From here follows

JQP = UT (ST
u Q̄Su + R̄)U + UTST

u (2Q̄SvV + 2Q̄Tx0 + W̄) (15.13)

Comparing this equation with (15.11), it is obvious that

H =
1

h
(ST

u Q̄Su + R̄)

G = ST
u (2Q̄SvV + 2Q̄Tx0 + W̄)

(15.14)

485

Conversion of MPC with control horizon less than prediction horizon

Similarly as in previous subsection we can get for nc < np

H =
1

h
LT (ST

u Q̄Su + R̄)L

G = (SuL)
T (2Q̄SvV + 2Q̄Tx0 + W̄) ≜ GvV +Gxx0 +Gw

(15.15)

where matrix L is de�ned by (15.8). The Hessian matrix H is a constant matrix for all
steps k of the MPC. But gradient vector G is generally changing in each step k because
vectors V and x0 are changing. Therefore, G is composed of parts Gv, Gx and Gw, which
are already constant vectors. The matrix H and vectors Gv, Gx and Gw are computed
by this function block and are referenced by inputs uH, uGv, uGx and uGw which must be
preallocated. The scalar constant h is the function block parameter.

Inputs

np Prediction horizon ↓1 ↑1000000 Long (I32)

nc Control horizon ↓1 ↑1000000 Long (I32)

uA Input reference to system matrix A Reference

uBu Input reference to input matrix Bu of control vector u Reference

uBv Input reference to input matrix Bv of disturbance vector v Reference

uC Input reference to output matrix C Reference

uQ Input reference to symmetric matrix Q in cost function Reference

uW Input reference to vector W in cost function Reference

uR Input reference to symmetric matrix R in cost function Reference

ul Input reference to integer index vector l Reference

uH Input reference to Hessian matrix H Reference

uGx Input reference to part of gradient vector G corresponding to
state vector x

Reference

uGv Input reference to part of gradient vector G corresponding to
disturbance vector v

Reference

uGw Intput reference to part of gradient vector G corresponding to
vector W

Reference

uSuL Input reference to work matrix Su*L Reference

uSv Input reference to work matrix Sv Reference

uT Input reference to work matrix T Reference

uScuL Input reference to work matrix Scu*L Reference

uScv Input reference to work matrix Scv Reference

uTc Input reference to work matrix Tc Reference

uWORK Input reference to matrix WORK Reference

HLD Hold Bool

Outputs

yA Output reference to system matrix A Reference

486 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

yBu Output reference to input matrix Bu of control vector u Reference

yBv Output reference to input matrix Bv of disturbance vector v Reference

yC Output reference to output matrix C Reference

yQ Output reference to symmetric matrix Q in cost function Reference

yW Output reference to vector W in cost function Reference

yR Output reference to symmetric matrix R in cost function Reference

yl Output reference to integer index vector l Reference

yH Output reference to Hessian matrix H Reference

yGx Output reference to part of gradient vector G corresponding to
state vector x

Reference

yGv Output reference to part of gradient vector G corresponding to
disturbance vector v

Reference

yGw Output reference to part of gradient vector G corresponding to
vector W

Reference

ySuL Output reference to work matrix Su*L Reference

ySv Output reference to work matrix Sv Reference

yT Output reference to work matrix T Reference

yScuL Output reference to work matrix Scu*L Reference

yScv Output reference to work matrix Scv Reference

yTc Output reference to work matrix Tc Reference

yWORK Output reference to matrix WORK Reference

E Error indicator Bool

487

QP_OASES � Quadratic programming using active set method

Block Symbol Licence: ADVANCED

QP_OASES

uQP

uH

uG

uA

uLB

uUB

uLBA

uUBA

uXopt

uYopt

unWSR

utime

VAR

INIT

HLD

yQP

yH

yG

yA

yLB

yUB

yLBA

yUBA

yXopt

yYopt

ynWSR

ytime

objval

E

iE

Function Description

The QP_OASES block solves a quadratic programming problem using active set method
[10]

min
x∈RnV

1
2x

THx+ xTG ,

s. t. lbA ≤ Ax ≤ ubA ,

lb ≤ x ≤ ub ,

where nV is number of variables, nC is number of constraints, the Hessian matrix H ∈
RnV×nV is symmetric and positive (semi-)de�nite, the gradient vector G ∈ RnV, the
constraint matrix A ∈ RnC×nV, bound vectors lb,ub ∈ RnV and constraint vectors
lbA, ubA ∈ RnC.

The block wraps the qpOASES library1, the use of which is described in the manual
[11].

The output references yH, yG, yA, yLB, yUB, yLBA, yUBA, yXopt and yYopt are always
set to the corresponding input uH, uG, uA, uLB, uUB, uLBA, uUBA, uXopt and uYopt. If the
input uQP is not connected, the particular quadratic problem (QP) is allocated in the
�rst execution of the function block (see below) and the output yQP is set to the reference
of the allocated QP. If uQP is connected (to the yQP output of the previous QP_OASES

block), the yQP output is set to uQP and the block works with an already allocated QP.
The block uses internal variables nV and nC. The value of nV is set to the number of

rows of the vector G referenced by uG, the value of nV is set to the number of rows of
1qpOASES is distributed under the GNU Lesser General Public License, see Appendix A of [11].

488 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

the matrix A referenced by uA. If the reference uA is not de�ned (the matrix A is not
connected), the value nC = 0.

To solve the QP problem, a QProblem object is created in the generic case (see
Chapter 3 of [11]). However, the block can also solve the following special cases depending
on the input references and the hessianType parameter:

uH not connected. In this case, it is assumed that Hessian matrix has a trivial value of
the identity or zero matrix. The hessianType parameter must be equal to HST_ZERO
or HST_IDENTITY, see Section 4.5 of the manual [11].

uA not connected. In this case, the constraint matrix A is not used (nC = 0, the
QProblemB object is created, see Section 4.3 of the manual [11]. The hessianType
parameter can be any allowed value.

VAR = on. If the input VAR = on during the �rst time the block is executed, an object
of class SQProblem is created, see Section 4.2 of the manual [11]. In this case, all
input matrices and vectors can change in each execution step in which VAR = on.

To obtain the solution of the QP problem, at least one of the input references uXopt
and uYopt must be de�ned (connected to a vector). If connected to uXopt, the yXopt

output will refer to the primal solution Xopt ∈ RnV, if connected to uYopt, the yYopt

output will refer to the dual solution Yopt ∈ RnV+nC of the QP problem. If both in-
puts are connected, both solutions will be obtained in each step. The optimal objective
function value is indicated on the output objval.

The integer input unWSR speci�es the maximum number of working set recalculations
to be performed during the initial homotopy, see Section 3.2 of the manual [11]. Output
ynWSR contains the number of working set recalculations actually performed. If the double
input utime is connected and has a positive value, it contains the maximum allowed
CPU time in seconds for the whole initialisation. The actually required CPU time for
the initialization is indicated on the output ytime.

At least one vector must be connected from the uXopt and uYopt pair must be
connected to obtain the solution of the QP problem. If uXopt is connected, the yXopt
output will refer to the primary Xopt solution, if uYopt is connected, the yYopt output
will refer to the dual Yopt solution of the QP task. If both inputs are connected, both
solutions will be obtained in each step.

If the input INIT = on then the particular allocated QP problem is re-initialized.
The INIT should be on for only a single period (edge) because no solution is computed
during the QP initialisation. If HLD = on then nothing is computed.
The error �ag E is set to on and the error code iE is set to zero if:

• the reference uG or uLB or uUB is not de�ned (i.e. input uG or uLB or uUB is not
connected),

• the reference uA is de�ned and uLBA or uUBA is not de�ned (i.e. input uA is connected
and uLBA or uUBA is not connected),

489

• both references uXopt and uYopt are not de�ned (i.e. neither of the inputs uXopt
and uYopt is connected),

• the Hessian matrix H referenced by uH has a di�erent number of rows and columns
than nV,

• the number of rows of vectors referenced by uLB and uUB is not equal to nV (or the
number of their columns is not equal to 1),

• the number of rows of vectors referenced by uLBA and uUBA is not equal to nC (or
the number of their columns is not equal to 1) if the matrix A referenced by uA is
connected,

• the number of rows of the vector referenced by uXopt is not equal to nV or the
number of rows of the vector referenced by yOpt is not equal to nV+nC (or the
number of their columns is not equal to 1),

• the internal space for transposed copies of matrices H or A is too small.

If the �ag E is set to on and the error code iE is not zero then iE indicates the
qpOASES error code, see the include �le MessageHandling.hpp from qpOASES library.

Inputs

uQP Input reference to quadratic programming problem Reference

uH Input reference to Hessian matrix H Reference

uG Input reference to gradient vector G Reference

uA Input reference to constraint matrix A Reference

uLB Input reference to lower bound vector LB Reference

uUB Input reference to upper bound vector LB Reference

uLBA Input reference to lower constraints' bound vector LB Reference

uUBA Input reference to upper constraints' bound vector LB Reference

uXopt Input reference to primal optimal solution Reference

uYopt Input reference to dual optimal solution Reference

unWSR Maximum number of initial working set recalculations Long (I32)

utime Maximum allowed CPU time in seconds for the whole
initialisation

Double (F64)

VAR Indiates that matrices H and A are time varying Bool

INIT Calls init() function instead of hotstart() in each block execution Bool

HLD If HLD = on then nothing is computed Bool

Parameters

nVmax Maximum number of optimization variables nV Long (I32)

nCmax Maximum number of optimization constraints nC Long (I32)

490 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

hessianType Hessian matrix type Long (I32)

printLevel Print level Long (I32)

enableRamping Enable ramping Bool

enableFarBounds Enable use of far bounds Bool

enableFlippingBounds Enable use of �ipping bounds Bool

enableRegularisation Enable regularisation of semide�nite Hessian
matrix

Bool

enableFullLITests Enable use of condition-hardened linear
independence tests

Bool

enableNZCTests Enable nonzero curvature tests Bool

enableDriftCorrection Frequency of drift corrections (0 = o�) Long (I32)

enableCholeskyRefact Frequency of full refactorisation of projected
Hessian (0 = o�)

Long (I32)

enableEqualities Equalities shall be always treated as active
constraints

Bool

terminationTolerance Termination tolerance Double (F64)

boundTolerance If upper and lower limits di�er less than this
tolerance, they are regarded equal, i.e. as equality
constraint

Double (F64)

boundRelaxation Initial relaxation of bounds to start homotopy and
initial value for far bounds.

Double (F64)

epsNum Numerator tolerance for ratio tests Double (F64)

epsDen Denominator tolerance for ratio tests Double (F64)

maxPrimalJump Maximum allowed jump in primal variables in
nonzero curvature tests

Double (F64)

maxDualJump Maximum allowed jump in dual variables in linear
independence tests

Double (F64)

initialRamping Start value for ramping strategy Double (F64)

finalRamping Final value for ramping strategy Double (F64)

initialFarBounds Initial size of Far Bounds Double (F64)

growFarBounds Factor to grow Far Bounds Double (F64)

initialStatusBounds Initial status of bounds at �rst iteration Long (I32)

epsFlipping Tolerance of squared entry of Cholesky diagonal
which triggers �ipping bounds

Double (F64)

numRegularisationSteps Maximum number of successive regularisation
steps

Long (I32)

epsRegularisation Scaling factor of identity matrix used for Hessian
regularisation

Double (F64)

numRefinementSteps Maximum number of iterative re�nement steps Long (I32)

epsIterRef Early termination tolerance for iterative
re�nement

Double (F64)

epsLITests Tolerance for linear independence tests Double (F64)

epsNZCTests Tolerance for nonzero curvature tests Double (F64)

491

Outputs

yQP Output reference to quadratic programming problem Reference

yH Output reference to Hessian matrix H Reference

yG Output reference to gradient vector G Reference

yA Output reference to constraint matrix A Reference

yLB Output reference to lower bound vector LB Reference

yUB Output reference to upper bound vector LB Reference

yLBA Output reference to lower constraints'bound vector LB Reference

yUBA Output reference to upper constraints' bound vector LB Reference

yXopt Output reference to primal optimal solution Reference

yYopt Output reference to dual optimal solution Reference

ynWSR Number of performed initial working set recalculations Long (I32)

ytime Elapsed CPU time in seconds for the whole initialisation Double (F64)

objval Optimal objective function value Double (F64)

E Error indicator Bool

iE Error code Long (I32)

492 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

QP_UPDATE � Update matrices/vectors of quadratic program-
ming

Block Symbol Licence: ADVANCED

QP_UPDATE

np

nc

ux0

uxmin

uxmax

uymin

uymax

uV

uGx

uGv

uGw

uSuL

uSv

uT

uScuL

uScv

uTc

uG

uCA

uLBA

uUBA

HLD

yx0

yxmin

yxmax

yymin

yymax

yV

yGx

yGv

yGw

ySuL

ySv

yT

yScuL

yScv

yTc

yG

yCA

yLBA

yUBA

E

Function Description

The QP_UPDATE function block cooperates with the QP_MPC2QP block which converts
the MPC problem described by equations (15.1)�(15.4) with prediction horizon np and
control horizon nc (inputs np and nc), to quadratic programming and pre-computes
the Hessian matrix H, parts of the gradient vector Gx, Gv, Gw, matrices determining
state constraints SuL, Sv, T , and matrices determining output constraints ScuL, Scv, Tc.
Besides the constant Hessian matrix H, the other vectors and matrices are connected to
input references uGx, uGv, uGw, uSuL, uSv, uT, uScuL, uScv and uTc.

This block updates the QP problem for the given time instant with current values
of state vector initial condition x0, state vector bounds xmin and xmax, output vector
bounds ymin and ymax, vector V (see eq. (15.5)) of disturbance prediction vectors vk, k =
0, . . . , np − 1. These vectors are referenced by inputs ux0, uxmin, uxmax, uymin, uymax
and uV.

First, the gradient vector G referenced by the input uG is updated according to the
equation (15.15):

G = Gxx0 +GvV +Gw.

The state constraints (15.3) can be rewritten using (15.9) for the prediction horizon
np to

Xmin − SvV − Tx0 ≤ SuLUnc ≤ Xmax − SvV − Tx0,

493

where Xmin resp. Xmax is a vector composed of np copies of the xmin resp. xmax vector.
Similarly, the output constraints (15.4) can be rewritten using (15.10) to

Ymin − ScvV − Tcx0 ≤ ScuLUnc ≤ Ymax − ScvV − Tcx0, .

where Ymin resp. Ymax is a vector composed of np copies of the ymin resp. ymax vector.
The more compact form of these two equations is[

Xmin − SvV − Tx0

︸ ︷︷ ︸
lbA

Ymin − ScvV − Tcx0

]
≤

[
SuL

︸ ︷︷ ︸
CA

ScuL

]
Unc ≤

[
Xmax − SvV − Tx0

︸ ︷︷ ︸
ubA

Ymax − ScvV − Tcx0

]
, (15.16)

where the matrix CA and vectors lbA, ubA are computed by this block, must be allocated
e.g. by the MX_MAT blocks and references to the preallocated matrices must be connected
to the block inputs uCA, uLBA and uUBA.

The last equation 15.16 is a general form of QP constraints. It covers both equality
or inequality constraints for states and outputs.

If no state constraints are required, leave the uxmin, uxmax, uSuL, uSv and uT inputs
disconnected. Then equation 15.16 gets the form[︸ ︷︷ ︸

lbA

Xmin − SvV − Tx0
]
≤

[︸︷︷︸
CA

SuL
]
Unc ≤

[︸ ︷︷ ︸
ubA

Xmax − SvV − Tx0
]
. (15.17)

Similarly, if no output constraints are required, leave the uymin, uymax, uScuL, uScv
and uTc inputs disconnected. Then equation 15.16 gets the form[︸ ︷︷ ︸

lbA

Ymin − ScvV − Tcx0
]
≤

[︸ ︷︷ ︸
CA

ScuL
]
Unc ≤

[︸ ︷︷ ︸
ubA

Ymax − ScvV − Tcx0
]
. (15.18)

The output references yx0, yxmin, yxmax, yymin, yymax,yV, yGx, yGv, yGw, ySuL, ySv,
yT, yScuL, yScv, yTc, yG, yCA, yLBA and yUBA are always set to the corresponding input
ux0, uxmin, uxmax, uymin, uymax,uV, uGx, uGv, uGw, uSuL, uSv, uT, uScuL, uScv, uTc, uG,
uCA, uLBA and yUBA.

If HLD = on then nothing is computed.

The error �ag E is set to on if:

• the prediction horizon np < 1 or control horizon nc < 1, or nc > np,

• the reference ux0 is not de�ned or the element type of the array it references is not
Double (F64),

• the internal variable bStateConstr = on and at least one of the references uxmin,
uxmax is not de�ned, or the element type of at least one of the arrays they reference
is not Double (F64),

494 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

• the internal variable bOutputConstr = on and the reference uymin is de�ned and
the element type of the array it references is not Double (F64),

• the internal variable bOutputConstr = on and the reference uymax is de�ned and
the element type of the array it references is not Double (F64),

• the reference uV is de�ned and the element type of the array it references is not
Double (F64),

• the reference uG is de�ned and at least one of the references uGx, uGv, uSuL, uSv
or uT is not de�ned,

• the reference uG is de�ned and the element type of the array it references is not
Double (F64), or the reference uGx is de�ned and the element type of the array
it references is not Double (F64), or the reference uGv is de�ned and the element
type of the array it references is not Double (F64), or the reference uGw is de�ned
and the element type of the array it references is not Double (F64),

• the reference uSuL is de�ned and the element type of the array it references is not
Double (F64), or the reference uSv is de�ned and the element type of the array
it references is not Double (F64), or the reference uT is de�ned and the element
type of the array it references is not Double (F64),

• the reference uScuL is de�ned and the element type of the array it references is not
Double (F64), or the reference uScv is de�ned and the element type of the array
it references is not Double (F64), or the reference uTc is de�ned and the element
type of the array it references is not Double (F64),

• the reference uCA or uLBA or uUBA or the element type of at least one of the arrays
they reference is not Double (F64),

• the arrays referenced by de�ned references are too small or have incompatible
dimensions.

If E = on, see the system log for details.

Inputs

np Prediction horizon ↓1 ↑1000000 Long (I32)

nc Control horizon ↓1 ↑1000000 Long (I32)

ux0 Input reference to initial condition vector x0 of the state vector
x

Reference

uxmin Input reference to vector of low limits of the state vector elements Reference

uxmax Input reference to vector of high limits of the state vector
elements

Reference

uymin Input reference to vector of low limits of the output inequalities Reference

495

uymax Input reference to vector of high limits of the output inequalities Reference

uV Input reference to vector predicted disturbancies Reference

uGx Input reference to part of gradient vector G corresponding to
state vector x

Reference

uGv Input reference to part of gradient vector G corresponding to
disturbance vector v

Reference

uGw Intput reference to part of gradient vector G corresponding to
vector W

Reference

uSuL Input reference to work matrix Su*L Reference

uSv Input reference to work matrix Sv Reference

uT Input reference to work matrix T Reference

uScuL Input reference to work matrix Scu*L Reference

uScv Input reference to work matrix Scv Reference

uTc Input reference to work matrix Tc Reference

uG Input reference to gradient vector G Reference

uCA Input reference to QP constraints matrix CA Reference

uLBA Input reference to lower constraints' bound vector LB Reference

uUBA Input reference to upper constraints' bound vector LB Reference

HLD Hold Bool

Outputs

yx0 Output reference to initial condition vector x0 of the state vector
x

Reference

yxmin Output reference to vector of low limits of the state vector
elements

Reference

yxmax Output reference to vector of high limits of the state vector
elements

Reference

yymin Output reference to vector of low limits of the output inequalities Reference

yymax Output reference to vector of high limits of the output
inequalities

Reference

yV Output reference to vector predicted disturbancies Reference

yGx Output reference to part of gradient vector G corresponding to
state vector x

Reference

yGv Output reference to part of gradient vector G corresponding to
disturbance vector v

Reference

yGw Output reference to part of gradient vector G corresponding to
vector W

Reference

ySuL Output reference to work matrix Su*L Reference

ySv Output reference to work matrix Sv Reference

yT Output reference to work matrix T Reference

yScuL Output reference to work matrix Scu*L Reference

yScv Output reference to work matrix Scv Reference

496 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

yTc Output reference to work matrix Tc Reference

yG Output reference to gradient vector G Reference

yCA Output reference to QP constraints matrix CA Reference

yLBA Output reference to lower constraints' bound vector LB Reference

yUBA Output reference to upper constraints' bound vector LB Reference

E Error indicator Bool

Chapter 16

SPEC � Special blocks

Contents

EPC � External program call . 498

HTTP � HTTP GET or POST request (obsolete) 501

HTTP2 � Block for generating HTTP GET or POST requests . . 503

SMTP � Send e-mail message via SMTP 505

STEAM � Steam and water properties 507

RDC � Remote data connection . 509

REXLANG � User programmable block 514

UART � UART communication block 534

497

498 CHAPTER 16. SPEC � SPECIAL BLOCKS

EPC � External program call

Block Symbol Licence: ADVANCED

EPC

uVec1

uVec2

uVec3

uVec4

uVec5

uVec6

uVec7

uVec8

EXEC

RESET

DSI

DSO

yVec1
yVec2
yVec3
yVec4
yVec5
yVec6
yVec7
yVec8
DONE
BUSY
ERR
errID
res
icnt
ocnt

Function Description

The EPC block executes an external program upon a rising edge (off→on) occurring at
the EXEC input. The name and options of the program are de�ned by the cmd parameter.
The format is the same as if the program was executed from the command line of the
operating system.

It is possible to pass data from the REXYGEN system to the external program via
�les. The formatting of the �les is de�ned by the format parameter. All the currently
supported formats are textual and simple, which allows straightforward processing of the
data in arbitrary program. Use e.g.
values=load('-ASCII', 'epc_inputVec1');

for loading the data in MATLAB or
values=read('epc_inputVec1',-1,32);

in SCILAB. The �lename and number of columns must be adjusted for the given project.
Data exchange in the opposite direction is naturally also supported, the REXYGEN sys-
tem can read the �les in the same format.

The block works in two modes. In basic mode, the rising edge on the EXEC input
triggers reading the data on inputs and storing them in the ifns �le. The values of the
i-th input vector uVec<i> are stored in the i-th �le from the ifns list. In sampling mode,
the data from the input vectors are stored in each period of the control algorithm. In
both cases the values from one time instant form one line in the �le.

Analogically, the data from output �les are copied to the outputs of the block (one
line from the i-th �le in the ofns list to the i-th output vector yVec<i>).

The inputs working in the sampling mode are de�ned by the sl list (comma-separated
numbers). The outputs work always in the sampling mode � the last values are kept when
the end of �le is reached. The copying of data to input �les can be blocked by the DSI

input, the same holds for output data and the DSO input.
Use the RTOV block to combine individual signals into a vector one for the uVec input.

499

The RTOV blocks can be chained, therefore it is possible to create a vector of arbitrary
dimension. Similarly, use the VTOR block to demultiplex a vector signal to individual
signals.

Inputs

uVec1..uVec8 Input vector signal Reference

EXEC External program is called on rising edge Bool

RESET Block reset (deletes the input and output �les and terminates
the external program)

Bool

DSI Disable inputs sampling Bool

DSO Disable outputs sampling Bool

Outputs

yVec1..yVec8 Output vector signal Reference

DONE External program �nished Bool

BUSY External program running Bool

ERR Error �ag Bool

errID Error code Error

i REXYGEN general error

res External program return code Long (I32)

icnt Current input sample Long (I32)

ocnt Current output sample Long (I32)

Parameters

cmd Operating system command to execute String

ifns Input �lenames (separated by semicolon)
⊙epc_uVec1;epc_uVec2

String

ofns Output �lenames (separated by semicolon)
⊙epc_yVec1;epc_yVec2

String

sl List of inputs working in the sampling mode. The format of
the list is e.g. 1,3..5,8. Third-party programs (Simulink, OPC
clients etc.) work with an integer number, which is a binary mask,
i.e. 157 (binary 10011101) in the mentioned case.

↓0 ↑255 ⊙85

Long (I32)

ifm Maximum number of input samples ⊙10000 Long (I32)

format Format of input and output �les ⊙1 Long (I32)

1 Space-delimited values
2 CSV (decimal point and commas)
3 CSV (decimal comma and semicolons)

nmax Maximum output vectors length ↓2 ↑1000000 ⊙100 Long (I32)

Notes

500 CHAPTER 16. SPEC � SPECIAL BLOCKS

• The called external program has the same priority as the calling task. This priority
is high, in some cases higher than operating-system-kernel tasks. On Linux based
systems, it is possible to lower the priority by using the chrt command:
chrt -o 0 extprg.sh,
where extprg.sh is the original external program.

• The size of signals is limited by parameter nmax. Bigger parameter means bigger
memory consumption, so choose this parameter as small as possible.

• The �lenames must respect the naming conventions of the target platform operating
system. It is recommended to use only alphanumeric characters and an underscore
to avoid problems. Also respect the capitalization, e.g. Linux is case-sensitive.

• The block also creates copies of the ifns and ofns �les for implementation reasons.
The names of these �les are extended by the underscore character.

• The ifns and ofns paths are relative to the folder where the archives of the
REXYGEN system are stored. It is recommended to de�ne a symbolic link to a
RAM-drive inside this folder for improved performance. On the other hand, for
long series of data it is better to store the data on a permanent storage medium
because the data can be appended e.g. after a power-failure recovery.

• The OSCALL block can be used for execution of some operating system functions.

501

HTTP � HTTP GET or POST request (obsolete)

Block Symbol Licence: ADVANCED

HTTP

postdata

urldata

TRG

data
BUSY
DONE
ERROR

errId
hterror

Function Description

The HTTP block performs a single HTTP GET or POST request. Target address (URL)
is de�ned by url parameter and urldata input. A �nal URL is formed in the way so
that urldata input is simply added to url parameter.

HTTP request is started by the TRG parameter. Then the BUSY output is set until a
request is �nished, which is signaled by the DONE output. In case of an error, the ERROR
output is set. The errId output carries last error identi�ed by REXYGEN system error
code. The hterror carries a HTTP status code. All data sent back by server to client is
stored in the data output.

The block may be run in blocking or non-blocking mode which is speci�ed by the
BLOCKING parameter. In blocking mode, execution of a task is suspended until a request
is �nished. In non-blocking mode, the block performs only single operation depending
on available data and execution of a task is not blocked. It is advised to always run HTTP

block in non-blocking mode. It is however necessary to mention that on various operating
systems some operations can not be performed in the non-blocking mode, so be careful
and do not use this block in quick tasks or in tasks with short execution period. The
non-blocking operation is best supported on GNU/Linux operating system. The maximal
duration of a request performed by the HTTP block is speci�ed by the timeout parameter.

The block supports user authentication using basic HTTP authentication method.
User name and password may be speci�ed by user and password parameters. The block
also supports secure HTTP (HTTPS). It is also possible to let the block verify server's
certi�cate by setting the VERIFY parameter. SSL certi�cate of a server or server's trusted
certi�cate authority must be stored in the certificate parameter in a PEM format.
The block does not support any certi�cate storage.

Parameters postmime and acceptmime specify MIME encoding of data being sent to
server or expected encoding of a HTTP response.

Parameters nmax, postmax, and datamax specify maximum sizes of bu�ers allocated
by the block. The nmax parameter is maximal size of any string parameter. The postmax
parameter speci�es a maximal size of postdata. The datamax parameter speci�es a
maximal size of data.

502 CHAPTER 16. SPEC � SPECIAL BLOCKS

Inputs

postdata Data to put in HTTP POST request String

urldata Data to append to URL address String

TRG Trigger of the selected action Bool

Parameters

url URL address to send the HTTP request to String

method HTTP request type ⊙1 Long (I32)

1 GET
2 POST

user User name String

password Password String

certificate Authentication certi�cate String

VERIFY Enable server veri�cation (valid certi�cate) Bool

postmime MIME encoding for POST request ⊙application/json String

acceptmime MIME encoding of HTTP response ⊙application/json String

timeout Timeout interval ⊙5.0 Double (F64)

BLOCKING Wait for the operation to �nish Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

postmax Allocated memory for POST request data ↓128 ↑65520 ⊙256 Long (I32)

datamax Allocated memory for HTTP response ↓128 ↑10000000 ⊙1024 Long (I32)

Outputs

data Response data String

BUSY Sending HTTP request Bool

DONE HTTP request processed Bool

ERROR Error indicator Bool

errId Error code Error

hterror HTTP response Long (I32)

503

HTTP2 � Block for generating HTTP GET or POST requests

Block Symbol Licence: ADVANCED

HTTP2

postdata

urldata

header

TRG

data
BUSY
DONE
ERROR

errId
hterror

Function Description

The HTTP block performs a single shot HTTP request. Target address (URL) is de�ned
by url parameter and urldata input. A �nal URL is formed in the way so that urldata
input is appended to the url parameter. The header input can be used for declaration
of additional header �elds.

A HTTP request is started by the TRG input. Then the BUSY output is set until the
request is �nished, which is signaled by a pulse at the DONE output. In case of an error,
the pulse is generated at the ERROR output. The errId output carries information about
the last error identi�ed by REXYGEN system error code. The hterror carries a HTTP
status code. All data received from server is published via the data output. All error
outputs are reset when a new HTTP request is triggered by the TRG input.

The block may be run in blocking or non-blocking mode which is speci�ed by the
BLOCKING parameter. In blocking mode, execution of a task is suspended until the request
is �nished. In non-blocking mode, the block performs only single operation depending
on available data and execution of a task is not blocked. It is advised to always run HTTP

block in non-blocking mode. It is however necessary to mention that on various operating
systems some operations cannot be performed in the non-blocking mode, so be careful
and do not use this block in quick tasks (QTASK) or in tasks with short execution period.
The non-blocking operation is best supported on GNU/Linux operating system. The
maximal duration of a request performed by the HTTP block is speci�ed by the timeout
parameter.

The block supports user authentication using basic HTTP authentication method.
User name and password may be speci�ed by user and password parameters. The block
also supports secure HTTP (HTTPS). It is also possible to let the block verify server's
certi�cate by setting the VERIFY parameter. SSL certi�cate of a server or server's trusted
certi�cate authority must be stored in the certificate parameter in a PEM format.
The block does not support any certi�cate storage.

Parameters postmime and acceptmime specify MIME encoding of data being sent to
server and expected encoding of the HTTP response.

Parameters nmax, postmax, and datamax specify maximum sizes of bu�ers allocated
by the block. The nmax parameter is maximal size of any string parameter. The postmax
parameter speci�es a maximal size of postdata. The datamax parameter speci�es a

504 CHAPTER 16. SPEC � SPECIAL BLOCKS

maximal size of data.

Inputs

postdata Data to put in HTTP POST request String

urldata Data to append to URL address String

header Additional header �elds String

TRG Trigger of the selected action Bool

Parameters

url URL address to send the HTTP request to String

method HTTP request type ⊙1 Long (I32)

1 GET
2 POST
3 PUT
4 DELETE
5 HEAD
6 TRACE
7 PATCH
8 OPTIONS
9 CONNECT

user User name String

password Password String

certificate Authentication certi�cate String

VERIFY Enable server veri�cation (valid certi�cate) Bool

postmime MIME encoding for POST request ⊙application/json String

acceptmime MIME encoding for GET request ⊙application/json String

timeout Timeout interval ⊙5.0 Double (F64)

BLOCKING Wait for the operation to �nish Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

postmax Allocated memory for POST request data ↓128 ↑65520 ⊙4096 Long (I32)

datamax Allocated memory for HTTP response
↓128 ↑10000000 ⊙64000

Long (I32)

Outputs

data Response data String

BUSY Sending HTTP request Bool

DONE HTTP request processed Bool

ERROR Error indicator Bool

errId Error code Error

hterror HTTP response Long (I32)

505

SMTP � Send e-mail message via SMTP

Block Symbol Licence: ADVANCED

SMTP

subj

body

TRG

BUSY
DONE
ERROR

errId

Function Description

The SMTP block sends a single e-mail message via standard SMTP protocol. The block
acts as a simple e-mail client. It does not implement a mail server.

The contents of a message is de�ned by the inputs subj and body. Parameters from
and to specify sender and receiver of a message. A message is sent when the TRG param-
eter is set. Then the BUSY output is set until the request is �nished, which is signaled by
the DONE output. In case of an error, the ERROR output is set. The errId output carries
the last error identi�ed by REXYGEN system error code. The domain parameter must
always be set to identify the target device. The default value should work in most cases.
There can be multiple recipients of the message. In such a case, the individual e-mail
addresses must be comma-separated and no space character may be present.

The block may be run in non-blocking or blocking mode, which is speci�ed by the
BLOCKING parameter.

• In the blocking mode, the execution of a task is suspended until the sending of e-
mail is completed. This mode is typically used in tasks with long execution period,
TS ≥ 10s. If the e-mail is not successfully sent until timeout expires, an error is
indicated and the execution of the task is resumed.

• In the non-blocking mode, the SMTP block performs only a single operation in each
execution of the block and the execution of a task is not suspended. This mode
is typically used in tasks with short execution period, TS ≤ 0.1s. In this mode,
the timeout parameter should be set to at least 50 · TS , where TS is the execution
period in seconds.

It is recommended to run the SMTP block in the non-blocking mode. It is however neces-
sary to mention that on various operating systems some operations may not be performed
in the non-blocking mode, so be careful and do not use this block in quick tasks (see
QTASK) or in tasks with extremely short execution period (few milliseconds). The non-
blocking mode is best supported on GNU/Linux operating system.

The block supports user authentication using standard SMTP authentication method.
User name and password may be speci�ed by the user and password parameters. The
block also supports secure connection. The encryption method is selected by the tls

parameter. It is also possible to let the block verify server's certi�cate by setting the

506 CHAPTER 16. SPEC � SPECIAL BLOCKS

VERIFY parameter. SSL certi�cate of a server or server's trusted certi�cate authority
must be stored in the certificate parameter in a PEM format. The block does not
support any certi�cate storage.

The length of the whole message (subject, body and headers) is limited to a maximum
of 1024 characters.

Inputs

subj Subject of the e-mail message String

body Body of the e-mail message String

TRG Trigger of the selected action Bool

Parameters

server SMTP server address String

to E-mail of the recipient String

from E-mail of the sender String

tls Encryption method ⊙1 Long (I32)

1 None
2 StartTLS
3 TLS

user User name String

password Password String

domain Domain name or identi�cation of the target device String

auth Authentication method ⊙1 Long (I32)

1 Login
2 Plain

certificate Authentication certi�cate String

VERIFY Enable server veri�cation (valid certi�cate) Bool

timeout Timeout interval Double (F64)

BLOCKING Wait for the operation to �nish Bool

Outputs

BUSY Sending e-mail Bool

DONE E-mail has been sent Bool

ERROR Error indicator Bool

errId Error code Error

507

STEAM � Steam and water properties

Block Symbol Licence: STANDARD

STEAM

u1
u2

y
E

Function Description

The STEAM block calculates the thermodynamic properties of water and steam based
on their other properties. The calculation is based on the IAPWS IF-97 standard (see
http://www.iapws.org/relguide/IF97-Rev.pdf for more details). The units of tempera-
ture and pressure are de�ned by the parameter tunit and punit respectively; energy is
in kilojoules (as it is used in IF-97 and by engineers), other properties use SI units. The
function expressed by the block is de�ned by the func parameter. The parameter has the
form <output property>_<1th input property><2nd input property> where prop-
erties is one of:

• T - Temperature

• p - Pressure

• h - Enthalpy [kJ/kg]

• v - Speci�c volume [m3/kg]

• rho - Density [kg/m3]

• s - Speci�c entropy

• u - Speci�c internal energy [kJ/kg]

• Cp - Speci�c isobaric heat capacity [kJ/kg/K]

• Cv - Speci�c isochoric heat capacity [kJ/kg/K]

• w - Speed of sound [m/s]

• my - Viscosity

• tc - Thermal Conductivity

• st - Surface Tension

• x - Vapour fraction

• vx - Vapour Volume Fraction

http://www.iapws.org/relguide/IF97-Rev.pdf

508 CHAPTER 16. SPEC � SPECIAL BLOCKS

The output property can have attribute:

• sat - saturated value, i.e. for situation when water (liquid) is changed into steam
(vapour)

• V - steam (vapour) for saturated conditions

• L - water (liquid) for saturated conditions

Examples:

• h_pT output is enthalpy for given pressure (1st input) and temperature (2nd
input)

• Tsat_p saturated temperature (i.e. boiling temperature) for given pressure (1st
input)

• hL_p enthalpy of (liquid) water for saturated conditions given by pressure (1st
input)

Inputs

u1 1st input property Double (F64)

u2 2nd input property (if required) Double (F64)

Parameters

func Calculated function ⊙1 Long (I32)

punit Pressure unit ⊙1 Long (I32)

1 MPa
2 bar
3 kPa

tunit Temperature unit ⊙1 Long (I32)

1 K
2 ◦C

Outputs

y Output property Double (F64)

E Error �ag Bool

509

RDC � Remote data connection

Block Symbol Licence: ADVANCED

RDC

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

Function Description

The RDC block is a special input-output block. The values are transferred between two
blocks on di�erent computers, eventually two di�erent Simulinks on the same computer
or Simulink and the REXYGEN system on the same computer. In order to communicate,
the two RDC blocks must have the same id number. The communication is based on
UDP/IP protocol. This protocol is used as commonly as the more known TCP/IP, i.e.
it works over all LAN networks and the Internet. The algorithm performs the following
operations in each step:

• If HLD = on, the block execution is terminated.

• If the period parameter is a positive number, the di�erence between the system
timer and the time of the last packet sending is evaluated. The block execution
is stopped if the di�erence does not exceed the period parameter. If the period

parameter is zero or negative, the time di�erence is not checked.

• A data packet is created. The packet includes block number, the so-called invoke

number (serial number of the packet) and the values u0 to u15. All values are stored
in the commonly used so-called network byte order, therefore the application is
computer and/or processor independent.

• The packet is sent to the speci�ed IP address and port.

• The invoke number is increased by 1.

• It is checked whether any incoming packets have been received.

• If so, the packet validity is checked (size, id number, invoke number).

510 CHAPTER 16. SPEC � SPECIAL BLOCKS

• If the data is valid, all outputs y0 to y15 are set to the values contained in the
packet received.

• The fresh output is updated. In case of error, the error code is displayed by the
err output.

There are 16 values transmitted in each direction periodically between two blocks
with the same id number. The u(i) input of the �rst block is transmitted the y(i)

output of the other block. Unlike the TCP/IP protocol, the UDP/IP protocol does not
have any mechanism for dealing with lost or duplicate packets, so it must be handled by
the algorithm itself. The invoke number is used for this purpose. This state variable is
increased by 1 each time a packet is sent. The block stores also the invoke number of
the last received packet. It is possible to distinguish between various events by compar-
ing these two invoke numbers. The packets with invoke numbers lower than the invoke
number of the last received packet are denied unless the di�erence is grater than 10. This
solves the situation when one of the RDC blocks is restarted and its invoke number is
reset.

All RDC blocks in the same application must have the same local port number and
the number of RDC blocks is limited to 64 for implementation reasons. If there are two
applications using the RDC block running on the same machine, then each of them must
use a di�erent local port number.

Inputs

HLD Input for disabling the execution of the block. No packets are
received nor transmitted when HLD = on.

Bool

u0..u15 Values which are sent/written to the output values y0 to y15 of
the paired block

Double (F64)

Outputs

iE Displays the code of the last error. The error codes are listed
below:

Long (I32)

0 No error

511

Persistent errors originating in the initialization phase (< 0).
Cannot be �xed automatically.

-1 Maximum number of blocks exceeded (> 64)
-2 Local ports mismatch; the lport parameter must be

the same for all RDC blocks within one application
-3 Error opening socket (the UDP/IP protocol is not

available)
-4 Error assigning local port (port already occupied by

another service or application)
-5 Error setting the so-called non-blocking socket mode

(the RDC block requires this mode)
-10 . . . Error initializing the socket library
-11 . . . Error initializing the socket library
-12 . . . Error initializing the socket library

Temporary errors originating in any cycle of the code (> 0). Can
be �xed automatically.

1 Initialization successful, yet no data packet has been
received

2 Packet consistency error (incorrect length �
transmission error or con�icting service/application
is running)

4 Error receiving packet (socket library error)
8 Error sending packet (socket library error)

fresh Elapsed time (in seconds) since the last received packet. Can be
used for detection of an error in the paired block.

Double (F64)

y0..y15 Values transmitted from the input ports u0 to u15 of the paired
RDC block � data from the last packet received

Double (F64)

Parameters

target Name or IP address running the paired RDC block. Broadcast
address is allowed.

String

rport Remote port � address of the UDP/IP protocol service, it
is recommended to keep the default value unless necessary
(service/application con�ict) ⊙1288

Word (U16)

lport Local port � similar meaning as the rport parameter; remote
port applies to the receiving machine, local port applies to the
machine sending the packet ⊙1288

Word (U16)

id Block ID � this number is contained within the data packet in
order to reach the proper target block (all blocks on the target
receive the packet but only the one with the corresponding id

decomposes it and uses the data contained to update its outputs)
↓1 ↑32767 ⊙1

Long (I32)

512 CHAPTER 16. SPEC � SPECIAL BLOCKS

period The shortest time interval between transmitting/receiving
packets (in seconds). The packets are transmitted/received
during each execution of the block for period≤0 while the
positive values of this parameter are extremely useful when
sending data out of the Simulink continuous models based on
a Variable step solver.

Double (F64)

Example

The following example explains the function of the RDC block. The constants 3 and
5 are sent from Computer1 to Computer2, where they appear at the y0 and y1 outputs
of the RDC2 block. The constants are then summed and multiplied and sent back to
Computer1 via the u11 and u12 outputs of the RDC2 block. The displays connected to the
y11 and y12 outputs of the RDC1 block show the results of mathematical operations 3+5
and (3 + 5) ∗ 5. The signal from the SG generator running on Computer2 is transmitted
to the y0 output of the RDC1 block, where it can be easily displayed. Note that Display
and Scope are Matlab/Simulink blocks � to visualize data within the REXYGEN system,
the TRND block or similar must be utilized.

target computer name = "Computer2"

Block ID = 1

Computer1 Computer 2

target computer name = "Computer1"

Block ID = 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Scope2

SLEEPSLEEP

y

SG

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC2

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC1

u1
u2

y

MUL

0

Display1

0

Display

5

CNI1

3

CNI

u1
u2

y

ADD

The simplicity of the example is intentional. The goal is to demonstrate the func-
tionality of the block, not the complexity of the system. In reality, the RDC block is used
in more complex tasks, e.g. for remote tuning of the PID controller as shown below. The
PID control algorithm is running on Computer1 while the tuning algorithm is executed
by Computer2. See the PIDU, PIDMA and SSW blocks for more details.

513

target computer name = "Computer2"

Block ID = 1

Computer1 Computer 2

target computer name = "Computer1"

Block ID = 1

Scope1

Scope

u1
u2
SW

y

SSW

SLEEP1

SLEEP

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC2

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC1

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv

de
SAT

TBSY
TE
ite

trem
pk
pti

ptd
pnd
pb
pc

PIDMA

u y

MDL

tv
UP
DN
rv
LOC

y

MCU

[proces_pv]

[proces_mv]

[proces_mv]

[proces_pv]

0

Display

1

CNB

OPC server of the RDC block

There is also an OPC server embedded in the RDC block. Detailed description will be
available soon.

514 CHAPTER 16. SPEC � SPECIAL BLOCKS

REXLANG � User programmable block

Block Symbol Licence: REXLANG

REXLANG

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

Function Description

The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-de�ned function. The REXLANG block covers this case.
It implements an user-de�ned algorithm written in a scripting language very similar to
the C language (or Java).

Scripting language

As mentioned, the scripting language is similar to the C language. Nevertheless, there
are some di�erences and limitations:

• Double, long and string data types are supported (it is possible to use int, short,
bool as well, but these are internally converted to long. The float type can be
used but it is converted internally to double. The typedef type is not de�ned.

• Pointers and structures are not implemented. However, it is possible to de�ne arrays
and use the indexes (the [] operator). Block inputs, outputs and parameters can
not be arrays.

• The ',' operator is not implemented.

• The preprocessor supports the following commands: #include, #define, #ifdef ..
[#else ..] #endif, #ifndef .. [#else ..] #endif (i.e. #pragma and #if .. [#else ..]
#endif are not supported).

• The standard ANSI C libraries are not implemented, however the majority of
mathematic functions from math.h and some other functions are implemented (see
the text below).

515

• The input, output and parameter keywords are de�ned for referencing the REXLANG
block inputs, outputs and parameters. System functions for controlling the execu-
tion and diagnostics are implemented (see the text below).

• The main() function is executed periodically during runtime. Alongside the main()
function the init() (executed once at startup), exit() (executed once when the
control algorithm is stopped) and the parchange() (executed on parameters change
in REXYGEN.

• The functions and procedures without parameters must be explicitly declared void.

• The identi�ers cannot be overloaded, i.e. the keywords and built-in functions cannot
share the name with an identi�er. The local and global variables cannot share the
same name.

• Array initializers are not supported. Neither in local arrays nor the global ones.

• User de�ned return values of main(), init() and exit() functions are written to
iE output. Values < -99 will stop algorithm execution (reinicialization by RESET

input needed for further algorithm run). Return values:

iE >= 0 . . . No error occurred

0 > iE >= -99 . . .Warning, no changes to function block algorithm execution

iE < -99 . . . Error occured, function block algorithm execution stopped

Scripting language syntax

The scripting language syntax is based on the C language, but pointers are not supported
and the data types are limited to long and double. Moreover the input, output and
parameter keywords are de�ned for referencing the REXLANG block inputs, outputs and
parameters. The syntax is as follows:

• <type> input(<input number>) <variable name>;

• <type> output(<outpt number>) <variable name>;

• <type> parameter(<parameter number>) <variable name>;

The input and parameter variables are read-only while the output variables are write-
only. For example:

double input(1) input_signal; /* declaration of a variable of type

double, which corresponds with the

u1 input of the block */

long output(2) output_signal; /* declaration of a variable of type

long, which corresponds with the y2

output of the block */

516 CHAPTER 16. SPEC � SPECIAL BLOCKS

input_signal = 3; //not allowed, inputs are read-only

sum = output_signal + 1; //not allowed, outputs are write-only

if (input_signal>1) output_signal = 3 + input_signal; //correct

Available functions

The following functions are available in the scripting language:

• Mathematic functions (see ANSI C, math.h):
atan, sin, cos, exp, log, sqrt, tan, asin, acos, fabs, fmod, sinh, cosh, tanh,
pow, atan2, ceil, floor and abs Please note that the abs function works with
integer numbers. All the other functions work with variables of type double.

• Vector functions (not part of ANSI C)

double max([n,]val1,...,valn)

Returns the maximum value. The �rst parameter de�ning the number of
items is optional.

double max(n,vec)

Returns the value of maximal item in the vec vector.
double min([n,]val1,...,valn)

Returns the minimum value. The �rst parameter de�ning the number of
items is optional.

double min(n,vec)

Returns the value of minimal item in the vec vector.
double poly([n,]x,an,...,a1,a0)

Evaluates the polynomial y = an∗xn+ . . .+a1∗x+a0. The �rst parameter
de�ning the number of items is optional.

double poly(n,x,vec)

Evaluates the polynomial y = vec[n] ∗ xn + . . .+ vec[1] ∗ x+ vec[0].
double scal(n,vec1,vec2)

Evaluates the scalar product y = vec1[0] ∗ vec2[0]+ . . .+ vec1[n-1] ∗
vec2[n-1].

double scal(n,vec1,vec2,skip1,skip2)

Evaluates the scalar product y = vec1[0] ∗ vec2[0] + vec1[skip1] ∗
vec2[skip2] + . . . + vec1[(n-1)*skip1] ∗ vec2[(n-1)*skip2]. This is
well suited for multiplication of matrices, which are stored as vectors (line
by line or column by column).

double conv(n,vec1,vec2)

Evaluates the convolutory product y = vec1[0] ∗ vec2[n-1]+ vec1[1] ∗
vec2[n-2]+ . . .+ vec1[n-1] ∗ vec2[0].

double sum(n,vec)

Sums the items in a vector, i.e. y = vec[0]+ vec[1]+ . . .+ vec[n-1].

517

double sum([n,]val1,...,valn)

Sums the items, i.e. y = val1 + val2 + . . . + valn. The �rst parameter
de�ning the number of items is optional.

[]array([n,]an-1,...,a1,a0)

Returns an array/vector with the given values. The �rst parameter de�n-
ing the number of items is optional. The type of the returned value is
chosen automatically to �t the type of parameters (all must be of the
same type).

[]subarray(idx,vec)

Returns a subarray/subvector of the vec array, starting at the idx index.
The type of the returned value is chosen automatically according to the
vec array.

copyarray(count,vecSource,idxSource,vecTarget,idxTarget)

Copies count items of the vecSource array, starting at idxSource index,
to the vecTarget array, starting at idxTarget index. Both arrays must
be of the same type.

void fillarray(vector, value, count)

Copies value to count items of the vector array (always starting from
index 0).

• String functions (ANSI C contains analogous functions in the string.h �le)

string strsub(str,idx,len)

Returns a substring of length len starting at index idx.
long strlen(str)

Returns string length (number of characters).
long strfind(str,substr)

Returns the position of �rst occurrence of substr in str.
long strrfind(str,substr)

Returns the position of last occurrence of substr in str.
strreplace(str,pattern,substr)

Find all occurrences of pattern in str and replace it with substr (in-place
replacement, so new string is stored into str).

strupr(str)

Converts a string to uppercase.
strlwr(str)

Converts a string to lowercase.
strtrim(str)

Remove leading and trailing white characters (spaces) from a string.
long str2long(str [, default])

Converts string to integer number. The �rst non-numerical character is
considered the end of the input string and the remaining characters are
ignored. If conversion failed, 2nd parameter is returned (or 0 if parameter
is not set).

518 CHAPTER 16. SPEC � SPECIAL BLOCKS

double str2double(str [, default])

Converts string to a decimal number. The �rst non-numerical character is
considered the end of the input string and the remaining characters are
ignored. If conversion failed, 2nd parameter is returned (or 0 if parameter
is not set).

string long2str(num [, radix])

Converts an integer number num to text. The optional parameter radix

speci�es the numerical system in which the conversion is to be performed
(typically 10 or 16). If radix is not speci�ed, default value is radix = 10.
The output string does not contain any identi�cation of the numerical
system used (e.g. the 0x pre�x for the hexadecimal system).

string double2str(num)

Converts a decimal number num to text.
strcpy(dest,src)

Function copies the src string to the dest string. Implemented for com-
patibility with ANSI C. The construction dest=src yields the same result.

strcat(dest,src)

Function appends a copy of the src string to the dest string. Implemented
for compatibility with ANSI C. The construction dest=dest+src yields
the same result.

strcmp(str1,str2)

Function compares strings str1 and str2. Implemented for compatibility
with ANSI C. The construction str1==str2 yields the same result.

float2buf(buf,x[,endian])

Function for converting real number x into 4 elements of array buf. Each
element represents an octet (byte) of number in single precision represen-
tation according to IEEE 754 (known as �oat). The function is useful for
�lling communication bu�ers. Optional 3rd parameter has the following
meaning: 0 (default) = processor native endian, 1 = little endian, 2 = big
endian.

double2buf(buf,x[,endian])

Similar function to float2buf, but stores 8 elements in double precision
format.

double buf2float(buf[,endian])

Inverse function to float2buf
double buf2double(buf[,endian])

Inverse function to double2buf
long RegExp(str,regexp,capture[])

Compares the str string with regular expression regexp. When the string
matches the pattern, the capture array contains individual sections of the
regular expression. capture[0] is always the complete regular expression.
The function return the number of captured strings or a negative value in
case of an error. The regular expression may contain the following:

(?i) . . .Must be at the beginning of the regular expression. Makes
the matching case-insensitive.

519

� . . .Match beginning of a string

$. . .Match end of a string

() . . . Grouping and substring capturing

\s . . .Match whitespace

\S . . .Match non-whitespace

\d . . .Match decimal digit

\n . . .Match new line character

\r . . .Match line feed character

\f . . .Match vertical tab character

\v . . .Match horizontal tab character

\t . . .Match horizontal tab character

\b . . .Match backspace character

+ . . .Match one or more times (greedy)

+? . . .Match one or more times (non-greedy)

* . . .Match zero or more times (greedy)

*? . . .Match zero or more times (non-greedy)

? . . .Match zero or once (non-greedy)

x|y . . .Match x or y (alternation operator)

\meta . . .Match one of the meta characters: �$().[]*+?|\

\xHH . . .Match byte with hex value 0xHH, e.g. \x4a.

[...] . . .] Match any character from the set. Ranges like [a-z are
supported.

[�...] . . .Match any character but the ones from the set.

Example:
RegExp("48,string1,string2","�(\\d+),([�,]+),",capture);

Result: capture=["48,string1","48","string1"]

long ParseJson(json,cnt,names[],values[])

The json string is supposed to contain text in JSON format. The names

array contain property names of the requested objects (subitems are ac-
cessed via ., index of the array via [] - e.g. "cars[1].model"). The
values array then contains values of the requested objects. The cnt pa-
rameter de�nes the number of requested objects (length of both the names
and values arrays). The function returns the number of values, negative
numbers indicate errors.

Note: String variable is declared just like in ANSI C, i.e. char <variable

name>[<maximum number of characters>];. For passing the strings to
functions use char <variable name>[] or string <variable name>.

• System functions (not part of ANSI C)

520 CHAPTER 16. SPEC � SPECIAL BLOCKS

Archive(arc, type, id, lvl_cnt, value)

Stores a value into the archive subsystem. arc is a bit mask of archives
to write the events to (e.g. for writing to archives 3,5 set arc=20 ->
(BIN)10100 = (DEC)20). The archives are numbered from 1 and the maxi-
mum number of archives is limited to 15 (archive no. 0 is an internal system
log). type

1 . . . Bool
2 . . . Byte (U8)
3 . . . Short (I16)
4 . . . Long (I32)
5 . . .Word (U16)
6 . . . DWord (U32)
7 . . . Float (F32)
8 . . . Double (F64)
9 . . . Time
10 . . . Large (I64)
11 . . . Error
12 . . . String
17 . . . Bool Group
18 . . . Byte Group (U8)
19 . . . Short Group (I16)
20 . . . Long Group (I32)
21 . . .Word Group (U16)
22 . . . DWord Group (U32)
23 . . . Float Group (F32)
24 . . . Double Group (F64)
25 . . . Time Group
26 . . . Large Group (I64)
27 . . . Error Group

id is a unique archive item ID. lvl_cnt is Alarm level in case of alarms or
number of elements in case of Group type. value is a value to be written
or an array reference in case of Group type.

Trace(id, val)

Displays the id value and the val value. The function is intended for
debugging. The id is a user-de�ned constant (from 0 to 9999) for easy
identi�cation of the displayed message. The val can be of any data type
including text string. The output can be found in the system log of REXY-
GEN.
In order to view these debugging messages in System log it is necessary to
enable them. Go to the menu

521

Target→Diagnostic messages and tick the Information checkbox in the
Function block messages box. Logging has to be also enabled for the par-
ticular block by ticking the Enable logging checkbox in the Runtime tab of
the block parameters dialog. By default, this is enabled after placing a new
block from library. Only then are the messages displayed in the System
log.

TraceError(id, val) TraceWarning(id, val) TraceVerbose(id, val)

These commands are similar to the Trace command, only the output is
routed to the corresponding logging group (Error, Warning, Verbose). Mes-
sages with the Error level are always written to the log. To view theWarn-
ing and Verbose messages, enable the corresponding message group. Go
to the menu
Target→Diagnostic messages and tick the corresponding checkbox in the
Function block messages box.

Suspend(sec)

The script is suspended if its execution within the given sampling period
takes more seconds than speci�ed by the sec parameter. At the next start
of the block the script continues from the point where it was suspended.
Use Suspend(0) to suspend the code immediately.

double GetPeriod()

Returns the sampling period of the block in seconds.
double CurrentTime()

Returns the current time (in internal format). Intended for use with the
ElapsedTime() function.

double ElapsedTime(new_time, old_time)

Returns the elapsed time in seconds (decimal number), i.e. the di�erence
between the two time values new_time and old_time. The CurrentTime()
function is typically used in place of the new_time parameter.

double Random()

Returns a pseudo-random number from the ⟨0, 1) interval. The pseudo-
random number generator is initialized prior to calling the init() function
so the sequence is always the same.

long QGet(var)

Returns the quality of the var variable (see the QFC, QFD, VIN, VOUT blocks).
The function is intended for use with the inputs, outputs and parameters.
It always returns 0 for internal variables.

void QSet(var, value)

Sets the quality of the var variable (see the QFC, QFD, VIN, VOUT blocks).
The function is intended for use with the inputs, outputs and parameters.
It has no meaning for internal variables.

long QPropag([n,]val1,...,valn)

Returns the quality resulting from merging of qualities of val1,...,valn.
The basic rule for merging is that the resulting quality correspond with

522 CHAPTER 16. SPEC � SPECIAL BLOCKS

the worst quality of val1,...,valn. To obtain the same behavior as in
other blocks of the REXYGEN system, use this function to set the quality
of output, use all the signals in�uencing the output as parameters.

double LoadValue(fileid, idx)

Reads a value from a �le. A binary �le with double values or a text �le
with values on individual lines is supposed. The idx index (binary �le)
or line number (text �le) starts at 0. The �le is identi�ed by fileid. At
present the following values are supported:

0 . . . �le on a disk identi�ed by the p0 parameter
1 . . . �le on disk identi�ed by name of the REXLANG block and ex-
tension .dat

2 . . . �le on a disk identi�ed by the srcname parameter, but the ex-
tension is changed to .dat

3 . . . rexlang.dat �le in the current directory
4-7 . . . same like 0-3, but format is text �le. Each line contains one
number. The index idx is the line number and starts at zero. Value
idx=-1 means next line (e.g. sequential writing).

void SaveValue(fileid, idx, value)

Stores the value to a �le. The meaning of parameters is the same as in
the LoadValue function.

void GetSystemTime(time)

Returns the system time. The time is usually returned as UTC but this can
be altered by the operating system settings. The time parameter must be
an array of at least 8 items of type long. The function �lls the array with
the following values in the given order: year, month, day (in the month),
day of week, hours, minutes, seconds, milliseconds. On some platforms the
milliseconds value has a limited precision or is not available at all (the
function returns 0 ms).

void Sleep(seconds)

Stop execution of the block's algorithm (and whole task) for de�ned time.
Use this block with extreme caution and only if there is no other possibility
to achieve the desired behaviour of your algorithm. The sleep interval
should not exceed 900 milliseconds. The shortest interval is about 0.01s,
the precise value depends on the target platform.

long GetExtInt(ItemID)

Returns the value of input/output/parameter of arbitrary block in REXY-

GEN algorithm. Such an external data item is referenced by the ItemID

parameter. The structure of the string parameter ItemID is the same as
in e.g. the sc parameter of the GETPI function block. If the value cannot
be obtained (e.g. invalid or non-existing ItemID, data type con�ict, etc.),
the REXLANG block issues an error and must be reset.

long GetExtLong(ItemID)

See GetExtInt(ItemID).

523

double GetExtReal(ItemID)

Similar to GetExtInt(ItemID) but for decimal numbers.
double GetExtDouble(ItemID)

See GetExtReal(ItemID).
string GetExtString(ItemID)

Similar to GetExtInt(ItemID) but for strings.
void SetExt(ItemID, value)

Sets the input/output/parameter of arbitrary block in REXYGEN algo-
rithm to value. Such an external data item is referenced by the ItemID

parameter. The structure of the string parameter ItemID is the same as in
e.g. the sc parameter of the SETPI function block. The type of the exter-
nal data item (long/double/string) must correspond with the type of the
value parameter. If the value cannot be set (e.g. invalid or non-existing
ItemID, data type con�ict, etc.), the REXLANG block issues an error and
must be reset.

int BrowseExt(ItemID, first_subitem_index, max_count, subitems, kinds)

Function browses task adress space. If ItemID is a block identi�er (block_path),
subitems string array will contain names of all inputs, outputs, parame-
ters and internal states. Function returns number of subitems or negative
error code. kinds values: executive = 0, module = 1, driver = 2, archive =
3, level = 4, task = 5, quicktask = 6, subsystem = 7, block = 8, input =
9, output = 10, internal state = 11, parameter or state array = 12, special
= 13.

long CallExt(ItemID)

Run (one step) arbitrary block in REXYGEN algorithm. Such an external
block is referenced by the ItemID parameter. The structure of the string
parameter ItemID is the same as in e.g. the sc parameter of the GETPI

function block. The function returns result code of the calling block (see
REXYGEN error codes). It is strongly recommended to call halted blocks
only (set checkbox Halt on the property page Runtime in the parameters
dialog of the block) and the block (or subsystem) should be in same task
as the REXLANG block.

long GetInArrRows(input)

Returns the number of rows of the array that is attached to the input with
index input of the REXLANG block.

long GetInArrCols(input)

Returns the number of columns of the array that is attached to the input
with index input of the REXLANG block.

long GetInArrMax(input)

Returns the maximum (allocated) size of the array that is attached to the
input with index input of the REXLANG block.

double GetInArrDouble(input, row, col)

Returns the member of the array that is attached to the input with index
input of the REXLANG block.

524 CHAPTER 16. SPEC � SPECIAL BLOCKS

Void SetInArrValue(input, row, col, value)

Sets the member of the array that is attached to the input with index
input of the REXLANG block.

Void SetInArrDim(input, row, col)

Sets the dimension of the array that is attached to the input with index
input of the REXLANG block.

long memrd32(hMem, offset)

Reading physical memory. Get the handle by Open(72,"/dev/mem",<physical
address>,<area size>).

long memwr32(hMem, offset, value)

Writing to physical memory. Get the handle by OpenMemory("/dev/mem",<physical

address>,<area size>).

• Communication functions (not part of ANSI C)

This set of functions is intended for communication over TCP/IP, UDP/IP, serial
line (RS-232 or RS-485), SPI bus and I2C bus. Only a brief list of available functions
is given below, see the example projects of the REXYGEN system for more details.

long OpenFile(string filename)

Function for opening a �le. Identi�cation number (the so-called handle)
of the �le is returned. If a negative value is returned, the opening was not
successful.

long OpenCom(string comname, long baudrate, long parity)

Function for opening a serial line. Starting from REXYGEN version 3.0,
it is possible to enter virtual ports as comname as well. More information
about virtual ports can be found in the description of the UART block.
Identi�cation number (the so-called handle) of serial port is returned. If a
negative value is returned, the opening was not successful. Parity setting:
0=none, 1=odd, 2=even.

long OpenUDP(string localname, long lclPort, string remotename, long remPort)

Function for opening a UDP socket. Identi�cation number (the so-called
handle) of the socket is returned. If a negative value is returned, the open-
ing was not successful. Function open IPv4 or IPv6 socket according to
remotename and localname or OS setting if DNS name is used. It is pos-
sible set empty locname (meaning any interface), empty remotename or
0 for remPort (meaning not used - e.g. write will not be called) or 0 for
lclPort (meaning assign by UDP/IP stack).

long OpenTCPsvr(string localname, long lclPort)

Function for opening a TCP socket (server, listening). Identi�cation num-
ber (the so-called handle) of the socket is returned. If a negative value
is returned, the opening was not successful. Function open IPv4 or IPv6
socket according to remotename and localname or OS setting if DNS name
is used. It is possible set empty locname (meaning any interface).

525

long OpenTCPcli(string remotename, long remPort)

Function for opening a TCP socket (client). Identi�cation number (the
so-called handle) of the socket is returned. If a negative value is returned,
the opening was not successful. Function open IPv4 or IPv6 socket ac-
cording to remotename and localname or OS setting if DNS name is used.
WARNING: this function not wait on connection is established. It take few
miliseconds on local network but can take few seconds for remote location.
If the function Write() or Read() is used before connection is established,
error code -307 (�le open error) is returned.

long OpenI2C(string devicename)

Function for opening the I2C bus. Identi�cation number (the so-called
handle) of the bus is returned. If a negative value is returned, the opening
was not successful.

long OpenSPI(string devicename)

Function for opening the SPI bus. Identi�cation number (the so-called
handle) of the bus is returned. If a negative value is returned, the opening
was not successful.

long OpenMemory(string devicename, long baseaddr, long size)

Function for mapping physical memory. Identi�cation number (the so-
called handle) of the memory address is returned. If a negative value is
returned, the opening was not successful.

long OpenDevice(string filename)

Same as OpenFile(), but Write() or Read() are not-blocking (e.g. if data
are not readable/writeable, function return immediately with return code
-1).

long OpenSHM(string devicename, long deviceid, long size, long flags)

Function for mapping shared memory (linux only, call shmget()).
void Close(long handle)

Closes the socket, serial line, �le or any device opened by the Open...

functions.
void SetOptions(long handle, long params[])

Sets the parameters of a socket or serial line. The array size must be at
least:

� 22 for serial line (on Windows parameters for SetCommState() and
SetCommTimeouts() in following order: BaudRate, fParity, Parity,
StopBits, ByteSize, fDtrControl, fRtsControl, fAbortOnError, fBinary,
fErrorChar, fNull, fDsrSensitivity, fInX, fOutX, fOutxCtsFlow, fOutxD-
srFlow, fTXContinueOnXo�, ReadIntervalTimeout, ReadTotalTime-
outConstant, ReadTotalTimeoutMultiplier, WriteTotalTimeoutCon-
stant, WriteTotalTimeoutMultiplier; linux use di�erent function, but
meaning of the parameters is as same as possible)

� 2 for �le (1st item is mode: 1=seek begin, 2=seek current, 3=seek end,
4=set �le end, 2nd item is o�set for seek),

526 CHAPTER 16. SPEC � SPECIAL BLOCKS

� 3 for SPI (1st item is SPI mode, 2nd item is bits per word, 3rd item
is max speed in Hz),

� 5 for I2C (1st item is slave address, 2nd item is 10-bit address �ag,
3rd item is Packet Error Checking �ag, 4th item is nuber of retries,
5th item is timeout)

� other handle types are not supported
void GetOptions(long handle, long params[])

Reads parameters of a socket or serial line to the params array. The array
size must be big enough, at least 2 for �les, 2 for a socket and 22 for serial
line (see SetOptions).

long Accept(long hListen)

Accepts the connection to listening socket hListen invoked by the client.
A communication socket handle or an error is returned.

long Read(long handle, long buffer[], long count)

Receives data from a serial line or socket. The count parameter de�nes
the maximum number of bytes to read. The count of bytes read or an error
code is returned. Each byte of incoming data is put to the buffer array
of type long in the corresponding order.

It is also possible to use the form
long Read(long handle, string data[], long count) (i.e. a string is
used instead of a data array; one byte in the input �le corresponds to one
character; not applicable to binary �les).
The error codes are:
-1 it is necessary to wait for the operation to �nish (the function

is "non-blocking")
-309 reading failed; the operating system error code appears in

the log (when function block logging is enabled)
-307 �le/socket is not open

long Write(long handle, long buffer[], long count)

Sends the data to a serial line or socket. The count parameter de�nes
the number of bytes to send. The count of bytes or en error code sent is
returned. Each byte of outgoing data is read from the buffer array of type
long in the corresponding order.

It is also possible to use the form
long Write(long handle, string data) (i.e. a string is used instead of
a data array; one byte in the output �le corresponds to one character; not
applicable to binary �les).
The error codes are:
-1 it is necessary to wait for the operation to �nish (the function

is "non-blocking")
-310 write failed; the operating system error code appears in the

log (when function block logging is enabled)
-307 �le/socket is not open

527

long ReadLine(long handle, string data)

Read one line from (text) �le, serial line or socket; read characters are in
the variable data up to allocated size of the string; the function return
real size (number of bytes) of line or error code.

long DeleteFile(string filename)

Delete �le. Return 0 if success; negative value is error code.
long RenameFile(string filename, string newfilename)

Rename �le. Return 0 if success; negative value is error code.
bool ExistFile(string filename)

Return true if �le or device exist (is it possible to open it for reading).
long I2C(long handle, long addr, long bufW[], long cntW, long bufR[], long cntR)

Communication over the I2C bus. Works only in Linux operating system
on devices with the I2C bus (e.g. Raspberry Pi). Sends and receives data
to/from the slave device with address addr. The parameter handle is
returned by the OpenI2C function, whose parameter de�nes the device
name (according to the operating system). The parameter bufW is a bu�er
(an array) for the data which is sent out, cntW is the number of bytes to
send out, bufR is a bu�er (an array) for the data which comes in and cntR

is the number of bytes to receive. The function returns 0 or an error code.
long SPI(long handle, 0, long bufW[], long cntW, long bufR[], long cntR)

Execution of one transaction over the SPI bus. Works only in Linux operat-
ing system on devices with the SPI bus (e.g. Raspberry Pi). The parameter
handle is returned by the OpenSPI function, whose parameter de�nes the
device name (according to the operating system). The second parameter
is always 0 (reserved for internal use). The parameter bufW is a bu�er (an
array) for the data which is sent out, cntW is the number of bytes to send
out, bufR is a bu�er (an array) for the data which comes in and cntR is the
number of bytes to receive. Note that SPI communication is full-duplex,
therefore the resulting length of the SPI transaction is given by maximum
of the cntW and cntR parameters, not their sum. The function returns 0
or an error code.

long Seek(long handle, long mode[], long offset)

Set position for Read/Write command. Parameter mode means: 1=o�set
from begin of the �le, 2= o�set from current position, 3=o�set from end
of the �le.

long Recv(long handle, long buffer[], long count)

Obsolete function. Use Read instead.

long Send(long handle, long buffer[], long count)

Obsolete function. Use Write instead.

long crc16(data,length,init,poly,flags,offset)

Compute 16-bit cyclic redundand code that is used as checksum/hash in
many comunication protocols. data byte array (represented by long array)
or string to compute hash length number of bytes in input array/text
(could be -1 for whole string) init so called initial vector poly so called

528 CHAPTER 16. SPEC � SPECIAL BLOCKS

control polynom flags 1...revert bit order (in input bytes as so as in result
crc), 2...result crc is xored with 0xFFFF, 4...if data is long array, all 4 bytes
in long are procesed (LSB �rst), 8... same like 4, but MSB �rst offset

index of the �rst processed byte in data array (usually 0) Notice: there is
same function for 32-bit CRC long crc32(data,length,init,poly,flags,offset),
and for 8-bit CRC long crc8(data,length,init,poly,flags,offset).
Initial vector, control polynom, �ags for many protocols could be found on
https://crccalc.com/ Examples: MODBUS: crc16("123456789",-1,0xFFFF,0x8005,1,0));
DECT-X: crc16("123456789",-1,0,0x0589,0,0));

Remarks

• The data type of inputs u0..u15, outputs y0..y15 and parameters p0..p15 is
determined during compilation of the source code according to the input, output
and parameter de�nitions.

• All error codes < -99 require restarting of the REXLANG function block by input
RESET. Of course it is necessary to remove the cause of the error �rst.

• WARNING! � The inputs and outputs of the block cannot be accessed within the
init() function (the values of inputs are 0, outputs are not set).

• It is possible to include path in the srcname parameter. Otherwise the �le is ex-
pected directly in the project directory or in the directories speci�ed by the -I

command line option of the REXYGEN Compiler compiler.

• All parameters of the vector functions are of type double (or array of type double).
The only exception is the n parameter of type long. Note that the functions with
one vector parameter exist in three variants:

double function(val1,...,valn)

Vector is de�ned as a sequence of values of type double.
double function(n,val1,...,valn)

Vector is de�ned as in the �rst case, only the �rst parameter de�nes the
number of values � the size of the vector. This variant is compatible with
the C compiler. The n parameter must be a number, not the so-called
const variable and it must correspond with the number of the following
elements de�ning the vector.

double function(n,vec)

The n parameter is an arbitrary expression of type long and de�nes the
number of elements the function takes into account.

• The optional parameter n of the vector functions must be speci�ed if the com-
patibility with C/C++ compiler is required. In such a case all the nonstandard

529

functions must be implemented as well and the functions with variable number of
parameters need to know the parameter count.

• In all case it is important to keep in mind that the vectors start at index 0
and that the array limits are not checked (just like in the C language). E.g. if
double vec[10], x; is de�ned, the elements have indexes 0 to 9. The expression
x=vec[10]; is neither a syntax nor runtime error, the value is not de�ned. More
importantly, it is possible to write vec[11]=x;, which poses a threat, because some
other variable might be overwritten and the program works unexpectedly or even
crashes.

• Only the parser error and line number are reported during compilation. This
means a syntax error. If everything seems �ne, the problem can be caused by
identi�er/keyword/function name con�ict.

• All jumps are translated as relative, i.e. the corresponding code is restricted to
32767 instructions (in portable format for various platforms).

• All valid variables and temporary results are stored in the stack, namely:

� Global variables and local static variables (permanently at the beginning of
the stack)

� Return addresses of functions

� Parameters of functions

� Local function variables

� Return value of function

� Temporary results of operations (i.e. the expression a=b+c; is evaluated in the
following manner: b is stored in the stack, c is stored in the stack (it follows
after b), the sum is evaluated, both values are removed from the stack and
the result is stored in the stack

Each simple variable (long or double) thus counts as one item in the stack. For
arrays, only the size is important, not the type.

• The arrays are passed to the functions as a reference. This means that the param-
eter counts as one item in the stack and that the function works directly with the
referenced array, not its local copy.

• If the stack size is not su�cient (less than space required for global variables plus
10), the stack size is automatically set to twice the size of the space required for the
global variables plus 100 (for computations, function parameters and local variables
in the case that only a few global variables are present).

• If basic debug level is selected, several checks are performed during the execution
of the script, namely initialization of the values which are read and array index

530 CHAPTER 16. SPEC � SPECIAL BLOCKS

limits. Also a couple of uninitialized values are inserted in front of and at the back
of each declared array. The NOP instructions with line number of the source �le are
added to the *.ill �le.

• If full debug is selected, additional check is engaged � the attempts to access invalid
data range are monitored (e.g. stack over�ow).

• The term instruction in the context of this block refers to an instruction of a
processor-independent mnemocode. The mnemocode is stored in the *.ill �le.

• The Open() function set serial line always 19200Bd, no parity, 8 bit per charac-
ter, 1 stopbit, binary mode, no timeout. Optional 2nd (bitrate) and 3th (parity)
parametrs can be used in the Open() function.

• Accessing text �le is signi�cantly slower that binary �le. A advantage of the text
�le is possibility view/edit data in �le without special editor.

• This block does not call the parchange() function. It is necessary to call it in
init() function (if it is required).

• The block's inputs are available in the init() function, but all are equal to zero.
It is possible (but not common) to set block's outputs.

• The Open() function also allows opening of a regular �le. Same codes like in the
LoadValue() function are used.

Debugging the code

Use the Trace command mentioned above.

Inputs

HLD Hold � the block code is not executed if the input is set to on Bool

RESET Rising edge resets the block. The block gets initialized again (all
global variables are cleared and the Init() function is called).

Bool

u0..u15 Input signals which are accessible from the script Any

531

Outputs

iE Runtime error code. For error codes iE < −99 the algorithm
is stopped until it is reinitialized by the RESET input or by
restarting the executive)

Error

0 No error occurred, the whole main() function was
executed (also the init() function).

-1 The execution was suspended using the Suspend()

command, i.e. the execution will resume as soon as
the REXLANG block is executed again

< -1 . . Error code of the REXYGEN system, see Appendix C
> 0 . . . User-de�ned return values, algorithm execution

without any change
y0..y15 Output signals which can be set from within the script Any

Parameters

srcname Source �le name ⊙srcfile.c String

srctype Coding of source �le ⊙1 Long (I32)

1: C-like Text �le respecting the C-like syntax described
above

2: STL Text �le respecting the IEC61131-3 standard. The
standard is implemented with the same limitations
as the C-like script (i.e. no structures, only
INT, REAL and STRING data types, function
blocks are global variables VAR_INPUT, outputs
are global variables VAR_OUTPUT, parameters
are global variables VAR_PARAMETER, standard
functions according to speci�cation, system and
communication functions are the same as in C-like).

3: RLB REXLANG binary �le which results from compilation
of C-like or STL scripts. Use this option if you do
not wish to share the source code of your block.

4: ILL Text �le with mnemocodes, which can be compared
to assembler. This choice is currently not supported.

stack Stack size de�ned as number of variables. Default and
recommended value is 0, which enables automatic estimation of
the necessary stack size.

Long (I32)

debug Debug level � checking is safer but slows down the execution of
the algorithm. Option No check can crash REXYGENapplication
on target platform if code is incorect. ⊙3

Long (I32)

1 No check
2 Basic check
3 Full check

strs Total size of bu�er for strings. Enter the maximum number of
characters to allocate memory for. The default value 0 means
that the bu�er size is determined automatically.

Long (I32)

p0..p15 Parameters which are accessible from the script Any

532 CHAPTER 16. SPEC � SPECIAL BLOCKS

Example C-like

The following example shows a simple code to sum two input signals and also sum two
user-de�ned parameters.

double input(0) input_u0;

double input(2) input_u2;

double parameter(0) param_p0;

double parameter(1) param_p1;

double output(0) output_y0;

double output(1) output_y1;

double my_value;

long init(void)

{

my_value = 3.14;

return 0;

}

long main(void)

{

output_y0 = input_u0 + input_u2;

output_y1 = param_p0 + param_p1 + my_value;

return 0;

}

long exit(void)

{

return 0;

}

Example STL

And here is the same example in Structured Text.

VAR_INPUT

input_u0:REAL;

input_u1:REAL;

input_u2:REAL;

END_VAR

VAR_OUTPUT

output_y0:REAL;

533

output_y1:REAL;

END_VAR

VAR_PARAMETER

param_p0:REAL;

param_p1:REAL;

END_VAR

VAR

my_value: REAL;

END_VAR

FUNCTION init : INT;

my_value := 3.14;

init := 0;

END_FUNCTION

FUNCTION main : INT;

output_y0 := input_u0 + input_u2;

output_y1 := param_p0 + param_p1 + my_value;

main := 0;

END_FUNCTION

FUNCTION exit : INT;

exit := 0;

END_FUNCTION

534 CHAPTER 16. SPEC � SPECIAL BLOCKS

UART � UART communication block

Block Symbol Licence: STANDARD

UART

dataTx

lenTx

idTx

idRxAck

WAIT

R1

dataRx

lenRx

idRx

idTxAck

MORE

status

Function Description

The UART block allows you to read and write data via the Universal Asynchronous
Receiver-Transmitter. The port parameter speci�es device name. There it is possible
to use two name types:

• the address of the physical device � Usually /dev/ttyS* for Linux target or COM*
for Windows. Replace "*" symbol according to the chosen serial port!

• the virtual address � REXYGEN enables the creation of a virtual UART with which
you can communicate inside REXYGEN with other blocks supporting UART such
as REXLANG, PYTHON, another UART block or Modbus driver. On Linux devices, the
virtual port is marked with the pre�x pty: (pseudo terminal) and it is possible
to connect to it from another application running on the device. On Windows
devices, it is possible to use the pre�x vcom, which enables communication within
REXYGEN. Virtual port examples: pty:/tmp/vslave, vcom:vmaster.

UART communication has several general properties that are set using parameters such
as baudrate, parity, databits and stopbits. Each packet that is received or transmit-
ted is assigned a unique ID. The ID of the next packet is always one higher than the ID
of the previous packet. Once the maximum ID is reached, the next ID assigned will be
0. The maximum ID value is determined by the maxId parameter. Data is sent with the
rising edge of the idTx input.

Inputs

dataTx Vector reference to transmitted data Reference

lenTx Transmitted data length (0 = whole vector) ↓0 Long (I32)

idTx ID of the transmitted data packet ↓0 Long (I32)

idRxAck ID of the last processed received data packet ↓0 Long (I32)

WAIT Transmission suspended �ag (data is bu�ered) Bool

on The transmitted data is still in the bu�er
off . . . The transmitted data (the entire bu�er) is sent

R1 Block reset Bool

535

Outputs

dataRx Vector reference to received data Reference

lenRx Received data length ↓0 Long (I32)

idRx ID of the received data packet ↓0 Long (I32)

idTxAck ID of the last processed transmitted data packet ↓0 Long (I32)

MORE Additional data in the receive bu�er �ag Bool

status Internal status indicator Long (I32)

0 No Error
1 Transmit bu�er over�ow
2 Transmit data error
256 . . . Received data error
-1 Failed to open port

Parameters

port Communication device name String

baudrate Baudrate [bis/s] (0 = not set) ↓0 ↑4000000 Long (I32)

parity Parity Long (I32)

0 Not set
1 No parity
2 Odd parity
3 Even parity

databits Number of data bits (0 = not set) ↓0 ↑3 Long (I32)

stopbits Number of stop bits (0 = not set) ↓0 ↑2 Long (I32)

maxId Max value used as ID of a packet ↓2 ↑10000000 ⊙4 Long (I32)

maxLen Maximum length of the received data ↓1 ↑10000000 ⊙64 Long (I32)

nmax Allocated size of array ↓8 ↑10000000 ⊙256 Long (I32)

536 CHAPTER 16. SPEC � SPECIAL BLOCKS

Chapter 17

LANG � Special blocks

Contents

PYTHON � User programmable block in Python 538

537

538 CHAPTER 17. LANG � SPECIAL BLOCKS

PYTHON � User programmable block in Python

Block Symbol Licence: REXLANG

PYTHON

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
iRes
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

Function Description

The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-de�ned function. The REXLANG block covers this case
for application where real-time behavior is strictly demanded. In the rest of the cases
the PYTHON block can be used.

The PYTHON block implements an user-de�ned algorithm written in a Python scripting
language and in comparison to the REXLANG block it provides a better user experience in
the stage of development of the algorithm and can extend the feature set of REXYGEN
system through various 3rd party libraries that are available in the Python environment.

Warning: the PYTHON block is intended for prototyping and experiments
so please consider using the block in your application very carefully. It is
an experimental block and always will be. There are many corner cases that
may lead to unexpected behavior or even block the runtime. Packages may
be poorly written or provide incorrect �nalization and reinitialization which
may even lead to a crash. Only a very limited support is provided for this
block.

Scripting language

The scripting language is a standard Python v.3 language (see [12]). Every block refer-
ences a script written in a *.py source �le. The �le can optionally contain functions with
a reserved name that are then executed by REXYGEN. The main() function is executed
periodically during runtime. Alongside the main() function the init() function is exe-
cuted once at startup and after reset of the block, the exit() function is executed once
when the control algorithm is stopped and before reset of the block and the parchange()
function is executed on parameters change in REXYGEN.

539

Scripts on the target device

Standard python interpreter can load modules/scripts from various locations on the tar-
get device. The PYTHON block can reference any python script available for the stan-
dard interpreter and in addition the block can access scripts located in a directory
/rex/scripts/python. User scripts can be directly uploaded to this directory or if the
parameter embedded is set to on the script referenced by the block gets embedded in
the REXYGEN con�guration during compilation process and will be temporarily stored
in the directory /rex/scripts/python/embedded during initialization of the block once
the con�guration is downloaded and executed on the target device.

Data exchange API

For the purpose of data exchange between a Python interpreter and REXYGEN system
a module PyRexExt was developed as a native extension to the interpreter. The module
contains an object REX that handles the data exchange operations. Use the following
snippet at the start of the script to setup the data exchange API.

from PyRexExt import REX

I/O objects

REX.u0 - REX.u15

� objects representing block inputs in Python environment

REX.p0 - REX.p15

� objects representing block parameters in Python environment

REX.y0 - REX.y15

� objects representing block outputs in Python environment

Access to values

All I/O objects contain a property v. Reading of the property v performs a conversion
from REXYGEN data types to Python data types. The value then can be stored in
variables and used in the block algorithm. A REXYGEN array type converts into a list of
values in case of one-dimensional array or into a list of lists in case of multidimensional
array.
Example of reading a value of the block input:

x = REX.u0.v

Writing to the property v, on the other hand, performs a conversion from Python data
types to REXYGEN data types and exports the value to the corresponding block out-
put/parameter.
Example of writing a value to the block output:

540 CHAPTER 17. LANG � SPECIAL BLOCKS

REX.y0.v = 5

Arrays

Input and output objects have a readonly property size. It is a tuple with number of
rows and columns. Arrays can be manipulated through property v but direct conversions
between REXYGEN arrays and Python lists are not very memory e�cient. However, input
and output objects support indexing operator [] that restricts the conversion overhead
only on the speci�ed item.
Example of reading a value of the block input for one-dimensional array:

x = REX.u0[0]

Example of writing a value to the block output for multidimensional array:

REX.u0[1, 3] = 5

External items

The object REX contains a method Item that returns a handle to an external REXYGEN
item based on a connection string speci�ed in a parameter of the method.
Example of creating a handle to an external item and setting its value:

cns = REX.Item("myproject_task.CNS:scv")

cns.v = "abc"

Tracing

The object REX contains methods Trace, TraceError, TraceWarning, TraceVerbose and
TraceInfo can be used to write messages into REXYGEN system log. Every message has
a stacktrace attached.
Example of logging a message:

REX.Trace("abc")

Additional features

REX.RexDataPath � RexDataPath is a string constant that contains a path to a data
folder of the REX system on the given platform. That can come handy for writing a
platform independent code that requires access to the �le system using absolute paths.

Inputs

HLD Hold � the block code is not executed if the input is set to on Bool

RESET Rising edge resets the block. The block gets initialized again (all
global variables are cleared and the init() function is called).

Bool

u0..u15 Input signals which are accessible from the script. Any

541

Outputs

iE Runtime error code. Error

0 No error occurred, the whole main() function was
executed (also the init() function).

xxx . . . Error code of the REXYGEN system, see Appendix C

iRes Execution result code. Long (I32)

y0..y15 Output signals which can be set from within the script. Any

Parameters

srcname Source �le name ⊙program.py String

embedded Embedding of the script ⊙on Bool

p0..p15 Parameters which are accessible from the script. Any

Data types de�nition

For data exchange between REXYGEN system and Python environment the data types of
block inputs signals u0..u15, outputs signals y0..y15 and parameters p0..p15 must be
explicitly speci�ed. For that purpose a con�guration �le must be created for every python
script with the same name plus a su�x .cfg (e.g. program.py.cfg). If the �le is missing
during the compilation process it is created with all signal types set to double. It is not
expected this �le to be edited directly. User should use a build-in editor speci�c to the
PYTHON block instead. Available types for inputs outputs and parameters are boolean,
uint8, int16, uint16, int32, uint32, int64, float, double, string and in addition
the inputs and outputs support array, numpy and image data types.

For types numpy and image the numpy python package must be installed on the target
device. Inputs of the type numpy expect the connected signal to be of the type array that
gets converted in the runtime to a native numpy representation. Inputs of the type image
expects the connected signal to be of the type image data type from the RexVision

module that also gets converted in the runtime to a native numpy representation and can
therefore be directly used with the OpenCV Python package.

Outputs of the type numpy expect to be set in the script from a numpy array object
that gets converted to a regular array. Outputs of the type image expect to be set in
the script from a numpy array object that gets converted to image data type de�ned in
the RexVision module.

542 CHAPTER 17. LANG � SPECIAL BLOCKS

Example data types de�nition

The following example shows a shortened JSON �le describing the data types of the
program inputs and outputs.

{

"types": {

"in": [

{

"idx": 0,

"type": "double"

},

. . .

{

"idx": 15,

"type": "double"

}

],

"param": [

{

"idx": 0,

"type": "double"

},

. . .

{

"idx": 15,

"type": "double"

}

],

"out": [

{

"idx": 0,

"type": "double"

},

. . .

{

"idx": 15,

"type": "double"

}

]

}

}

543

Example Python script

The following example shows a simple code to sum two input signals and also sum two
user-de�ned parameters.

from PyRexExt import REX

def main():

REX.y0.v = REX.u0.v + REX.u1.v

REX.y1.v = REX.p0.v + REX.p1.v

return

Installation - Debian

The Python environment should be correctly installed and con�gured just by installing
the PythonBlk_T debian package. To install the package with optional numpy and OpenCV

packages execute these commands from the terminal.

sudo apt install rex-pythonblkt

sudo apt install python3-numpy python3-opencv

Installation - Windows

To install the correct version of Python the recommended way is to download and install
the 64-bit version from o�cial repository (https://www.python.org/ftp/python/3.9.6/).
During the installation make sure to enable installation of the pip program and adding
of the python binaries to the system variable PATH.

To install numpy and OpenCV as optional dependencies execute following commands
from the command line.

pip install numpy

pip install opencv-python

Limitations

Due to the limitations of the standard Python interpreter implementation it is not rec-
ommended to use multiple PYTHON block instances at the di�erent levels of executive.
Doing so can lead to an unpredictable behavior and instability of the RexCore program.

https://www.python.org/ftp/python/3.9.6/python-3.9.6-amd64.exe

544 CHAPTER 17. LANG � SPECIAL BLOCKS

Chapter 18

DSP � Digital Signal Processing

blocks

Contents

BSGET, BSGETOCT � Binary Structure - Get a single value of given
type . 546

BSGETV, BSGETOCTV � Binary Structure - Get matrix (all values of
the same given type) . 548

BSSET, BSSETOCT � Binary Structure - Set a single value of given
type . 549

BSSETV, BSSETOCTV � Binary Structure - Set matrix of given type 550

BSFIFO � Binary Structure - Queueing serialize and deserialize . 551

MOSS � Motion smart sensor . 553

545

546 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSGET, BSGETOCT � Binary Structure - Get a single value of
given type

Block Symbols Licence: ADVANCED

BSGET

uVec

uOffset

yVec
yOffset

y

BSGETOCT

uVec

uOffset

yVec
yOffset

y1
y2
y3
y4
y5
y6
y7
y8

Function Description

This group of blocks is used for obtaining values from a binary structure (byte array).
The BSSET and BSSETOCT blocks can be used to write to the binary structure.
If binary structures are received using communication, it is possible to process them
directly in the block mediating communication. Typically this is a REXLANG or PYTHON
programmable block. Using structures, however, it is possible to transfer data within
the REXYGEN application as well. The binary structure is fed in the form of an array
(vector) of bytes to the uVec input. The uOffset input speci�es the o�set (in bytes) of
the desired value from the beginning of the structure. The value type is speci�ed by the
type parameter.
The yOffset output is the start of the next element in the structure. This is advantageous
for chaining: if the structure contains several elements in a row, it is possible to connect
the input uOffset to the output yOffset of the previous block and it is not necessary
to calculate the o�set.
The only di�erence between the blocks is that BSGET gets a single value. The BSGETOCT
block is able to receive up to 8 values (the number is determined by the m parameter).

Inputs

uVec Binary Structure (array of bytes) input Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

Outputs

yVec Copy of the uVec input, for easy chaining Reference

y Scalar value output (scalar type de�ned by parameter) Any

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

547

Parameters

m Number of used values (for multi-blocks) ↓1 ↑8 ⊙8 Long (I32)

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

type Data type of item ↓2 ↑10 ⊙2 Long (I32)

548 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSGETV, BSGETOCTV � Binary Structure - Get matrix (all values
of the same given type)

Block Symbols Licence: ADVANCED

BSGETV

uVec
uMat
uOffset
n
m

yVec

yMat

yOffset

BSGETOCTV

uVec
uOffset
n

yVec
yOffset
yMat

Function Description

This group of blocks is used for obtaining values from a binary structure (byte array).
The BSSETV and BSSETOCTV blocks can be used to write to the binary structure.
The meaning of most of the parameters is the same as the BSGET block, but these blocks
retrieve several values of the same type and store them in an array (matrix). A matrix
always has m rows and n columns. For the BSGETV block, all elements are of the same
type (determined by the type parameter) and the data is �lled into the matrix fed to
the uMat input. The BSGETOCTV block loads up to 8 vectors. Each row of the matrix can
be of a di�erent type. The block allocates the matrix itself. The matrix is available at
the yMat output.

Inputs

uVec Binary Structure (array of bytes) input Reference

uMat Reference of matrix for output values Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

n Number of matrix columns Long (I32)

m Number of active items Long (I32)

Outputs

yVec Copy of the uVec, for easy chaining Reference

yMat Copy of the uMat, for easy chaining Reference

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

Parameters

m Number of active items (for multi-blocks) ↓1 ↑8 ⊙8 Long (I32)

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

nmax Allocated size of output matrix (total number of items) yMat
↓1 ⊙32

Long (I32)

type Data type of item ↓2 ↑10 ⊙2 Long (I32)

549

BSSET, BSSETOCT � Binary Structure - Set a single value of
given type

Block Symbols Licence: ADVANCED

BSSET

HLD
uVec
uOffset
u

yVec

yOffset

BSSETOCT

HLD
uVec
uOffset
u1
u2
u3
u4
u5
u6
u7
u8

yVec

yOffset

Function Description

This group of blocks is used for setting values into a binary structure (byte array). The
function is the inverse of the BSGET and BSGETOCT blocks, i.e. all signals have the same
meaning, only the data is copied in the opposite direction - from the u input to the
binary structure represented by the byte array connected to the uVec input. The block
modi�es the binary structure only if HLD=off.

Inputs

HLD Hold Bool

uVec Binary Structure (array of bytes) input Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

u Scalar value input (scalar type de�ned by parameter) Any

Outputs

yVec Copy of the uVec input, for easy chaining Reference

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

Parameters

m Number of active items (for multi-blocks) ↓1 ↑8 ⊙8 Long (I32)

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

type Data type of item ↓2 ↑10 ⊙2 Long (I32)

550 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSSETV, BSSETOCTV � Binary Structure - Set matrix of given
type

Block Symbols Licence: ADVANCED

BSSETV

HLD
uVec
uOffset
uMat

yVec

yOffset

BSSETOCTV

HLD
uVec
uOffset
uMat

yVec

yOffset

Function Description

This group of blocks is used to set the matrix of values into a binary structure (byte
array). The function is the inverse of the BSGETV and BSGETOCTV blocks, i.e. all signals
have the same meaning, only the data is copied in the opposite direction - from the uMat
input to the binary structure represented by the byte array connected to the uVec input.
The block modi�es the binary structure only if HLD=off.
Unlike the BSGETV block, the numbers of rows and columns are not speci�ed, but are
determined from the actual size of the matrix connected to the uMat input.

Inputs

HLD Hold Bool

uVec Binary Structure (array of bytes) input Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

uMat Reference of the matrix with input values Reference

Outputs

yVec Copy of the uVec input, for easy chaining Reference

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

Parameters

m Number of active items (for multi-blocks) ↓1 ↑8 ⊙8 Long (I32)

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

type Data type of item ↓2 ↑10 ⊙2 Long (I32)

551

BSFIFO � Binary Structure - Queueing serialize and deserialize

Block Symbol Licence: ADVANCED

BSFIFO

uBuff
uMatIn
uMatOut
PUSH
POP
R1

yBuff
yMatIn

yMatOut
iused
ifree
iE

Function Description

This block sequentially adds or removes data to/from the bu�er (passed to the uBuff

input). The elementary unit in a bu�er is a column. All matrices (ie matrices or vectors
fed to the inputs uBuff, uMatIn, uMatOut) must have the same column size in bytes.
Data is organized as either a queue (if REV=off) or a stack (if REV=on). The behavior of
the block depends on the inputs in this way:

• If PUSH=on, the content of the uMatIn matrix (all de�ned columns) is inserted into
the bu�er.

• If POP=on, the number of columns determined by the col parameter is removed
from the bu�er and this data is inserted into the uMatOut matrix (it must be of
su�cient size).

• If R1=on, the data is reloaded (mainly the number of valid columns) into the block
bu�er. Own data is transmitted by reference and is therefore shared. This signal
has priority and blocks PUSH, POP signals.

Error states (e.g. mismatched matrix dimensions, insu�cient space in some matrices, lack
of data in the bu�er) are indicated on the iE output and by a message in the SystemLog.

Inputs

uBuff Binary Structure (array of bytes) input Reference

uMatIn Input reference to a matrix or vector (for PUSH) Reference

uMatOut Input reference to a matrix or vector (for POP) Reference

PUSH Enable push data Bool

POP Enable pop data Bool

R1 Bu�er reset (reload headers from uBuff) Bool

Parameters

OW Overwrite oldest items in bu�er Bool

REV Pop last pushed item �rst Bool

col Number of output (pop) columns ⊙1 Long (I32)

552 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

Outputs

yBuff Copy of the uBuff input, for easy chaining Reference

yMatIn Output reference to a matrix or vector uMatIn Reference

yMatOut Output reference to a matrix or vector uMatOut Reference

iused Used bytes in queue Long (I32)

ifree Free bytes in queue Long (I32)

iE Error code Error

553

MOSS � Motion smart sensor

Block Symbol Licence: ADVANCED

MOSS

tsPulse
cntPulse
tsSync
flags
R1

pos
vel
acc

status
iE

Function Description

The MOSS block implements a precise position �lter for a quadrature (incremental) en-
coder. The implementation requires special hardware that produce not only pulse count,
but also the exact timestamp of last pulse, the direction of last pulse and the timestamp
of the block start execution time (or similar reference time). Both timestamps must be
from the same (or synchronized) source. The output of the MOSS block is not only the
�ltered position, but also the �ltered velocity and acceleration. The �ltering level is set
by the alpha parameter. The setting is a compromise between noise reduction and signal
delay (averaging).

Note 1: Some people think that a quadrature encoder will get a precise position
value (accurate to 1 pulse) and the exact velocity could be obtained by dividing the
pulse di�erence by the time di�erence. We believe that the MOSS block achieve better
results. You can put both values into a graph (the TRND block) and check the di�erences.

Note 2: The �lter is implemented as a Kalman �lter for a second-order system (input
is acceleration, output is position) discretized for a variable sampling period (current
timestamp di�erence). Input and output noises are necessary parameters for Kalman
�lter design. If both noises are Gaussian, the only parameter is ratio of input and output
noise that is the alpha parameter of the MOSS block.

Inputs

tsPulse Last pulse timestamp DWord (U32)

cntPulse Last pulse count DWord (U32)

tsSync Timestamp of the Sync pulse. The Sync pulse is the time when
the �ltered outputs are valid.

DWord (U32)

flags Input status �ags (1: POS, 2: NEG, 4: RUN) DWord (U32)

R1 Block reset DWord (U32)

Parameters

freq Source timestamp tick frequency [Hz] ↓0.0 ⊙100000000.0 Double (F64)

stall Stalled time [s]. If no pulse is received in the stalled time interval,
sensor is considered stopped and the outputs (pos, vel,acc) are
set to 0. ↓0.0 ⊙0.08

Double (F64)

554 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

alpha Kalman �lter design parameter. A lower value means smoother
(less noise) outputs, but more delayed in dynamic situation
(when acceleration is changing). ↓0.0 ↑200.0 ⊙26.0

Double (F64)

maxpos Kalman �lter rounding optimization. If pos is greater then
maxpos, the internal position processed by the Kalman �lter is
decremented by an integer multiple of maxpos and incremented
back for output. This causes the �lter algorithm to calculate
small enough numbers and not reduce accuracy due to rounding
errors. The default value should not normally be changed.

↓0.0 ⊙1e+10

Double (F64)

mindivert Predictor minimal divert time [s]. If no pulse is received for a long
time, the predictor output will drift. To overcome this drift, if
no pulse is detected for longer then mindivert time, the output
position is clamped to +-1 pulse from input (mesured) position.

↓0.0 ⊙0.003

Double (F64)

Outputs

pos Filtered position Double (F64)

vel Filtered velocity Double (F64)

acc Filtered acceleration Double (F64)

status Output status �ags (1: POS, 2: NEG, 4: RUN, 8: INIT, 16:
PULSE, 32: STALLED, 64: DIVERT)

Long (I32)

iE Error code Error

i REXYGEN general error

Chapter 19

MQTT � Communication via

MQTT protocol

Contents

MqttPublish � Publish MQTT message 556

MqttSubscribe � Subscribe to MQTT topic 558

555

556 CHAPTER 19. MQTT � COMMUNICATION VIA MQTT PROTOCOL

MqttPublish � Publish MQTT message

Block Symbol Licence: MQTT

MqttPublish

value

RUN

BUSY

DONE

errId

Function Description

This function block depends on the MQTT driver. Please read the MQTTDrv manual
[13] before use.

The MqttPublish block publishes messages to an MQTT broker through the connec-
tion established by the MQTTDrv driver.

The �rst parameter is the topic the block will publish the messages to. MQTT
delivers Application Messages according to the Quality of Service (QoS) levels. Use the
QoS parameter to set a di�erent Quality of Service level. See the MQTT speci�cation [14]

for more details.

If the RETAIN parameter is set a RETAIN �ag will be set on the outgoing PUBLISH
Control Packet. See the MQTT speci�cation [14] for more details.

The defBuffSize parameter can be used to optimize the memory usage of the block.
It states the amount of the statically allocated memory for the inner bu�er for the
outgoing messages. If the value is unnecessarily large the memory is being wasted. On
the other hand if the value of the parameter is too small it leads to frequent dynamic
memory allocations which can be time consuming.

The message to be published is constructed from the value input signal. The value
input signal is expected to be a string. If it is not a string it will be converted automati-
cally. To request a message to be published in the current period set the RUN �ag to on.
The BUSY �ag is on if the block has a pending request and waits for a response from a
broker. When the response is received in the current cycle the DONE �ag is set to on.

Inputs

value Input signal String

RUN Enable execution Bool

Parameters

topic MQTT topic String

557

QoS Quality of Service ⊙1 Long (I32)

1 QoS0 (At most once)
2 QoS1 (At least once)
3 QoS2 (Exactly once)

RETAIN Retain last message ⊙on Bool

defBuffSize Default bu�er size ↓1 ⊙2048 Long (I32)

Outputs

BUSY Busy �ag Bool

DONE Indicator of �nished transaction Bool

errId Error code Error

558 CHAPTER 19. MQTT � COMMUNICATION VIA MQTT PROTOCOL

MqttSubscribe � Subscribe to MQTT topic

Block Symbol Licence: MQTT

MqttSubscribe

RUN

value

nDRDY

RETAIN

errId

Function Description

This function block depends on the MQTT driver. Please read the MQTTDrv manual
[13] before use.

The MqttSubscribe block subscribes to a topic on an MQTT broker and receives
Publish messages on that topic through the connection established by the MQTTDrv driver.

The �rst parameter is the topic the block will subscribe to. MQTT protocol delivers
Application Messages according to the Quality of Service (QoS) levels. Use the QoS

parameter to set a di�erent Quality of Service level. See the MQTT speci�cation [14] for

more details.

By setting the type parameter of the block it can be speci�ed the expected data type
of the incoming message. The block converts the incoming message to the speci�ed type
and sets the value output signal in case of success or it sets the errId to the resulting
error code.

The mode parameter has two available options: Last value and Buffered values.
If Last value mode is used the block will always output only the last message received
even if multiple messages were received in the last period. If the mode is set to Buffered

values than the block bu�ers the incoming messages and outputs one by one in consec-
utive ticks of the task.

The defBuffSize parameter can be used to optimize the memory usage of the block.
It states the amount of the statically allocated memory in the inner bu�er for the in-
coming messages. If the value is unnecessarily large the memory is being wasted. On
the other hand if the value of the parameter is too small it leads to frequent dynamic
memory allocations which can be time consuming.

A Subscribe action is performed upon a rising edge (off→on) and an Unsubscribe
action is performed upon a falling edge (on→off) at the RUN input.

The nDRDY output speci�es how many messages were received and are available in
the inner bu�er. If the mode of the block is set to Last value the nDRDY output can only
have value 0 or 1.

The RETAIN output �ag is set if the received Publish packet had the RETAIN �ag set.
See the MQTT speci�cation [14] for more details.

559

Note that subscribing to topics containing wildcards is not supported.

Input

RUN Enable execution Bool

Parameters

topic MQTT topic String

QoS Quality of Service ⊙1 Long (I32)

1 QoS0 (At most once)
2 QoS1 (At least once)
3 QoS2 (Exactly once)

type Expected type of incoming data ⊙1 Long (I32)

1 string
2 double
3 long
4 bool
5 byte vector/blob

mode Incoming messages bu�ering mode ⊙1 Long (I32)

1 Last value
2 Bu�ered values

defBuffSize Default bu�er size ↓1 ⊙2048 Long (I32)

Outputs

value Output signal Any

nDRDY Number of received messages ↓0 ↑10 Long (I32)

errId Error code Error

560 CHAPTER 19. MQTT � COMMUNICATION VIA MQTT PROTOCOL

Chapter 20

MC_SINGLE � Motion control -

single axis blocks

Contents

RM_Axis � Motion control axis . 564

MC_AccelerationProfile, MCP_AccelerationProfile � Acceleration
pro�le . 571

MC_Halt, MCP_Halt � Stopping a movement (interruptible) 575

MC_HaltSuperimposed, MCP_HaltSuperimposed � Stopping a move-
ment (superimposed and interruptible) 576

MC_Home, MCP_Home � Homing . 577

MC_MoveAbsolute, MCP_MoveAbsolute � Move to position (absolute
coordinate) . 579

MC_MoveAdditive, MCP_MoveAdditive � Move to position (relative
to previous motion) . 583

MC_MoveRelative, MCP_MoveRelative � Move to position (relative
to execution point) . 586

MC_MoveSuperimposed, MCP_MoveSuperimposed � Superimposed move 589

MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute � Move
to position (absolute coordinate) 592

MC_MoveContinuousRelative, MCP_MoveContinuousRelative � Move
to position (relative to previous motion) 595

MC_MoveVelocity, MCP_MoveVelocity � Move with constant velocity 599

MC_PositionProfile, MCP_PositionProfile � Position pro�le 603

MC_Power � Axis activation (power on/o�) 607

MC_ReadActualPosition � Read actual position 608

MC_ReadAxisError � Read axis error 609

MC_ReadBoolParameter � Read axis parameter (bool) 610

MC_ReadParameter � Read axis parameter 611

561

562 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadStatus � Read axis status 613

MC_Reset � Reset axis errors . 615

MC_SetOverride, MCP_SetOverride � Set override factors 616

MC_Stop, MCP_Stop � Stopping a movement 618

MC_TorqueControl, MCP_TorqueControl � Torque/force control . . . 620

MC_VelocityProfile, MCP_VelocityProfile � Velocity pro�le 623

MC_WriteBoolParameter � Write axis parameter (bool) 627

MC_WriteParameter � Write axis parameter 628

RM_AxisOut � Axis output . 629

RM_AxisSpline � Commanded values interpolation 630

RM_Track � Tracking and inching . 635

This library includes functional blocks for single axis motion control as it is de�ned in
the PLCopen speci�cation. It is recommended to study the PLCopen speci�cation prior to
using the blocks from this library. The knowledge of PLCopen is necessary for advanced
use of the blocks included in this library.

PLCopen de�nes all blocks with the MC_ pre�x. This notation is kept within this
library. Nevertheless, there are also function blocks, which are not described by PLCopen

or are described as vendor speci�c. These blocks can be recognized by the RM_ pre�x.
Note that PLCopen (and also IEC 61131-3 which is the base for PLCopen) does not use
block parameters, all the parameters are speci�ed by input signals. In the REXYGEN,
block parameters are used to simplify usage of the blocks. To keep compatibility with
PLCopen and improve usability of the blocks, almost all of them are implemented twice:
with pre�x MC_ without parameters (parameters are inputs) and with pre�x MCP_ with
parameters. Some blocks require additional vendor speci�c parameters. In such a case
even the MC_-pre�xed blocks contain parameters.

PLCopen speci�es that all inputs/parameters are sampled at rising-edge of the Execute
input. In REXYGEN block parameters are usually changed very rare. Therefore the pa-
rameters of the activated block have not be changed until block is �nished (e.g. while
output Busy is on).

The REXYGEN system does not allow input-output signals and all signals must have
di�erent name. For these reasons the Axis input-output signal, which is used in all
blocks, is divided into input uAxis and output yAxis. The block algorithm copies the
input uAxis to the output yAxis. The yAxis output is not necessary for the function of
motion control blocks, but "chaining" the axis references makes it possible to order the
blocks and de�ne priorities. Other reference signals are either de�ned as input-only or
use this mechanism as well.

PLCopen de�nes the outputs Busy, Active, CommandAborted as optional in almost all
blocks. In REXYGEN, some of them are never set, but the outputs are de�ned to simplify
future extensions and/or changes in the implementation.

Units used for position and distance of axis are implementation speci�c. It can be
meters, millimeters, encoder ticks, angular degrees (for rotational axis) or any others,

563

but all blocks connected to one axis must use the same position units. Time is always
de�ned in seconds. Velocity unit is thus "position units per second" and acceleration
unit is "position units per square second".

The REXYGEN system uses more threads for execution of the function blocks. In
standard function blocks the synchronization is provided by the system and the user
does not need to care about it. But using the Reference references could violate the
synchronization mechanisms. However, there is no problem if all referenced blocks are
located in the same task and therefore e.g. the RM_Axis block must be in the same task
as all other blocks connected to this axis.

Some inputs/parameters are of enumeration type (for example BufferMode or Direction).
It is possible to choose any of the de�ned values for this type in the MCP_ version of
the blocks, although not all of them are valid for all blocks (for example the block
MC_MoveVelocity does not support Direction = shortest_way). Valid values for each
block are listed in this manual.

564 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

RM_Axis � Motion control axis

Block Symbol Licence: MOTION CONTROL

RM_Axis

uChain

axisRef

CommandedPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

State

ErrorID

PhysicalPosition

Function Description

The RM_AXIS block is a cornerstone of the motion control solution within the REXYGEN
system. This base block keeps all status values and implements basic algorithm for one
motion control axis (one motor), which includes limits checking, emergency stop, etc. The
block is used for both real and virtual axes. The real axis must have a position feedback
controller, which is out of this block's scope. The key status values are commanded
position, velocity, acceleration and torque, as well as state of the axis, axis error code
and a reference to the block, which controls the axis.

This block (like all blocks in the motion control library) does not implement a feed-
back controller which would keep the actual position as near to the commanded position
as possible. Such a controller must be provided by using other blocks (e.g. PIDU) or
external (hardware) controller. The feedback signals are used for lag checking, homing
and could be used in special motion control blocks. The feedback signals are connected
throw the RM_AxisSpline block.

The parameters of this block correspond with the requirements of the PLCopen stan-
dard for an axis. If improper parameters are set, the errorID output is set to -700

(invalid parameter) and all motion blocks fail with -703 error code (invalid state).
The parameters for limit velocity, acceleration and deceleration are twofold. One for

application, e.g. limit value which could be set into movtion blocks. This value could be
exceeded in some cases. Second limit is for system. The system limits must be higher
then application limits and it is never exceeded. If some motion block generate path,
that exceed system limit, error stop seqvence is activated.

Note that the default values for position, velocity and acceleration limits are in-
tentionally set to 0, which makes them invalid. Limits must always be set by the user
according to the real axis and the axis actuator.

Inputs

uChain Input is not used by the block. User can connect any signal to
de�ne order of block's execution

Long (I32)

565

Outputs

axisRef Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis

connections are allowed)
Reference

CommandedPosition Requested (commanded) position of the axis. The value
is logical position that is put into the motion blocks. The position
is di�erent from PhysicalPosition if the axis is circular or
homed.

Double (F64)

CommandedVelocity Requested (commanded) velocity of the axis Double (F64)

CommandedAcceleration Requested (commanded) acceleration of the axis Double (F64)

CommandedTorque Requested (commanded) torque in the axis Double (F64)

State State of the axis Long (I32)

0 Disabled
1 Stand still
2 Homing
3 Discrete motion
4 Continuous motion
5 Synchronized motion
6 Coordinated motion
7 Stopping
8 Error stop
9 Drive error(simillar to Error stop, but fault is caused

by external signnal)
ErrorID Result of the last operation Error

i REXYGEN general error

PhysicalPosition Requested (commanded) position of the axis. The value
is physical position that is put into the feedback controller.
The position is di�erent from CommandedPosition if the axis
is circular or homed.

Double (F64)

Parameters

AxisType Type of the axis ⊙1 Long (I32)

1 Linear axis
2 Cyclic axis with cyclic position sensor
3 Cyclic axis with linear position sensor

EnableLimitPos Enable positive position limit checking (e.g. if checked,
MaxPosAppl is valid)

Bool

MaxPosAppl Positive position limit for application (MC blocks). The value
should be smaller then (before the) MaxPosSystem for linear axis.
The value limit cyclic axis with linear senzor for few revolution
(useful for robotic application) and must be bigger then (beyond
the) MaxPosSystem.

Double (F64)

MaxPosSystem Positive position limit for system. The value is never exceeded
for linear axis. The value is end of revolution for cyclic axis.

Double (F64)

EnableLimitNeg Enable negative position limit checking (e.g. if checked,
MinPosAppl is valid)

Bool

566 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MinPosAppl Negative position limit for application (MC blocks) The value
should be bigger then (before the) MinPosSystem for linear axis.
The value limit cyclic axis with linear senzor for few revolution
(useful for robotic application) and must be smaller then (beyond
the) MinPosSystem.

Double (F64)

MinPosSystem Negative position limit for system. The value is never exceeded
for linear axis. The value is begin of revolution for cyclic axis.

Double (F64)

EnablePosLagMonitor Enable monitoring of position lag (e.g. if checked,
MaxPositionLag is valid)

Bool

MaxPositionLag Maximal position lag. Any moving is stopped and the
axis is switched into error stop state if di�erent between
PhysicalPosition and ActualPosition exceed this value.

Double (F64)

MaxVelocitySystem Maximal allowed velocity for system Double (F64)

MaxVelocityAppl Maximal allowed velocity for application (MC blocks) Double (F64)

MaxAccelerationSystem Maximal allowed acceleration for system Double (F64)

MaxAccelerationAppl Maximal allowed acceleration for application (MC
blocks)

Double (F64)

MaxDecelerationSystem Maximal allowed deceleration for system Double (F64)

MaxDecelerationAppl Maximal allowed deceleration for application (MC
blocks)

Double (F64)

DefaultJerk Maximal recomended jerk [unit/s3]. Real jerk is not checked
and could overcome this value.

Double (F64)

MaxTorque Maximal motor torque/force (0=not used) Double (F64)

TorqueRatio Torque-Acceleration ratio. The requested torque value is useful
for feedback controller. The most block don't generate it. The
requested torque value is comuted as reqested acceleration
multiplied by this parameter.

Double (F64)

LoopDelay delay between commanded and actual values[s] The actual
position value is deleyed from commanded value due
communication with feedback controller, feedback loop, value
interpolation and sampling period. The delay could be set into
this parameter and then position lag is computed more precisely.
(not yet implemented)

Double (F64)

StartMode Some options when axis is enabled ⊙1 Long (I32)

1 start stopped
2 start tracking

HomingRequired Homing is required before any move Bool

Example

Following example illustrates basic principle of use of motion control blocks. It presents
the minimal con�guration which is needed for operation of a physical or virtual axis. The
axis is represented by RM_Axis block. The limitations imposed on the motion trajectory
in form of maximum velocity, acceleration, jerk and position have to be set in parameters
of the RM_Axis block. The inputs can be connected to supply the values of actual position,
speed and torque (feedback for slip monitoring) or logical limit switch signals for homing

567

procedure. The axisRef output signal needs to be connected to any motion control block
related to the corresponding axis. The axis has to be activated by enabling the MC_Power
block. The state of the axis changes from Disabled to Standstill (see the following state
transition diagram) and any discrete, continuous or synchronized motion can be started
by executing a proper functional block (e.g. MC_MoveAbsolute). The trajectory of motion
in form of desired position, velocity and acceleration is generated in output signals of
the RM_Axis block. The reference values are provided to an actuator control loop which
is implemented locally in REXYGEN system in the same or di�erent task or they are
transmitted via a serial communication interface to end device which controls the motor
motion (servo ampli�er, frequency inverter etc.). In case of any error, the axis performs an
emergency stop and indicates the error ID. The error has to be con�rmed by executing the
MC_Reset block prior to any subsequent motion command. The following state diagram
demonstrates the state transitions of an axis.

velocity1

30

position1

100

on_off

1

mode1

2

execute1

[execute1]

direction1

1

deceleration1

20

cammanded_velocity

[commanded_velocity_for_drive_freq_converter]

cammanded_position

[commanded_position_for_drive_freq_converter]

cammanded_acceleration

[commanded_acceleration_for_drive_freq_converter]

actual_velocity

[actual_velocity_from_drive_freq_converter]

actual_position

[actual_position_from_drive_freq_converter]

acceleration1

50

RM_Axis

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

CommandedPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

MC_Power

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

568 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Axis state transition diagram

Synchronized
motion

Discretemo t ion

Stopping

Standstill

Errorstop

Disabled

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_Superimposed)

MC_Gearln(Sl ave)
MC_GearlnPos(Sl ave)
MC_Camln(Sl ave)
MC_CombineAxes(Sl ave)

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_MoveContinousAbsolute
MC_MoveContinousRelative

D
o
n
e

Done

MC_Home
No
te
4

Note6

Note3

Note2

Note1

Homing

MC_Stop

Note5

Note

Note

Note

Note

Note

Note

1:

2:

3:

4:

5:

6:

. MC_Power.Enable =FALSE

MC_ResetANDMC_Power.Status =FALSE

MC_ResetANDMC_Power.Status =TRUEANDMC_Power.Enable =TRUE

MC_Power.Enable =TRUEANDMC_Power.Status =TRUE

MC_Stop.Done=TRUEANDMC_Stop.Execute =FALSE

Fromany state.An error in the axis occurred.

Fromany state and there is no error in the axis.

Continuous
motion

569

Motion blending

According to PLCOpen speci�cation, number of motion control blocks allow to specify
BufferMode parameter, which determines a behaviour of the axis in case that a motion
command is interrupted by another one before the �rst motion is �nished. This transition
from one motion to another (called "Blending") can be handled in various ways. The
following table presents a brief explanation of functionality of each blending mode and
the resulting shapes of generated trajectories are illustrated in the �gure. For detailed
description see full PLCOpen speci�cation.

Aborting The new motion is executed immediately
Bu�ered the new motion is executed immediately after �nishing

the previous one, there is no blending
Blending low the new motion is executed immediately after �nishing

the previous one, but the axis will not stop between
the movements, the �rst motion ends with the lower
limit for maximum velocity of both blocks at the �rst
end-position

Blending high the new motion is executed immediately after �nishing
the previous one, but the axis will not stop between
the movements, the �rst motion ends with the higher
limit for maximum velocity of both blocks at the �rst
end-position

Blending previous the new motion is executed immediately after �nishing
the previous one, but the axis will not stop between
the movements, the �rst motion ends with the limit
for maximum velocity of �rst block at the �rst end-
position

Blending next the new motion is executed immediately after �nishing
the previous one, but the axis will not stop between
the movements, the �rst motion ends with the limit
for maximum velocity of second block at the �rst end-
position

570 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Illustration of blending modes

0 5 10 15
0

20

40
Aborting

v
e

lo
c
it
y

Commanded velocity

Active block 1 =false/Active block 2 = ture

Value of the maximum velocity v
1
=30 (block 1)

Value of the maximum velocity v
2
=15 (block 2)

0 5 10 15
0

20

40
Buffered

v
e

lo
c
it
y

0 5 10 15
0

20

40
Blending low

v
e

lo
c
it
y

0 5 10 15
0

20

40
Blending high

v
e
lo

c
it
y

0 5 10 15
0

20

40
Blending next

v
e
lo

c
it
y

0 5 10 15
0

20

40
Blending previous

v
e
lo

c
it
y

571

MC_AccelerationProfile, MCP_AccelerationProfile � Acceler-
ation pro�le

Block Symbols Licence: MOTION CONTROL

MC_AccelerationProfile

uAxis

Execute

alg

TimeScale

AccelerationScale

Offset

BufferMode

uTimes

uValues

BeginJerk

EndJerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_AccelerationProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_AccelerationProfile and MCP_AccelerationProfile blocks o�er the same
functionality, the only di�erence is that some of the inputs are available as parameters
in the MCP_ version of the block.

The MC_PositionProfile block commands a time-position locked motion pro�le.
Block implements two possibilities for de�nition of time-acceleration function:

1. sequence of values: the user de�nes a sequence of time-acceleration pairs. In each
time interval, the values of velocity are interpolated. Times sequence is in array times,
position sequence is in array values. Time sequence must be increasing and must start
with zero or zero must be between the �rst and last point. Execution always starts
from zero time, so if the sequence start with negative time, part of the pro�le is not
executed (could be used for debugging or time shift). For MC_VelocityProfile and
MC_AccelerationProfile interpolation is linear, but for MC_PositionProfile, 3rd order
polynomial is used in order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolated
by 5th order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where beginning of

the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the �rst (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.

572 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or
values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position
(also for sibling block MC_PositionProfile and MC_VelocityProfile) and it couldn't
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
pro�le is di�erent from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

TimeScale Overall scale factor in time Double (F64)

AccelerationScale Overall scale factor in value Double (F64)

Offset Overall pro�le o�set in value Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

573

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

times Times when segments are switched Reference

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...) Reference

574 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

timeScale

1.0

posScale

1.0

offset

0

mode1

2

MC_AccelerationProfile

uAxis

Execute

TimeScale

AccelerationScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

b
o
o

l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

b
o

o
l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

b
o
o
l

0 0.5 1 1.5 2 2.5 3
�200

0

200
Commanded acceleration

a
c
c
e
le

ra
ti
o

n

0 0.5 1 1.5 2 2.5 3
�10

0

10
Commanded velocity

v
e
lo

c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

p
o
s
it
io

n

575

MC_Halt, MCP_Halt � Stopping a movement (interruptible)

Block Symbols Licence: MOTION CONTROL

MC_Halt

uAxis

Execute

Deceleration

Jerk

BufferMode

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Halt

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_Halt and MCP_Halt blocks o�er the same functionality, the only di�erence is
that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Halt block commands a controlled motion stop and transfers the axis to the
state DiscreteMotion. After the axis has reached zero velocity, the Done output is set
to true immediately and the axis state is changed to Standstill.

Note 1: Block MC_Halt is intended for temporary stop of an axis under normal work-
ing conditions. Any next motion command which cancels the MC_Halt can be executed
in nonbu�ered mode (opposite to MC_Stop, which cannot be interrupted). The new com-
mand can start even before the stopping sequence was �nished.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

576 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_HaltSuperimposed, MCP_HaltSuperimposed � Stopping a move-
ment (superimposed and interruptible)

Block Symbols Licence: MOTION CONTROL

MC_HaltSuperimposed

uAxis

Execute

Deceleration

Jerk

BufferMode

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_HaltSuperimposed

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_HaltSuperimposed and MCP_HaltSuperimposed blocks o�er the same func-
tionality, the only di�erence is that some of the inputs are available as parameters in the
MCP_ version of the block.

Block MC_HaltSuperimposed commands a halt to all superimposed motions of the
axis. The underlying motion is not interrupted.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

577

MC_Home, MCP_Home � Homing

Block Symbols Licence: MOTION CONTROL

MC_Home

uAxis
Execute
Velocity
Acceleration
TorqueLimit
TimeLimit
DistanceLimit
LagLimit
Position
Direction
HomingMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_Home

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_Home and MCP_Home blocks o�er the same functionality, the only di�erence is
that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Home block commands the axis to perform the "search home" sequence. The
details of this sequence are described in PLCopen and can be set by parameters of the
block. The "Position" input is used to set the absolute position when reference signal is
detected. This Function Bock completes at "StandStill".

Note 1: Parameter/input BufferMode is not supported. Mode is always Aborting. It
is not limitation, because homing is typically done once in initialization sequence before
some regular movement is proceeded.

Note 2: Homing procedure requires some of RM_Axis block input connected. Depend-
ing on homing mode, ActualPos, ActualTorque, LimP, LimZ, LimN can be required. It is
expected that only one method is used. Therefore, there are no separate inputs for zero
switch and encoder reference pulse (both must be connected to LimZ).

Note 3: HomingMode=4(Direct) only sets the actual position. Therefore, the MC_SetPosition
block is not implemented. HomingMode=5(Absolute) only switches the axis from state
Homing to state StandStill.

Note 4: Motion trajectory for homing procedure is implemented in simpler way than
for regular motion commands - acceleration and deceleration is same (only one parame-
ter) and jerk is not used. For extremely precise homing (position set), it is recommended
to run homing procedure twice. First, homing procedure is run with "high" velocity to
move near zero switch, then small movement (out of zero switch) follows and �nally
second homing procedure with "small" velocity is performed.

Note 5: HomingMode=6(Block) detect home-position when the actual torque reach
value in parameter TorqueLimit or position lag reach value in parameter MaxPositionLag
in attached RM_Axis block (only if the parameter has positive value).

578 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

TorqueLimit Maximal allowed torque/force Double (F64)

TimeLimit Maximal allowed time for the whole algorithm [s] Double (F64)

DistanceLimit Maximal allowed distance for the whole algorithm [unit] Double (F64)

Position Requested target position (absolute) [unit] Double (F64)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

HomingMode Homing mode algorithm Long (I32)

1 Absolute switch
2 Limit switch
3 Reference pulse
4 Direct (user reference)
5 Absolute encoder
6 Block

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

579

MC_MoveAbsolute, MCP_MoveAbsolute � Move to position (ab-
solute coordinate)

Block Symbols Licence: MOTION CONTROL

MC_MoveAbsolute

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveAbsolute

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveAbsolute and MCP_MoveAbsolute blocks o�er the same functionality, the
only di�erence is that some of the inputs are available as parameters in the MCP_ version
of the block.

The MC_MoveAbsolute block moves an axis to speci�ed position as fast as possible.
If no further action is pending, �nal velocity is zero (axis moves to position and stops)
otherwise it depends on blending mode. For blending purposes, start and stop velocity
of this block is maximum velocity with direction respecting current and �nal position.
If start velocity of next pending block is in opposite direction, then blending velocity is
always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

The MC_MoveRelative block act almost same as MC_MoveAbsolute. The only di�er-
ence is the �nal position is computed adding input Distance to current (when rising
edge on input Execute occurred) position.

The MC_MoveAdditive block act almost same as MC_MoveRelative. The only di�er-
ence is the �nal position is computed adding input Distance to �nal position of the
previous block.

The MC_MoveSuperimposed block acts almost the same as the MC_MoveRelative

580 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

block. The only di�erence is the current move is not aborted and superimposed move is
executed immediately and added to current move. Original move act like superimposed
move is not run.

The following table describes all inputs, parameters and outputs which are used in
some of the blocks in the described block suite.

Inputs

uAxis AAxis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Position Requested target position (absolute) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

581

ErrorID Result of the last operation Error

i REXYGEN general error

582 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

direction2

1
direction1

1

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o
o

l

0 5 10 15

0

0.5

1

Active � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o
o
l

0 5 10 15
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 5 10 15
0

100

200
Commanded position

Time [s]

p
o

s
it
io

n

583

MC_MoveAdditive, MCP_MoveAdditive � Move to position (rela-
tive to previous motion)

Block Symbols Licence: MOTION CONTROL

MC_MoveAdditive

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveAdditive

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveAdditive and MCP_MoveAdditive blocks o�er the same functionality,
the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveAdditive block moves an axis to speci�ed position as fast as possible.
The �nal position is determined by adding the value of Distance parameter to �nal
position of previous motion block which was controlling the axis. If no further action is
pending, �nal velocity is zero (axis moves to position and stops) otherwise it depends on
blending mode. For blending purposes, start and stop velocity of this block is maximum
velocity with direction respecting current and �nal position. If start velocity of next
pending block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to start point) [unit] Double (F64)

584 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

585

Example

velocity2

15
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveAdditive1 � block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAdditive � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Execute � block 1

b
o
o

l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Active � block 1

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Done � block 1

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Execute � block 2

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Active � block 2

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Done � block 2

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

586 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveRelative, MCP_MoveRelative � Move to position (rela-
tive to execution point)

Block Symbols Licence: MOTION CONTROL

MC_MoveRelative

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveRelative

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveRelative and MCP_MoveRelative blocks o�er the same functionality,
the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveRelative block moves an axis to speci�ed position as fast as possible.
The �nal position is determined by adding the value of Distance parameter to the actual
position at the moment of triggering the Execute input. If no further action is pending,
�nal velocity is zero (axis moves to position and stops) otherwise it depends on blending
mode. For blending purposes, start and stop velocity of this block is maximum velocity
with direction respecting current and �nal position. If start velocity of next pending
block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to execution point) [unit] Double (F64)

587

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [[unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [[unit/s2] Double (F64)

Jerk Maximal allowed jerk [[unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

588 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveRelative � block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o
o
l

0 5 10 15
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

589

MC_MoveSuperimposed, MCP_MoveSuperimposed � Superimposed
move

Block Symbols Licence: MOTION CONTROL

MC_MoveSuperimposed

uAxis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveSuperimposed

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveSuperimposed and MCP_MoveSuperimposed blocks o�er the same func-
tionality, the only di�erence is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_MoveSuperimposed block moves an axis to speci�ed position as fast as pos-
sible (with respect to set limitations). Final position is speci�ed by input parameter
Distance. In case that the axis is already in motion at the moment of execution of the
MC_MoveSuperimposed block, the generated values of position, velocity and acceleration
are added to the values provided by the previous motion block. If there is no previous
motion, the block behaves in the same way as the MC_MoveRelative command.

Note:There is no BufferMode parameter which is irrelevant in the superimposed
mode. If there is already an superimposed motion running at the moment of execution,
the new block is started immediately (analogous to aborting mode).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to execution point) [unit] Double (F64)

VelocityDiff Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

590 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

591

Example

velocity_diff2

15
velocity1

30

position2

150
position1

100

mode1

2

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveSuperimposed � block 2

uAxis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o
o

l

0 5 10 15

0

0.5

1

Active � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o
o
l

0 5 10 15
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

592 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute � Move
to position (absolute coordinate)

Block Symbols Licence: MOTION CONTROL

MC_MoveContinuousAbsolute

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveContinuousAbsolute

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveContinuousAbsolute and MCP_MoveContinuousAbsolute blocks o�er the
same functionality, the only di�erence is that some of the inputs are available as param-
eters in the MCP_ version of the block.

The MC_MoveContinuousAbsolute block moves an axis to speci�ed position as fast
as possible. If no further action is pending, �nal velocity is speci�ed by parameter
EndVelocity. For blending purposes, start and stop velocity of this block is maximum
velocity with direction respecting current and �nal position. If start velocity of next
pending block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Note 1: If the EndVelocity is set to zero value, the block behaves in the same way
as MC_MoveAbsolute.

Note 2: If next motion command is executed before the �nal position is reached, the
block behaves in the same way as MC_MoveAbsolute.

593

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Position Requested target position (absolute) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

EndVelocity End velocity Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InEndVelocity Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

594 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

20
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

end_velocity

10

direction2

1
direction1

1

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveContinuousAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[Axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o

o
l

0 5 10 15
0

50
Commanded velocity

v
e

lo
c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

595

MC_MoveContinuousRelative, MCP_MoveContinuousRelative � Move
to position (relative to previous motion)

Block Symbols Licence: MOTION CONTROL

MC_MoveContinuousRelative

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveContinuousRelative

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveContinuousRelative and MCP_MoveContinuousRelative blocks o�er the
same functionality, the only di�erence is that some of the inputs are available as param-
eters in the MCP_ version of the block.

The MC_MoveContinuousRelative block moves an axis to speci�ed position as fast
as possible. The �nal position is determined by adding the value of Distance parameter
to the actual position at the moment of triggering the Execute input. If no further action
is pending, �nal velocity is speci�ed by parameter EndVelocity. For blending purposes,
start and stop velocity of this block is maximum velocity with direction respecting current
and �nal position. If start velocity of next pending block is in opposite direction, then
blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Note 1: If the EndVelocity is set to zero value, the block behaves in the same way
as MC_MoveRelative.

Note 2: If next motion command is executed before the �nal position is reached, the
block behaves in the same way as MC_MoveRelative.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

596 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to execution point) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

597

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

EndVelocity End velocity Long (I32)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InEndVelocity PLCopen Done (algorithm �nished) Bool

CommandAborted PLCopen CommandAborted (algorithm was aborted) Bool

Busy PLCopen Busy (algorithm not �nished yet) Bool

Active PLCopen Active (the block is controlling the axis) Bool

Error PLCopen Error (error occurred) Bool

ErrorID Result of the last operation Error

i REXYGEN general error

598 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

20
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

end_velocity

10

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveRelative � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousRelative � block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o

o
l

0 5 10 15
0

50
Commanded velocity

v
e

lo
c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

599

MC_MoveVelocity, MCP_MoveVelocity � Move with constant ve-
locity

Block Symbols Licence: MOTION CONTROL

MC_MoveVelocity

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MCP_MoveVelocity

uAxis

Execute

yAxis
InVelocity

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_MoveVelocity and MCP_MoveVelocity blocks o�er the same functionality,
the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveVelocity block changes axis velocity to speci�ed value as fast as possible
and keeps the speci�ed velocity until the command is aborted by another block or event.

Note: parameter Direction enumerate also shortest_way although for this block it
is not valid value.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

600 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InVelocity Requested velocity reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

601

Example

velocity2

15
velocity1

30

mode2

1
mode1

1

direction2

1
direction1

1

deceleration2

10
deceleration1

20

axis

[axis]

acceleration2

25
acceleration1

50

MC_MoveVelocity � block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveVelocity � block 1

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

602 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute � block 1

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active � block 1

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done � block 1

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute � block 2

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active � block 2

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done � block 2

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 1 2 3 4 5 6 7 8 9 10
0

100

200
Commanded position

Time [s]

p
o
s
it
io

n

603

MC_PositionProfile, MCP_PositionProfile � Position pro�le

Block Symbols Licence: MOTION CONTROL

MC_PositionProfile

uAxis

Execute

alg

TimeScale

PositionScale

Offset

BufferMode

uTimes

uValues

BeginVelocity

EndVelocity

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_PositionProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_PositionProfile and MCP_PositionProfile blocks o�er the same func-
tionality, the only di�erence is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_PositionProfile block commands a time-position locked motion pro�le.
Block implements two possibilities for de�nition of time-position function:

1. sequence of values: the user de�nes a sequence of time-position pairs. In each
time interval, the values of position are interpolated. Times sequence is in array times,
position sequence is in array values. Time sequence must be increasing and must start
with zero or zero must be between the �rst and last point. Execution always starts
from zero time, so if the sequence start with negative time, part of the pro�le is not
executed (could be used for debugging or time shift). For MC_VelocityProfile and
MC_AccelerationProfile interpolation is linear, but for MC_PositionProfile, 3rd order
polynomial is used in order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolate
byd 5th order polynomial p(x) = a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 where beginning

of the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the �rst (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.

604 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or
values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position (also
for sibling block MC_VelocityProfile and MC_AccelerationProfile) and it couldn't
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
pro�le is di�erent from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

TimeScale Overall scale factor in time Double (F64)

PositionScale Overall scale factor in value Double (F64)

Offset Overall pro�le o�set in value Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

605

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

times Times when segments are switched Reference

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...) Reference

606 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

timeScale

1.0

posScale

1.0

offset

0

mode1

2

MC_PositionProfile

uAxis

Execute

TimeScale

PositionScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

b
o
o

l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

b
o

o
l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

b
o
o
l

0 0.5 1 1.5 2 2.5 3
�200

0

200
Commanded acceleration

a
c
c
e
le

ra
ti
o

n

0 0.5 1 1.5 2 2.5 3
�10

0

10
Commanded velocity

v
e
lo

c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

p
o
s
it
io

n

607

MC_Power � Axis activation (power on/o�)

Block Symbol Licence: MOTION CONTROL

MC_Power

uAxis

Enable

yAxis
Status
Busy
Active
Error

ErrorID

Function Description

The MC_Power block must be used with all axes. It is the only way to switch an axis
from disable state to standstill (e.g. operation) state. The Enable input must be set (non
zero value) for whole time the axis is active. The Status output can be used for switch
on and switch o� of the motor driver (logical signal for enabling the power stage of the
drive).

The block does not implement optional parameters/inputs Enable_Positive,
Enable_Negative. The same functionality can be implemented by throwing the limit
switches (inputs limP and limN of block RM_Axis).

If the associated axis is turned o� (by setting the Enable input to zero) while a motion
is processed (commanded velocity is not zero), error stoping sequence is activated and
the status is switched to o�/diabled when the motion stops (commanded velocity reaches
zero value).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Status E�ective state of the power stage Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

608 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadActualPosition � Read actual position

Block Symbol Licence: MOTION CONTROL

MC_ReadActualPosition

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
Position

Function Description

The block MC_ReadActualPosition displays actual value of position of a connected
axis on the output Position. The output is valid only while the block is enabled by the
logical input signal Enable.

The block displays logical position value which is entered into all of the motion
blocks as position input. In case that no absolute position encoder is used or the internal
position is set in other way (e.g. via MC_Home block), the CommandedPosition output of
the corresponding RM_Axis may display di�erent value.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Position Actual absolute position Double (F64)

609

MC_ReadAxisError � Read axis error

Block Symbol Licence: MOTION CONTROL

MC_ReadAxisError

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
AxisErrorID

Function Description

The block MC_ReadAxisError displays actual error code of a connected axis on the
output AxisErrorID. In case of no error, the output is set to zero. The error value is
valid only while the block is enabled by the logical input signal Enable. This block is
implemented for sake of compatibility with PLCOpen speci�cation as it displays duplicit
information about an error which is also accessible on the ErrorID output of the RM_Axis
block.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

AxisErrorID Result of the last operation read from axis Error

i REXYGEN general error

610 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadBoolParameter � Read axis parameter (bool)

Block Symbol Licence: MOTION CONTROL

MC_ReadBoolParameter

uAxis

Enable

ParameterNumber

yAxis
Valid
Busy
Error

ErrorID
Value

Function Description

The block MC_ReadBoolParameter displays actual value of various signals related to
the connected axis on its Value output. The user chooses from a set of accessible logical
variables by setting the ParameterNumber input. The output value is valid only while
the block is activated by the logical Enable input.

The block displays the parameters and outputs of RM_Axis block and is implemented
for sake of compatibility with the PLCOpen speci�cation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

ParameterNumber Parameter ID Long (I32)

4 Enable sw positive limit
5 Enable sw negative limit
6 Enable position lag monitoring

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Value Parameter value Bool

611

MC_ReadParameter � Read axis parameter

Block Symbol Licence: MOTION CONTROL

MC_ReadParameter

uAxis

Enable

ParameterNumber

yAxis
Valid
Busy
Error

ErrorID
Value

Function Description

The block MC_ReadParameter displays actual value of various system variables of the
connected axis on its Value output. The user chooses from a set of accessible variables
by setting the ParameterNumber input. The output value is valid only while the block is
activated by the logical Enable input.

The block displays the parameters and outputs of RM_Axis block and is implemented
for sake of compatibility with the PLCOpen speci�cation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

ParameterNumber Parameter ID Long (I32)

1 Commanded position
2 Positive sw limit switch
3 Negative sw limit switch
7 Maximal position lag
8 Maximal velocity (system)
9 Maximal velocity (appl)
10 Actual velocity
11 Commanded velocity
12 Maximal acceleration (system)
13 Maximal acceleration (appl.)
14 Maximal deceleration (system)
15 Maximal deceleration (appl.)
16 Maximal jerk
1000 . . Actual position
1001 . . Maximal torque/force
1003 . . Actual torque/force
1004 . . Commanded torque/force

612 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Value Parameter value Double (F64)

613

MC_ReadStatus � Read axis status

Block Symbol Licence: MOTION CONTROL

MC_ReadStatus

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
ErrorStop
Disabled
Stopping
StandStill

DiscreteMotion
ContinuousMotion

SynchronizedMotion
Homing

ConstantVelocity
Accelerating
Decelerating

Function Description

The block MC_ReadStatus indicates the state of the connected axis on its logical
output signals. The values of the states are valid only while the Enable input is set to
nonzero value. This state is indicated by Valid output.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

ErrorStop Axis is in the ErrorStop state Bool

Disabled Axis is in the Disabled state Bool

Stopping Axis is in the Stoping state Bool

StandStill Axis is in the StandStill state Bool

DiscreteMotion Axis is in the DiscreteMotion state Bool

ContinuousMotion Axis is in the ContinuousMotion state Bool

SynchronizedMotion Axis is in the SynchronizedMotion state Bool

Homing Axis is in the Homing state Bool

614 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

ConstantVelocity Axis is moving with constant velocity Bool

Accelerating Axis is accelerating Bool

Decelerating Axis is decelerating Bool

615

MC_Reset � Reset axis errors

Block Symbol Licence: MOTION CONTROL

MC_Reset

uAxis

Execute

yAxis
Done
Busy
Error

ErrorID

Function Description

The MC_Reset block makes the transition from the state ErrorStop to StandStill by
resetting all internal axis-related errors.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

616 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_SetOverride, MCP_SetOverride � Set override factors

Block Symbols Licence: MOTION CONTROL

MC_SetOverride

uAxis

Enable

VelFactor

AccFactor

JerkFactor

yAxis

Enabled

Busy

Error

ErrorID

MCP_SetOverride

uAxis

Enable

yAxis
Enabled
Busy
Error

ErrorID

Function Description

The MC_SetOverride and MCP_SetOverride blocks o�er the same functionality, the
only di�erence is that some of the inputs are available as parameters in the MCP_ version
of the block.

The MC_SetOverride block sets the values of override for the whole axis, and all
functions that are working on that axis. The override parameters act as a factor that is
multiplied to the commanded velocity, acceleration, deceleration and jerk of the move
function block.

This block is level-sensitive (not edge-sensitive like other motion control blocks). So
factors are update in each step while input Enable is not zero. It leads to reacalcu-
lation of movement's path if a block like MC_MoveAbsolute commands the axis. This
recalculation needs lot of CPU time and also numerical problem could appear. For this
reasons, a deadband (parameter diff) is established. The movement's path recalculation
is proceeded only if one of the factors is changed more then the deadband.

Note: all factor must be positive. Factor greater then 1.0 are possible, but often lead
to overshooting of axis limits and failure of movement (with errorID=-700 - invalid
parameter; if factor is set before start of block) or error stop of axis (with errorID=

-701 - out of range; if factor is changed within movement and actual value overshoot
limit).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

VelFactor Velocity multiplication factor Double (F64)

AccFactor Acceleration/deceleration multiplication factor Double (F64)

JerkFactor Jerk multiplication factor Double (F64)

617

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enabled Block function is enabled Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Parameter

diff Deadband (di�erence for recalculation) ↓0.0 ↑1.0 ⊙0.1 Double (F64)

618 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Stop, MCP_Stop � Stopping a movement

Block Symbols Licence: MOTION CONTROL

MC_Stop

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Stop

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_Stop and MCP_Stop blocks o�er the same functionality, the only di�erence is
that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Stop block commands a controlled motion stop and transfers the axis to the
state Stopping. It aborts any ongoing Function Block execution. While the axis is in
state Stopping, no other FB can perform any motion on the same axis. After the axis
has reached velocity zero, the Done output is set to true immediately. The axis remains
in the state Stopping as long as Execute is still true or velocity zero is not yet reached.
As soon as Done=true and Execute=false the axis goes to state StandStill.

Note 1: parameter/input BufferMode is not supported. Mode is always Aborting.
Note 2: Failing stop-command could be dangerous. This block does not generate

invalid-parameter-error but tries to stop the axis anyway (e.g. uses parameteres from
RM_Axis or generates error-stop-sequence).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed

Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

619

ErrorID Result of the last operation Error

i REXYGEN general error

620 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_TorqueControl, MCP_TorqueControl � Torque/force control

Block Symbols Licence: MOTION CONTROL

MC_TorqueControl

uAxis

Execute

Torque

TorqueRamp

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InTorque

CommandAborted

Busy

Active

Error

ErrorID

MCP_TorqueControl

uAxis

Execute

yAxis
InTorque

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_TorqueControl and MCP_TorqueControl blocks o�er the same functionality,
the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MCP_TorqueControl block generates constant slope torque/force ramp until max-
imum requested value has been reached. Similar pro�le is generated for velocity. The
motion trajectory is limited by maximum velocity, acceleration / deceleration, and jerk,
or by the value of the torque, depending on the mechanical circumstances.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Torque Maximal allowed torque/force Double (F64)

TorqueRamp Maximal allowed torque/force ramp Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [uunit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

621

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InTorque Requested torque/force is reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Parameter

kma Torque/force to acceleration ratio Double (F64)

622 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity

30

torque_ramp

50

torque

100

mode

1

direction

1

deceleration

20

acceleration

50

MC_TorqueControl

uAxis

Execute

Torque

TorqueRamp

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InTorque

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

b
o

o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10
0

20

40
Commanded velocity

v
e
lo

c
it
y

0 1 2 3 4 5 6 7 8 9 10
0

200

400
Commanded position

p
o
s
it
io

n

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Commanded torque

Time [s]

to
rq

u
e

623

MC_VelocityProfile, MCP_VelocityProfile � Velocity pro�le

Block Symbols Licence: MOTION CONTROL

MC_VelocityProfile

uAxis

Execute

alg

TimeScale

VelocityScale

Offset

BufferMode

uTimes

uValues

BeginAcceleration

EndAcceleration

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_VelocityProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_PositionProfile block commands a time-position locked motion pro�le.
Block implements two possibilities for de�nition of time-velocity function:

1. sequence of values: the user de�nes a sequence of time-velocity pairs. In each time
interval, the values of velocity are interpolated. Times sequence is in array times, position
sequence is in array values. Time sequence must be increasing and must start with zero or
zero must be between the �rst and last point. Execution always starts from zero time, so if
the sequence start with negative time, part of the pro�le is not executed (could be used
for debugging or time shift). For MC_VelocityProfile and MC_AccelerationProfile

interpolation is linear, but for MC_PositionProfile, 3rd order polynomial is used in
order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolated
by 5th order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where beginning of

the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the �rst (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.
Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or

values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

624 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Note 4: in the spline mode, polynomial is always 5th order and always in position (also
for sibling block MC_PositionProfile and MC_AccelerationProfile) and it couldn't
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
pro�le is di�erent from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

TimeScale Overall scale factor in time Double (F64)

VelocityScale Overall scale factor in value Double (F64)

Offset Overall pro�le o�set in value Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

625

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

times Times when segments are switched Reference

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...) Reference

626 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

timeScale

1.0

posScale

1.0

offset

0

mode

2

MC_VelocityProfile

uAxis

Execute

TimeScale

VelocityScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

b
o
o

l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

b
o

o
l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

b
o
o
l

0 0.5 1 1.5 2 2.5 3
�200

0

200
Commanded acceleration

a
c
c
e
le

ra
ti
o

n

0 0.5 1 1.5 2 2.5 3
�10

0

10
Commanded velocity

v
e
lo

c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

p
o
s
it
io

n

627

MC_WriteBoolParameter � Write axis parameter (bool)

Block Symbol Licence: MOTION CONTROL

MC_WriteBoolParameter

uAxis

Execute

ParameterNumber

Value

yAxis

Done

Busy

Error

ErrorID

Function Description

The block MC_WriteBoolParameter writes desired value of various system parameters
entered on its Value input to the connected axis. The user chooses from a set of accessible
logical variables by setting the ParameterNumber input.

The block is implemented for sake of compatibility with the PLCOpen speci�cation as
the parameters can be written by the SETPB block.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

ParameterNumber Parameter ID Long (I32)

4 Enable sw positive limit
5 Enable sw negative limit
6 Enable position lag monitoring

Value Parameter value Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

628 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_WriteParameter � Write axis parameter

Block Symbol Licence: MOTION CONTROL

MC_WriteParameter

uAxis

Execute

ParameterNumber

Value

yAxis

Done

Busy

Error

ErrorID

Function Description

The block MC_WriteParameter writes desired value of various system parameters
entered on its Value input to the connected axis. The user chooses from a set of accessible
variables by setting the ParameterNumber input.

The block is implemented for sake of compatibility with the PLCOpen speci�cation as
the parameters can be written by the SETPR block.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

ParameterNumber Parameter ID Long (I32)

2 Positive sw limit switch
3 Negative sw limit switch
7 Maximal position lag
8 Maximal velocity (system)
9 Maximal velocity (appl)
13 Maximal acceleration (appl.)
15 Maximal deceleration (appl.)
16 Maximal jerk
1001 . . Maximal torque/force

Value Parameter value Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

629

RM_AxisOut � Axis output

Block Symbol Licence: MOTION CONTROL

RM_AxisOut

uAxis

ActPos
ActVel

PhysPos
CmdPos
CmdVel
CmdAcc
LagPos

RampPos
RampVel

HomeOffset
ModOffset
VelFactor
AccFactor
JerkFactor

iTurn
iState
ErrorID
iTick

ActTrq
CmdTrq

res1
res2
res3

Function Description

The RM_AxisOut block allows an access to important states of block RM_Axis. Same
outputs are also available directly on RM_Axis (some of them), but this direct output is
one step delayed. Blocks are ordered for execution by �ow of a signal, so RM_Axis is �rst
then all motion blocks (that actualize RM_Axis state), then RM_AxisOut (should be last)
and �nally waiting for next period.

Note: almost all blocks do not work with torque so commanded torque is 0. Com-
manded acceleration and torque should be used as feed-forward value for position/velocity
controller so this value does not make any problem.

Inputs

uAxis axis reference that must be connected to axisRef of the RM_Axis
block (direct or indirect throw output yAxis of some other block)

Reference

630 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

RM_AxisSpline � Commanded values interpolation

Block Symbol Licence: MOTION CONTROL

RM_AxisSpline

uAxis
ActualPosition
ActualVelocity
ActualTorque
LIMN
LIMZ
LIMP
StatusWord
FAULT

yAxis

Position

Velocity

Acceleration

Torque

State

ControlWord

Function Description

The purpose of the block is to connect a virtual axis (represented by the RM_Axis

block) to the motor or rather the servo drive and transform virtual axis into physical
one. It includes some independent functions that are covered by this block.

The block has commanded and actual (feedback) signals to connect feedback con-
troller. It includes inputs ActualPosition, ActualVelocity, ActualTorque and outputs
Position, Velocity, Acceleration, Torque.

The feedback controller or servo drive usually works with di�erent units (position unit
is usually in encoder's tick that is transformed by gear ratio). The RM_AxisSpline block
transforms drive unit into axis logical unit. The function is controlled by the DriveUnits
and AxisUnits parameters.

The servo drive often uses integer types for compute or communicate position, velocity
and torque. Position can over�ow range of integer value when motor is running one
direction long time. The RM_AxisSpline block expects this situation and set correct
position if feedback signal over�ow from maximum integer value to minimal integer
value. This feature is controlled by the DriveBits and must be also supported by the
servo drive to work correctly.

The servo drive has di�erent working state and operation mode and require some
sequence to switch into operation mode where motor follow requested position. The
most common standard for the mode and sequencing is CiA402. The RM_AxisSpline

block support the CiA402 standard by the StatusWord input, the ControlWord output
and the DriveMode, DriveTimeout parameters. The servo drive must be set to Cyclic
Synchronous Position Mode (or mode with similar functionality). There is also possible
to use Velocity Mode, but position loop regulator must be realized in control system
(typically by a PIDU block).

There are a lot of motion control blocks which implement complicated algorithms so
they require bigger sampling period (typical update rate is from 10 to 200 ms). On the
other side, the motor driver usually requires small sampling period for smooth/waveless
movement. The RM_AxisSpline block solves this problem of multirate execution of mo-
tion planning and motion control levels. The block can run in another task than other

631

motion control blocks with highest possible sampling period. It interpolates commanded
position, velocity, acceleration and torque and generates smooth curve which is more
suited for motor driver controllers.

There are many possibilities how to compute position (and velocity, acceleration,
torque) between sampled points by slower task. This could be chosen by the InterpolationMode
parameter, but torque is interpolated always by linear function. Most simple is linear
interpolation, but it leads to steps in velocity. Better possibility is higher order polynom
(e.g. 3th or 5th order). It generates a smooth curve, but leads to a huge acceleration if
the original trajectory isn't the same polynomial. Drawback of polynomial interpolation
could be solved by Bspline approximation, but it requires more samples and therefore
bigger delay. Some original position values can be changed with this method.

Note 1: Because the execution time of motion blocks is varying in time, the block uses
one or two step prediction for interpolation depending on actual conditions and timing
of the motion blocks in slower tasks. The use of predicted values is signalized by states
Run1, Run2, Run3.

Note 2: The interpolation functionality requires to put the block into di�erent (faster)
task than RM_Axis. For this reason, the block RM_AxisSpline has an internally safe
solution for connecting axis references by the block Inport and Outport between di�erent
tasks.

Input

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

ActualPosition Current position of the axis (feedback) [drive unit] Double (F64)

ActualVelocity Current velocity of the axis (feedback) [drive unit/s] Double (F64)

ActualTorque Current torque in the axis (feedback) Double (F64)

LIMN Limit switch in negative direction Bool

LIMZ Absolute switch or reference pulse for homing Bool

LIMP Limit switch in positive direction Bool

StatusWord Status register for drive control according CiA402 speci�cation Long (I32)

FAULT External fault signal Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Position Commanded interpolated position [drive unit] Double (F64)

Velocity Commanded interpolated velocity [drive unit/s] Double (F64)

Acceleration Commanded interpolated acceleration [drive unit/s/s] Double (F64)

Torque Commanded interpolated torque/force Double (F64)

632 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

State Interpolator state/error Long (I32)

0 O� (interpolator is disabled, actual data put on
output)

1 Wait (not enough data in bu�er, waiting)
2 Run1 (interpolator running, data from �rst bu�ered

interval)
3 Run2 (interpolator running, data from second

bu�ered interval)
4 Run3 (interpolator running, data from third bu�ered

interval)
-1 Over�ow (interpolation bu�er over�ow, the

interpolation restarts automatically, but a bump in
output values may occur)

-2 Under�ow (interpolation bu�er under�ow, the
interpolation restarts automatically, but a bump in
output values may occur)

-3 Busy (data from RM_Axis cannot be read
consistently, it usually indicates, that some
task is overloaded)

-4 Slow (the task with RM_AxisSpline has longer
period then a task with RM_Axis)

ControlWord Control register for drive control according CiA402 speci�cation Long (I32)

633

Parameters

InterpolationMode Algorithm for interpolation ⊙2 Long (I32)

1 linear (position is interpolated by linear function,
velocity is derivation of position, e. g. step function,
acceleration is zero)

2 cubic spline (position is cubic polynom computed
from begin and end position and velocity, velocity
is derivation of position, acceleration is derivation of
velocity)

3 quintic spline (position is cubic polynom computed
from begin and end position and velocity and
acceleration, velocity is derivation of position,
acceleration is derivation of velocity)

4 cubic Bspline approximation (position is cubic
polynom computed from 2 position before and
2 position after current time interval, position is
approximation, e.g. values in de�ned points not
necessary same, velocity is derivation of position,
acceleration is derivation of velocity)

5 quintic Bspline approximation (position is cubic
polynom computed from 2 position before and
2 position after current time interval, position is
approximation, e.g. values in de�ned points not
necessary same, velocity is derivation of position,
acceleration is derivation of velocity)

6 all linear (each output is interpolated by linear
function independently, e.g. velocity is not derivation
of position, acceleration is not derivation of velocity)

7 all cubic (each output is interpolated by cubic
polynom independently, e.g. velocity is not derivation
of position)

8 reserved for future use
9 reserved for future use

ReverseLimit Invert meaning of LIMN, LIMZ and LIMP inputs Bool

InterpolationMode Drive control mode ⊙2 Long (I32)

1 Simpli�ed CiA402 (only basic check of StatusWord,
e.g. fault bit only, and direct switching of
ControlWord, e.g. without sequencing)

2 Strict CiA402 (full check of StatusWord in each state
and full sequencing of ControlWord)

DriveTimeout Drive control response timeout [s] (for Strict CiA402 mode
only)

Double (F64)

DriveBits number of valid bits (negative value means signed number) in
the Position output and the ActualPosition input

↓-64 ↑63 ⊙-32

Long (I32)

DriveUnits Distance in drive units for position transformation (value
correspond to AxisUnits)

Double (F64)

634 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

AxisUnits Distance in axis units for position transformation (value
correspond to DriveUnits)

Double (F64)

VelocityCalculate if checked, the input ActualVelocity is ignored and
velocity is calculated by actual position di�erence

Bool

635

RM_Track � Tracking and inching

Block Symbol Licence: MOTION CONTROL

RM_Track

uAxis

posvel

der

TRACKP

TRACKV

JOGP

JOGN

yAxis

InTrack

CommandAborted

Busy

Active

Error

ErrorID

Function Description

The RM_Track block includes few useful functions.
If the input TRACK is active (not zero), the block tries to track requested position

(input pos) with respect to the limits for velocity, acceleration/decelertation and jerk.
The block expects that requested position is changed in each step and therefore recal-
culates the path in each step. This is di�erence to MC_MoveAbsolute block, which does
not allow to change target position while the movement is not �nished. This mode is
useful if position is generated out of the motion control subsystem, even thought the
MC_PositionProfile block is better if whole path is known.

If the input JOGP is active (not zero), the block works like the MC_MoveVelocity

block (e.g. moves axis with velocity given by parameter pv in positive direction with
respect to maximum acceleration and jerk). When input JOGP is released (switched to
zero), the block activates stopping sequence and releases the axis when the sequence is
�nished. This mode is useful for jogging (e.g. setting of position of axis by an operator
using up/down buttons).

Input JOGN works like JOGP, but direction is negative.
Note 1: This block hasn't parameter BufferMode. Mode is always aborting.
Note 2: If more functions are selected, only the �rst one is activated. Order is TRACK,

JOGP, JOGN. Simultaneous activation of more than one function is not recommended.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

posvel Requested target position or velocity [unit] Double (F64)

TRACKP Position tracking mode Bool

TRACKV Velocity tracking mode Bool

JOGP Moving positive direction mode Bool

JOGN Moving negative direction mode Bool

636 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Parameters

pv Maximal allowed velocity [unit/s] Double (F64)

pa Maximal allowed acceleration [unit/s2] Double (F64)

pd Maximal allowed deceleration [unit/s2] Double (F64)

pj Maximal allowed jerk [unit/s3] Double (F64)

iLen Length of bu�er for estimation ⊙10 Long (I32)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InTrack Requested position is reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Chapter 21

MC_MULTI � Motion control -

multi axis blocks

Contents

MC_CamIn, MCP_CamIn � Engage the cam 638

MC_CamOut � Disengage the cam . 642

MCP_CamTableSelect � Cam de�nition 644

MC_CombineAxes, MCP_CombineAxes � Combine the motion of 2 axes
into a third axis . 646

MC_GearIn, MCP_GearIn � Engange the master/slave velocity ratio 649

MC_GearInPos, MCP_GearInPos � Engage the master/slave velocity
ratio in de�ned position . 652

MC_GearOut � Disengange the master/slave velocity ratio 657

MC_PhasingAbsolute, MCP_PhasingAbsolute � Phase shift in syn-
chronized motion (absolute coordinates) 659

MC_PhasingRelative, MCP_PhasingRelative � Phase shift in syn-
chronized motion (relative coordinates) 662

This block set is the second part of motion control blocks library according to the
PLCopen standard for multi axis control. General vendor speci�c rules are the same as
described in chapter 20 (the MC_SINGLE library, blocks for single axis motion control).

637

638 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_CamIn, MCP_CamIn � Engage the cam

Block Symbols Licence: MOTION CONTROL

MC_CamIn

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamIn

uMaster

uSlave

CamTableID

Execute

yMaster
ySlave
InSync

CommandAborted
Busy
Active
Error

ErrorID
EndOfProfile
SyncDistance

Function Description

The MC_CamIn and MCP_CamIn blocks o�er the same functionality, the only di�erence
is that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_CamIn block switches on a mode in which the slave axis is commanded
to position which corresponds to the position of master axis transformed with with
a function de�ned by the MCP_CamTableSelect block (connected to CamTableID in-
put). Denoting the transformation as Cam(x), master axis position PosM and slave
axis position PosS, we obtain (for absolute relationship, without phasing): PosS =
Cam((PosM −MasterOffset)/MasterScaling) ∗ SlaveScaling + SlaveOffset. This
form of synchronized motion of the slave axis is called electronic cam.

The cam mode is switched o� by executing other motion block on slave axis with
mode aborting or by executing a MC_CamOut block. The cam mode is also �nished when
the master axis leaves a non-periodic cam pro�le. This situation is indicated by the
EndOfProfile output.

In case of a di�erence between real position and/or velocity of slave axis and cam-
pro�le slave axis position and velocity, some transient trajectory must be generated to
cancel this o�set. This mode is called ramp-in. The ramp-in function is added to the cam
pro�le to eliminate the di�erence in start position. The RampIn parametr is an average
velocity of the ramp-in function. Ramp-in path is not generated for RampIn=0 and error
-707 (position or velocity step) is invoked if some di�erence is detected. Recommended
value for the RampIn parametr is 0.1 to 0.5 of maximal slave axis velocity. The parameter
has to be lowered if maximal velocity or acceleration error is detected.

639

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

CamTableID Cam table reference (connect to
MCP_CamTableSelect.CamTableID)

Reference

Execute The block is activated on rising edge Bool

MasterOffset O�set in cam table on master side [unit] Double (F64)

SlaveOffset O�set in cam table on slave side [unit] Double (F64)

MasterScaling Overall scaling factor in cam table on master side Double (F64)

SlaveScaling Overall scaling factor in cam table on slave side Double (F64)

StartMode Select relative or absolute cam table Long (I32)

1 Master relative
2 Slave relative
3 Both relative
4 Both absolute

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

RampIn RampIn factor (0 = RampIn mode not used); average additive
velocity (absolute value) during ramp-in process

Double (F64)

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

EndOfProfile Indicate end of cam pro�le (not periodic cam only) Bool

640 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

641

Example

velocity2

1

mode2

2

mode1

1

execute2

[execute2]

execute1

[execute1]

execute0

[execute0]

direction2

1

deceleration2

0.2

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration2

1

SS

1

SO

0

SM

4

RF

0

MS

1

MO

0

MC_MoveVelocity � block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_CamIn � block 1

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamTableSelect � block 0

uMaster

uSlave

Execute

yMaster

ySlave

Done

Busy

Error

ErrorID

CamTableID

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

b
o

o
l

Block 0 execute (CamTableSelect)

Block 1 execute (CamIn)

Block 2 execute (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

b
o

o
l

Block 1 active (CamIn)

Block 2 active (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10
�100

�50

0

50

100

Acceleration

a
c
c
e
le

ra
ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

Velocity

v
e
lo

c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8
Position

p
o
s
it
io

n

Position axis 1 � master

Position axis 2 � slave

642 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_CamOut � Disengage the cam

Block Symbol Licence: MOTION CONTROL

MC_CamOut

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

Function Description

The MC_CamOut block switches o� the cam mode on slave axis. If cam mode is not
active, the block does nothing (no error is activated).

Inputs

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Outputs

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

643

Example

velocity2

1

mode2

2

mode1

1

jerk4

0

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

execute0

[execute0]

direction2

1

deceleration4

10

deceleration2

0.2

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration2

1

SS1

4

SS

1

SO

0

RF

0

MS

1

MO

0

MC_Stop � block 4

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_MoveVelocity � block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_CamOut � block 3

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_CamIn block 1

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamTableSelect � block 0

uMaster

uSlave

Execute

yMaster

ySlave

Done

Busy

Error

ErrorID

CamTableID

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

b
o

o
l Block 0 execute (CamTableSelect)

Block 1 execute (CamIn)

Block 2 execute (MoveVelocity)

Block 3 execute (CamOut)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

b
o

o
l

Block 1 active (CamIn)

Block 2 active (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10
�100

�50

0

50

100

Acceleration

a
c
c
e
le

ra
ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

Velocity

v
e
lo

c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8
Position

p
o
s
it
io

n

Position axis 1 � master

Position axis 2 � slave

644 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MCP_CamTableSelect � Cam de�nition

Block Symbol Licence: MOTION CONTROL

MCP_CamTableSelect

uMaster

uSlave

Execute

yMaster
ySlave
Done
Busy
Error

ErrorID
CamTableID

Function Description

The MCP_CamTableSelect block de�nes a cam pro�le. The de�nition is similar to
MC_PositionProfile block, but the time axis is replaced by master position axis. There
are also two possible ways for cam pro�le de�nition:

1. sequence of values: given sequence of master-slave position pairs. In each master
position interval, value of slave position is interpolated by 3rd-order polynomial (simple
linear interpolation would lead to steps in velocity at interval border). Master position
sequence is in array/parameter mvalues, slave position sequence is in array/parameter
svalues. Master position sequence must be increasing.

2. spline: master position sequence is the same as in previous case. Each interval is
interpolated by 5th-order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where

beginning of time-interval is de�ned for x = 0, end of time-interval holds for x = 1 and
factors ai are put in array/parameter svalues in ascending order (e.g. array/parameter
svalues contain 6 values for each interval). This method allows to reduce the number of
intervals and there is special graphical editor available for interpolating curve synthesis.

For both cases the master position sequence can be equidistantly spaced in time and
then the time array includes only �rst and last point.

Note 1: input CamTable which is de�ned in PLCOpen speci�cation is missing, because
all path data are set in the parameters of the block.

Note 2: parameter svalues must be set as a vector in all cases, e.g. text string must
not include a semicolon.

Note 3: incorrect parameter value cSeg (higher then real size of arrays times and/or
values) can lead to unpredictable results and in some cases to crash of the whole runtime
execution (The problem is platform dependent and currently it is observed only for
SIMULINK version).

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

645

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

CamTableID Cam table reference (connect to MC_CamIn.CamTableID) Reference

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

Periodic Indicate periodic cam pro�le ⊙on Bool

camname Filename of special editor data �le (�lename is generated by
system if parameter is empty)

String

mvalues Master positions where segments are switched ⊙[0 30] Double (F64)

sValues Slave positions or interpolating polynomial coe�cients (a0, a1,
a2, ...) ⊙[0 100 100 0]

Double (F64)

646 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_CombineAxes, MCP_CombineAxes � Combine the motion of 2
axes into a third axis

Block Symbols Licence: MOTION CONTROL

MC_CombineAxes

uMaster1

uMaster2

uSlave

Execute

GearRatioNumeratorM1

GearRatioDenominatorM1

GearRatioNumeratorM2

GearRatioDenominatorM2

BufferMode

CombineMode

RampInFactor

yMaster1

yMaster2

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MCP_CombineAxes

uMaster1

uMaster2

uSlave

Execute

yMaster1
yMaster2
ySlave
InSync

CommandAborted
Busy
Active
Error

ErrorID
SyncDistance

Function Description

The MC_CombineAxes block combines a motion of two master axes into a slave axis
command. The slave axis indicates synchronized motion state. Following relationship
holds:

SlavePosition = Master1Position · GearRatioNumeratorM1

GearRatioDenominatorM1
+

+ Master2Position · GearRatioNumeratorM2

GearRatioDenominatorM2

Negative number can be set in GearRatio... parameter to obtain the resulting slave
movement in form of di�erence of master axes positions.

Inputs

uMaster1 First master axis reference Reference

uMaster2 Second master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

GearRatioNumeratorM1 Numerator for the gear factor for master axis 1 Long (I32)

GearRatioDenominatorM1 Denominator for the gear factor for master axis 1 Long (I32)

GearRatioNumeratorM2 Numerator for the gear factor for master axis 2 Long (I32)

GearRatioDenominatorM2 Denominator for the gear factor for master axis 2 Long (I32)

647

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Outputs

yMaster1 First master axis reference Reference

yMaster2 Second master axis reference Reference

ySlave Slave axis reference Reference

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

648 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

axis_slave_gearin

[axis_slave_gearin]

axis_slave_camin

[axis_slave_camin]

axis_master_gearin

[axis_master_gearin]

axis_master_camin

[axis_master_camin]

axis_combineaxis

[axis_combineaxis]

MC_GearIn

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

MC_CombineAxes

uMaster1

uMaster2

uSlave

Execute

GearRatioNumeratorM1

GearRatioDenominatorM1

GearRatioNumeratorM2

GearRatioDenominatorM2

BufferMode

RampIn

yMaster1

yMaster2

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_CamIn

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

0 1 2 3 4 5 6 7 8 9 10
�0.5

0

0.5

1

1.5

2

2.5

3

3.5

Position

p
o
s
it
io

n

Position � slave GearIn

Position � slave CamIn

Final position CombineAxis

649

MC_GearIn, MCP_GearIn � Engange the master/slave velocity
ratio

Block Symbols Licence: MOTION CONTROL

MC_GearIn

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

MCP_GearIn

uMaster

uSlave

Execute

yMaster
ySlave
InGear

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_GearIn and MCP_GearIn blocks o�er the same functionality, the only di�er-
ence is that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_GearIn block commands the slave axis motion in such a way that a pre-
set ratio between master and slave velocities is maintained. Considering the velocity of
master axis V elM and velocity of slave axis V elS, following relation holds (without phas-
ing): V elS = V elM ∗ RatioNumerator/RatioDenominator. Position and acceleration
is commanded to be consistent with velocity; position/distance ratio is also locked. This
mode of synchronized motion is called electronic gear.

The gear mode is switched o� by executing other motion block on slave axis with
mode aborting or by executing a MC_GearIn block.

Similarly to the MC_CamIn block, ramp-in mode is activated if initial velocity of
slave axis is di�erent from master axis and gearing ratio. Parameters Acceleration,
Deceleration, Jerk are used during ramp-in mode.

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

RatioNumerator Gear ratio Numerator Long (I32)

RatioDenominator Gear ratio Denominator Long (I32)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

650 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

InGear Slave axis reached gearing ratio Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

651

Example

velocity2

30

ratio_numerator

2

ratio_denominator

1

position2

100

mode2

2

mode1

2

jerk1

0

execute2

[execute2]

execute1

[execute1]

direction2

2

deceleration2

20

deceleration1

10

axis_slave

[axis_slave]axis_master

[axis_master]

acceleration2

50

acceleration1

25

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID MC_GearIn � block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6

0

0.5

1

Execute

b
o

o
l

Block 1 execute (GearIn)

Block 2 execute (MoveAbsolute)

0 1 2 3 4 5 6

0

0.5

1

Active

b
o

o
l

Block 1 active (GearIn)

Block 2 active (MoveAbsolute)

0 1 2 3 4 5 6

�50

0

50

100

Acceleration

a
c
c
e

le
ra

ti
o

n Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Velocity

v
e

lo
c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6
0

50

100

150

200

Position

p
o

s
it
io

n

Position axis 1 � master

Position axis 2 � slave

652 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_GearInPos, MCP_GearInPos � Engage the master/slave ve-
locity ratio in de�ned position

Block Symbols Licence: MOTION CONTROL

MC_GearInPos

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

MasterSyncPosition

SlaveSyncPosition

MasterStartDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

SyncMode

yMaster

ySlave

StartSync

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MCP_GearInPos

uMaster

uSlave

Execute

yMaster
ySlave

StartSync
InSync

CommandAborted
Busy
Active
Error

ErrorID
SyncDistance

Function Description

The MC_GearInPos and MCP_GearInPos blocks o�er the same functionality, the only
di�erence is that some of the inputs are available as parameters in the MCP_ version of
the block.

The functional block MC_GearInPos engages a synchronized motion of master and
slave axes in such a way that the ratio of velocities of both axes is maintained at a con-
stant value. Compared to MC_GearIn, also the master to slave position ratio is determined
in a given reference point, i.e. following relation holds:

SlavePosition− SlaveSyncPosition

MasterPosition−MasterSyncPosition
=

RatioNumerator

RatioDenominator
.

In case that the slave position does not ful�ll this condition of synchronicity at the
moment of block activation (i.e. in an instant of positive edge of Execute input and
after execution of previous commands in bu�ered mode), synchronization procedure is
started and indicated by output StartSync. During this procedure, proper slave trajec-
tory which results in smooth synchronization of both axes is generated with respect to
actual master motion and slave limits for Velocity, Acceleration, Deceleration and Jerk
(these limits are not applied from the moment of successful synchronization). Parameter
setting MasterStartDistance=0 leads to immediate start of synchronization procedure

653

at the moment of block activation (by the Execute input). Otherwise, the synchroniza-
tion starts as soon as the master position enters the interval MasterSyncPosition ±
MasterStartDistance.

Notes:
1. The synchronization procedure uses two algorithms: I. The algorithm implemented
in MC_MoveAbsolute is recomputed in every time instant in such a way, that the end
velocity is set to actual velocity of master axis. II. The position, velocity and acceleration
is generated in the same manner as in the synchronized motion and a proper 5th order
interpolation polynomial is added to achieve smooth transition to the synchronized state.
The length of interpolation trajectory is computed in such a way that maximum velocity,
acceleration and jerk do not violate the speci�ed limits (for the interpolation polynomial).
The �rst algorithm cannot be used for nonzero acceleration of the master axis whereas
the second does not guarantee the compliance of maximum limits for the overall slave
trajectory. Both algorithms are combined in a proper way to achieve the synchronized
motion of both axes.

2. The block parameters (execution of synchronization and velocity/acceleration lim-
its) have to be chosen so that the slave position is close to SlaveSyncPosition approx-
imately at the moment when the master position enters the range for synchronization
given by MasterSyncPosition and MasterStartDistance. Violation of this rule can
lead to unpredictable behaviour of the slave axis during the synchronization or to an
overrun of the speci�ed limits for slave axis. However, the motion of both axes is usually
well de�ned and predictable in standard applications and correct synchronization can
be performed easily by proper con�guration of motion commands and functional block
parameters.

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

RatioNumerator Gear ratio Numerator Long (I32)

RatioDenominator Gear ratio Denominator Long (I32)

MasterSyncPosition Master position for synchronization Double (F64)

SlaveSyncPosition Slave position for synchronization Double (F64)

MasterStartDistance Master distance for starting gear in procedure Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

654 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

SyncMode Synchronization mode (cyclic axes only) Long (I32)

1 CatchUp
2 Shortest
3 SlowDown

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

StartSync Commanded gearing starts Bool

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

655

Example

velocity3

30

velocity2

60

velocity1

30

syncMode

2

rationNumerator

2

ratioDenominator

1

position2

40

position1

100

mode3

1

mode2

1

execute3

[execute3]

execute2

[execute2]execute1

[execute1]

direction3

1

direction1

1 deceleration3

20

deceleration2

50

deceleration1

20

bufferMode1

1

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration3

50

acceleration2

50

acceleration1

50

SSP

20

MSP

20

MSD

10

MC_MoveAbsolute � block 3

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID
MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GearInPos � block 2

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

MasterSyncPosition

SlaveSyncPosition

MasterStartDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

SyncMode

yMaster

ySlave

StartSync

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

656 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

0 5 10 15

0

0.5

1

Execute

b
o

o
l

Block 1 execute (MoveAbsolute1)

Block 2 execute (GearIn)

Block 3 execute (MoveAbsolute2)

0 5 10 15

0

0.5

1

Active

b
o

o
l

Block 1 active (MoveAbsolute1)

Block 2 active (GearIn)

Block 3 active (MoveAbsolute2)

0 5 10 15

0

0.5

1

InSync

b
o

o
l

Block 2 InSync (GearIn)

0 5 10 15

�100

�50

0

50

100

Acceleration

a
c
c
e

le
ra

ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 5 10 15
�100

�50

0

50

100
Velocity

v
e

lo
c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 5 10 15
0

50

100

150

200

Position

p
o

s
it
io

n

Positon axis 1 � master

Position axis 2 � slave

657

MC_GearOut � Disengange the master/slave velocity ratio

Block Symbol Licence: MOTION CONTROL

MC_GearOut

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

Function Description

The MC_GearOut block switches o� the gearing mode on the slave axis. If gearing
mode is not active (no MC_GearIn block commands slave axis at this moment), block
does nothing (no error is activated).

Inputs

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Outputs

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

658 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity2

30

ratio_numerator1

2

ratio_denominator1

1

position2

100

mode2

2

mode1

2

jerk3

0

jerk1

0

execute3

[execute2]

execute2

[execute2]

execute1

[execute1]

direction2

1

deceleration3

150

deceleration2

20

deceleration1

10

axis_slave

[axis_slave]axis_master

[axis_master]

acceleration2

50

acceleration1

25

MC_Stop_block 4

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GearOut � block 3

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_GearIn � block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6

0

0.5

1

Execute

b
o

o
l

Block 1 execute (GearIn)

Block 2 execute (MoveAbsolute)

Block 3 execute (GearOut)

0 1 2 3 4 5 6

0

0.5

1

Active

b
o

o
l

Block 1 active (GearIn)

Block 2 active (MoveAbsolute)

0 1 2 3 4 5 6

�150

�100

�50

0

50

100

Acceleration

a
c
c
e

le
ra

ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Velocity

v
e

lo
c
it
y Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6
0

50

100

150

200

Position

p
o

s
it
io

n

Position axis 1 � master

Position axis 2 � slave

659

MC_PhasingAbsolute, MCP_PhasingAbsolute � Phase shift in syn-
chronized motion (absolute coordinates)

Block Symbols Licence: MOTION CONTROL

MC_PhasingAbsolute

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_PhasingAbsolute

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_PhasingAbsolute and MCP_PhasingAbsolute blocks o�er the same func-
tionality, the only di�erence is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_PhasingAbsolute block introduces an additional phase shift in master-slave
relation de�ned by an electronic cam (MC_CamIn) or electronic gear (MC_GearIn). The
functionality of this command is very similar to MC_MoveSuperimposed (additive motion
from 0 to PhaseShift position with respect to maximum velocity acceleration and jerk).
The only di�erence is that the additive position/velocity/acceleration is added to master
axis reference position in the functional dependence de�ned by a cam or gear ratio for the
computation of slave motion instead of its direct summation with master axis movement.
The absolute value of �nal phase shift is speci�ed by PhaseShift parameter.

Note: The motion command is analogous to rotation of a mechanical cam by angle
PhaseShift

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

PhaseShift Requested phase shift (distance on master axis) for cam Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

660 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

661

Example

velocity3

50

velocity2

30

ratio_numerator1

2

ratio_denominator1

1

position2

100

phase_shift3

25

mode3

2

mode2

2

mode1

2

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

direction2

1

deceleration3

60

deceleration2

20

deceleration1

10

axis_slave1

[axis_slave]

axis_slave

[axis_slave] axis_master1

[axis_master]

axis_master

[axis_master]

acceleration3

60

acceleration2

50

acceleration1

25
MC_PhasingAbsolute � block 3

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID MC_GearIn � block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6 7 8

0

0.5

1

Execute

b
o

o
l

Block 1 execute (GearIn)

Block 2 execute (MoveAbsolute)

Block 3 execute (PhasingAbsolute)

0 1 2 3 4 5 6 7 8

0

0.5

1

Active

b
o

o
l Block 1 active (GearIn)

Block 2 active (MoveAbsolute)

Block 3 active (PhasingAbsolute)

0 1 2 3 4 5 6 7 8
�150

�100

�50

0

50

100

150
Acceleration

a
c
c
e

le
ra

ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6 7 8
0

50

100

150

200
Velocity

v
e

lo
c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300
Position

p
o

s
it
io

n

Position axis slave without phasing

Position axis slave with phasing

Position axis 1 � master

Position axis 2 � slave

662 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_PhasingRelative, MCP_PhasingRelative � Phase shift in syn-
chronized motion (relative coordinates)

Block Symbols Licence: MOTION CONTROL

MC_PhasingRelative

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MCP_PhasingRelative

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The MC_PhasingRelative and MCP_PhasingRelative blocks o�er the same func-
tionality, the only di�erence is that some of the inputs are available as parameters in the
MCP_ version of the block.

The MC_PhasingRelative introduces an additional phase shift in master-slave re-
lation de�ned by an electronic cam (MC_CamIn) or electronic gear (MC_GearIn). The
functionality of this command is very similar to MC_MoveSuperimposed (additive motion
from 0 to PhaseShift position with respect to maximum velocity acceleration and jerk).
The only di�erence is that the additive position/velocity/acceleration is added to master
axis reference position in the functional dependence de�ned by a cam or gear ratio for
the computation of slave motion instead of its direct summation with master axis move-
ment. The relative value of �nal phase shift with respect to previous value is speci�ed
by PhaseShift parameter. Note: The motion command is analogous to rotation of a
mechanical cam by angle PhaseShift

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

PhaseShift Requested phase shift (distance on master axis) for cam Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

663

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

664 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Chapter 22

MC_COORD � Motion control -

coordinated movement blocks

Contents

RM_AxesGroup � Axes group for coordinated motion control . . . 668

RM_Feed � ∗ MC Feeder ??? . 671

RM_Gcode � ∗ CNC motion control 672

MC_AddAxisToGroup � Adds one axis to a group 674

MC_UngroupAllAxes � Removes all axes from the group 675

MC_GroupEnable � Changes the state of a group to GroupEnable 676

MC_GroupDisable � Changes the state of a group to GroupDisabled677

MC_SetCartesianTransform � Sets Cartesian transformation 678

MC_ReadCartesianTransform � Reads the parameter of the carte-
sian transformation . 680

MC_GroupSetPosition, MCP_GroupSetPosition � Sets the position of
all axes in a group . 681

MC_GroupReadActualPosition � Read actual position in the se-
lected coordinate system . 683

MC_GroupReadActualVelocity � Read actual velocity in the se-
lected coordinate system . 684

MC_GroupReadActualAcceleration � Read actual acceleration in
the selected coordinate system . 685

MC_GroupStop � Stopping a group movement 686

MC_GroupHalt � Stopping a group movement (interruptible) . . . 689

MC_GroupInterrupt, MCP_GroupInterrupt � Read a group interrupt 694

MC_GroupContinue � Continuation of interrupted movement . . . 695

MC_GroupReadStatus � Read a group status 696

MC_GroupReadError � Read a group error 697

MC_GroupReset � Reset axes errors 698

665

666CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveLinearAbsolute � Linear move to position (absolute coor-
dinates) . 699

MC_MoveLinearRelative � Linear move to position (relative to ex-
ecution point) . 703

MC_MoveCircularAbsolute � Circular move to position (absolute
coordinates) . 707

MC_MoveCircularRelative � Circular move to position (relative to
execution point) . 711

MC_MoveDirectAbsolute � Direct move to position (absolute coor-
dinates) . 715

MC_MoveDirectRelative � Direct move to position (relative to ex-
ecution point) . 718

MC_MovePath � General spatial trajectory generation 721

MC_GroupSetOverride � Set group override factors 723

667

668CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

RM_AxesGroup � Axes group for coordinated motion control

Block Symbol Licence: COORDINATED MOTION

RM_AxesGroup

uChain

refGroup
refPos
State

ErrorID

Function Description

Note 1: Applicable for all non-administrative (moving) function blocks.
Note 2: In the states GroupErrorStop or GroupStopping, all Function Blocks canbe
called, although they will not be executed, except MC_GroupReset for GroupErrorStop
and any occurring Error� they will generate the transition to GroupStandby or GroupEr-
rorStop respectively
Note 3: MC_GroupStop.DONE AND NOT MC_GroupStop.EXECUTE
Note 4: Transition is applicable if last axis is removed from the group
Note 5: Transition is applicable while group is not empty.
Note 6: MC_GroupDisable and MC_UngroupAllAxes can be issued in all states and
will change the state to GroupDisabled.

Parameters

McsCount Number of axis in MCS ↓1 ↑6 ⊙6 Long (I32)

AcsCount Number of axis in ACS ↓1 ↑16 ⊙6 Long (I32)

PosCount Number of position axis ↓1 ↑6 ⊙3 Long (I32)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

refGroup Axes group reference Reference

refPos Position, velocity and acceleration vector Reference

iState Group status Long (I32)

0 Disabled
1 Standby
2 Homing
6 Moving
7 Stopping
8 Error stop

ErrorID Result of the last operation Error

i REXYGEN general error

669

The State Diagram of AxesGroup

GroupMoving

GroupErrorStop

GroupStandby

GroupStopping

(Note 4)
MC_GroupDisable
MC_UngroupAllAxes
MC_RemoveAxisFromGroupMC_AddAxisToGroup

MC_RemoveAxisFromGroup
MC_UngroupAllAxes

Done

GroupDisabled

GroupHoming

MC_GroupEnable

MC_GroupHome

Note 1 and
MC_GroupHalt

MC_GroupStop

Done

Note 1

Erro
rN

ot
e

3

Note 2

Error

Note 2

M
C
_G

ro
up

S
to

p

M
C_G

roupStop

MC_GroupReset

(Note 5)
MC_AssAxisToGroup
MC_RemoveAxisFromGroup

Error

axes_group_reference

[axes_group]

VTOR2

uVec

y1
y2
y3
y4
y5
y6
y7
y8

VTOR1

uVec

y1
y2
y3
y4
y5
y6
y7
y8RM_AxesGroup

refGroup
refPos
iState
ErrorID

670CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

adding particalar axis to axesgroup

implementation of particular single axis

implementation of axes group

vel4

[actual_velocity4]

vel3

[actual_velocity3]

vel2

[actual_velocity2]

vel1

[actual_velocity1]

skupina_os

[axes_group]

reference_to_axis4

[axis4]

reference_to_axis3

[axis3]

reference_to_axis2

[axis22]

reference_to_axis1

[axis1]

reference_to_axesgroup

[axes_group]

pos4

[actual_position4]

pos3

[actual_position3]

pos2

[actual_position2]

pos1

[actual_position1]

commanded_vel4

[commanded_velocity4]

commanded_vel3

[commanded_velocity3]

commanded_vel2

[commanded_velocity2]

commanded_vel1

[commanded_velocity1]

commanded_tor4

[commanded_torque4]

commanded_tor3

[commanded_torque3]

commanded_tor2

[commanded_torque2]

commanded_tor1

[commanded_torque1]

commanded_pos4

[commanded_position4]

commanded_pos3

[commanded_position3]

commanded_pos2

[commanded_position2]

commanded_pos1

[commanded_position1]

axis4

[axis4]

axis3

[axis3]

axis2

[axis2]

axis1

[axis1]

RM_Axis4

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis3

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis2

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis1

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_AxesGroup1234

refGroup
refPos
iState

ErrorID

MC_Power4

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power3

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power2

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power1

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_GroupEnable_1234

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_AddAxisToGroup_O4

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O3

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O2

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O1

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MCP_SetKinTransform_Agebot

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

CNB3

on

CNB2

on

CNB1

on

CNB1

on

CNB

1

671

RM_Feed � ∗ MC Feeder ???

Block Symbol Licence: COORDINATED MOTION

RM_Feed

uAxesGroup

Execute

uData

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID
Aux

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameters

Filename 0 String

VelFactor 0 ↓0.01 ↑100.0 ⊙1.0 Double (F64)

Relative 0 Bool

CoordSystem 0 ↓1 ↑3 ⊙2 Long (I32)

BufferMode 0 ↓1 ↑6 ⊙1 Long (I32)

TransitionMode 0 ↓0 ↑15 ⊙1 Long (I32)

TransitionParameter 0 Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

Aux 0 Double (F64)

672CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

RM_Gcode � ∗ CNC motion control

Block Symbol Licence: COORDINATED MOTION

RM_Gcode

uAxesGroup

uGCData

Execute

BlockSkip

Pause

DI

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID
Cooling

SpindleSpeed
DO

PrgNo
LineNo
Line

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

BlockSkip MILAN Bool

Parameters

BaseDir Directory of the G-code �les String

MainFile Source �le number Long (I32)

CoordSystem 0 ↓1 ↑3 ⊙3 Long (I32)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

673

workOffsets Sets with initial coordinate
⊙[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Double (F64)

toolOffsets Sets of tool o�set ⊙[0 0 0] Double (F64)

cutterOffsets Tool radii ⊙[0 0 0] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Cooling Cooling Bool

LineNo Current executed line number Long (I32)

Line Current line of G-code String

SpindleSpeed Spindle speed Double (F64)

674CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_AddAxisToGroup � Adds one axis to a group

Block Symbol Licence: COORDINATED MOTION

MC_AddAxisToGroup

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup
yAxis
Done
Busy
Error

ErrorID

Function Description

The function block MC_AddAxisToGroup adds one uAxis to the group in a structure
uAxesGroup. Axes Group is implemented by the function block RM_AxesGroup. The input
uAxis must be de�ned by the function block RM_Axis from the MC_SINGLE library.

Note 1: Every IdentInGroup is unique and can be used only for one time otherwise
the error is set.

Inputs

uAxesGroup Axes group reference Reference

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

IdentInGroup The order of axes in the group (0 = �rst unassigned) Long (I32)

Outputs

yAxesGroup Axes group reference Reference

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

675

MC_UngroupAllAxes � Removes all axes from the group

Block Symbol Licence: COORDINATED MOTION

MC_UngroupAllAxes

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

Function Description

The function block MC_UngroupAllAxes removes all axes from the group uAxesGroup.
After �nalization the state is changed to "GroupDisabled".

Note 1: If the function block is execute in the group state "GroupDisabled", "Group-
StandBy" or "GroupErrorStop" the error is set and the block is not execute.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

676CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupEnable � Changes the state of a group to GroupEn-
able

Block Symbol Licence: COORDINATED MOTION

MC_GroupEnable

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

Function Description

The function block MC_GroupEnable changes the state for the group uAxesGroup

from "GroupDisabled" to "GroupStandby".

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

677

MC_GroupDisable � Changes the state of a group to GroupDis-
abled

Block Symbol Licence: COORDINATED MOTION

MC_GroupDisable

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

Function Description

The function block MC_GroupDisable changes the state for the group uAxesGroup to
"GroupDisabled". If the axes are not standing still while issuing this command the state
of the group is changed to "Stopping". It is mean stopping with the maximal allowed
deceleration. When stopping is done the state of the group is changed to "GroupDis-
abled".

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

678CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_SetCartesianTransform � Sets Cartesian transformation

Block Symbol Licence: COORDINATED MOTION

MC_SetCartesianTransform

uAxesGroup
Execute
Relative
SelTrans
TransX
TransY
TransZ
RotAngle1
RotAngle2
RotAngle3
Aux1
Aux2
Aux3

yAxesGroup

Done

Busy

Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

TransX X-component of translation vector Double (F64)

TransY Y-component of translation vector Double (F64)

TransZ Z-component of translation vector Double (F64)

RotAngle1 Rotation angle component Double (F64)

RotAngle2 Rotation angle component Double (F64)

RotAngle3 Rotation angle component Double (F64)

Relative Mode of position inputs Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

679

z’=z

x

x’

y’

y

y’’=y’

x’ x’’

z’z’’

x’’’=x’’

y’’

y’’’

z’’z’’’

y’’’

z’’’

x’’’

x

y

z

Trans

RotZ

RotY RotX

TransX

T
ra
n
s
Y

RotZ

680CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_ReadCartesianTransform � Reads the parameter of the carte-
sian transformation

Block Symbol Licence: COORDINATED MOTION

MC_ReadCartesianTransform

uAxesGroup

Enable

SelTrans

yAxesGroup
Valid
Busy

TransX
TransY
TransZ

RotAngle1
RotAngle2
RotAngle3

Aux1
Aux2
Aux3
Error

ErrorID

Function Description

The function block MC_ReadCartesianTransform reads the parameter of the carte-
sian transformation that is active between the MCS and PCS. The parameters are valid
only if the output Valid is true which is achieved by setting the input Enable on true. If
more than one transformation is active, the resulting cartesian transformation is given.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

TransX X-component of translation vector Double (F64)

TransY Y-component of translation vector Double (F64)

TransZ Z-component of translation vector Double (F64)

RotAngle1 Rotation angle component Double (F64)

RotAngle2 Rotation angle component Double (F64)

RotAngle3 Rotation angle component Double (F64)

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

681

MC_GroupSetPosition, MCP_GroupSetPosition � Sets the posi-
tion of all axes in a group

Block Symbols Licence: COORDINATED MOTION

MC_GroupSetPosition

uAxesGroup

Execute

Position

Relative

CoordSystem

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupSetPosition

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

Function Description

The MC_GroupSetPosition and MCP_GroupSetPosition blocks o�er the same function-
ality, the only di�erence is that some of the inputs are available as parameters in the
MCP_ version of the block.

The function block MC_GroupSetPosition sets the position of all axes in the group
uAxesGroup without moving the axes. The new coordinates are described by the in-
put Position. With the coordinate system input CoordSystem the according coordinate
system is selected. The function block MC_GroupSetPosition shifts position of the ad-
dressed coordinate system and a�ect the higher level coordinate systems (so if ACS
selected, MCS and PCS are a�ected).

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Position Array of coordinates (positions and orientations) Reference

Relative Mode of position inputs Bool

off . . . absolute
on relative

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

682CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

ErrorID Result of the last operation Error

i REXYGEN general error

683

MC_GroupReadActualPosition � Read actual position in the se-
lected coordinate system

Block Symbol Licence: COORDINATED MOTION

MC_GroupReadActualPosition

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Position

Function Description

The function block MC_GroupReadActualPosition returns the actual position in the
selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Position xxx Reference

684CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupReadActualVelocity � Read actual velocity in the se-
lected coordinate system

Block Symbol Licence: COORDINATED MOTION

MC_GroupReadActualVelocity

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Velocity

Function Description

The function block MC_GroupReadActualVelocity returns the actual velocity in the
selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Velocity xxx Reference

685

MC_GroupReadActualAcceleration � Read actual acceleration
in the selected coordinate system

Block Symbol Licence: COORDINATED MOTION

MC_GroupReadActualAcceleration

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Acceleration

Function Description

The function block MC_GroupReadActualAcceleration returns the actual velocity in
the selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Acceleration xxx Reference

686CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupStop � Stopping a group movement

Block Symbol Licence: COORDINATED MOTION

MC_GroupStop

uAxesGroup

Execute

Deceleration

Jerk

LimitMode

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

687

velocity1

0.4

transition_parameter1

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z1

1

position y1

1.1

position x1

0.9

orientation_of_effector1

�1.5

execute2

[execute2]

execute1

[execute1]

deceleration

0.75

coord_system1

2

buffer_mode1

1

acceleration1

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupStop

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

688CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Done � MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Error � MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Execute � MC_GroupStop

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Done � MC_GroupStop

0 1 2 3 4 5 6 7 8 9 10
�0.2

0

0.2

0.4

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

689

MC_GroupHalt � Stopping a group movement (interruptible)

Block Symbol Licence: COORDINATED MOTION

MC_GroupHalt

uAxesGroup
Execute
Deceleration
Jerk
LimitMode
BufferMode
Superimposed

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

690CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

velocity1

0.4

transition_parameter1

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z1

1

position y1

1.1

position x1

0.9

orientation_of_effector1

�1.5

execute2

[execute2]

execute1

[execute1]

deceleration

0.75

coord_system1

2

buffer_mode1

1

acceleration1

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupHalt

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

691

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Error � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_GroupStop

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_GroupStop

0 2 4 6 8 10
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

com. position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Error � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_GroupHalt

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_GroupHalt

0 2 4 6 8 10
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

com. position y

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

692CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

velocity2

0.4

velocity1

0.4

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z2

1

position z1

1

position y2

0.7

position y1

1.1

position x2

0.8

position x1

0.9

orientation_of_effector2

�1.5

orientation_of_effector1

�1.5

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

deceleration

0.75

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

1

acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 2

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupHalt

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

693

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute �� Function Block 1

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Done � MC_MoveLinearAbsolute �� Function Block 1

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute �� Function Block 2

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Done � MC_MoveLinearAbsolute �� Function Block 2

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_GroupHalt

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_GroupHalt

0 1 2 3 4 5 6
�0.2

0

0.2

0.4

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 1 2 3 4 5 6

0.6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

694CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupInterrupt, MCP_GroupInterrupt � Read a group inter-
rupt

Block Symbols Licence: COORDINATED MOTION

MC_GroupInterrupt

uAxesGroup

Execute

Deceleration

Jerk

LimitMode

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupInterrupt

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

Function Description

The MC_GroupInterrupt and MCP_GroupInterrupt blocks o�er the same functional-
ity, the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The function block MC_GroupInterrupt interrupts the on-going motion and stops
the group from moving, however does not abort the interrupted motion (meaning that
at the interrupted FB the output CommandAborted will not be Set, Busy is still high and
Active is reset). It stores all relevant track or path information internally at the moment
it becomes active. The uAxesGroup stays in the original state even if the velocity zero is
reached and the Done output is set.

Note 1: This function block is complementary to the function block MC_GroupContinue
which execution the uAxesGroup state is reset to the original state (before MC_GroupInterrupt
execution)

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

695

MC_GroupContinue � Continuation of interrupted movement

Block Symbol Licence: COORDINATED MOTION

MC_GroupContinue

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

Function Description

The function block MC_GroupContinue transfers the program back to the situa-
tion at issuing MC_GroupInterrupt. It uses internally the data set as stored at issuing
MC_GroupInterrupt, and at the end (output Done set) transfer the control on the group
back to the original FB doing the movements on the axes group, meaning also that at
the originally interrupted FB the output Busy is still high and the output Active is set
again.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

696CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupReadStatus � Read a group status

Block Symbol Licence: COORDINATED MOTION

MC_GroupReadStatus

uAxesGroup

Enable

yAxesGroup
Valid
Busy

GroupMoving
GroupHoming

GroupErrorStop
GroupStandby
GroupStopping
GroupDisabled

ConstantVelocity
Accelerating
Decelerating
InPosition

Error
ErrorID

Function Description

The function block MC_GroupReadStatus returns the status of the uAxesGroup. The
status is valid only if the output Valid is true which is achieved by setting the input
Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

GroupMoving State GroupMoving Bool

GroupHoming State GroupHoming Bool

GroupErrorStop State ErrorStop Bool

GroupStandby State Standby Bool

GroupStopping State Stopping Bool

GroupDisabled State Disabled Bool

ConstantVelocity Constant velocity motion Bool

Accelerating Accelerating Bool

Decelerating Decelerating Bool

InPosition Symptom achieve the desired position Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

697

MC_GroupReadError � Read a group error

Block Symbol Licence: COORDINATED MOTION

MC_GroupReadError

uAxesGroup

Enable

yAxesGroup
Valid
Busy
Error

ErrorID
GroupErrorID

Function Description

The function block MC_GroupReadError describes general error on the uAxesGroup

which is not relating to the function blocks. If the output GroupErrorID is equal to 0
there is no error on the axes group. The actual error code GroupErrorID is valid only if
the output Valid is true which is achieved by setting the input Enable on true.

Note 1: This function block is implemented because of compatibility with the PLCopen
norm. The same error value is on the output ErrorID of the function block RM_AxesGroup.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

GroupErrorID Result of the last operation Error

i REXYGEN general error

698CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupReset � Reset axes errors

Block Symbol Licence: COORDINATED MOTION

MC_GroupReset

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

Function Description

The function block MC_GroupReset makes the transition from the state "GroupEr-
rorStop" to "GroupStandBy" by resetting all internal group-related errors. This func-
tion block also resets all axes in this group like the function block MC_Reset from the
MC_SINGLE library.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

699

MC_MoveLinearAbsolute � Linear move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

MC_MoveLinearAbsolute

uAxesGroup

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

LimitMode

CoordSystem

BufferMode

TransitionMode

TransitionParameter

Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Position Array of coordinates (positions and orientations) Reference

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

700CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.4
velocity1

0.4

transition_parameter2

1
transition_parameter1

1
transition_mode2

1
transition_mode1

1

reference_to_axesgroup

[axes_group]

position z2

1
position z1

1
position y2

0.8
position y1

1
position x2

1.2
position x1

1

orientation_of_effector2

�1.5
orientation_of_effector1

�1.5

execute2

[execute2]execute1

[execute1]

coord_system2

2
coord_system1

2

buffer_mode2

1
buffer_mode1

1

acceleration2

1
acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 2

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

701

702CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute �� Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o

l

Active � MC_MoveLinearAbsolute �� Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o

o
l

Done � MC_MoveLinearAbsolute �� Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o

l

Execute � MC_MoveLinearAbsolute �� Function Block 2

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o
l

Active � MC_MoveLinearAbsolute �� Function Block 2

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o

o
l

Done � MC_MoveLinearAbsolute �� Function Block 2

1 1.5 2 2.5 3 3.5 4
�0.2

0

0.2

0.4

0.6

V
e

lo
c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

commanded position x,y

Cas [s]

P
o
s
it
io

n
 [

ra
d
]

Position AxesGroup

x�axis

y�axis

703

MC_MoveLinearRelative � Linear move to position (relative to
execution point)

Block Symbol Licence: COORDINATED MOTION

MC_MoveLinearRelative

uAxesGroup

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

LimitMode

CoordSystem

BufferMode

TransitionMode

TransitionParameter

Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Distance Array of coordinates (relative distances and orientations) Reference

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

704CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.4
velocity1

0.4

transition_parameter2

1
transition_parameter1

1
transition_mode2

1
transition_mode1

1

reference_to_axesgroup

[axes_group]

execute2

[execute2]execute1

[execute1]

distance_orientation_of_effector2

0
distance_orientation_of_effector1

0
distance z2

0
distance z1

0
distance y2

�0.2
distance y1

0.2
distance x2

0.2
distance x1

0.2

coord_system2

2
coord_system1

2

buffer_mode2

1
buffer_mode1

1

acceleration2

1
acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearRelative �

Function Block 2

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearRelative �

Function Block 1

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

705

706CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Execute � MC_MoveLinearRelative �� Function Block 1
b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Active � MC_MoveLinearRelative �� Function Block 1

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Done � MC_MoveLinearRelative �� Function Block 1

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Execute � MC_MoveLinearRelative �� Function Block 2

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Active � MC_MoveLinearRelative �� Function Block 2

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Done � MC_MoveLinearRelative �� Function Block 2

b
o
o
l

1 1.5 2 2.5 3 3.5 4
�0.2

0

0.2

0.4

0.6

Velocity AxesGroup

V
e
lo

c
it
y
 [
ra

d
/s

]

1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

commanded position x,y
x�axis

y�axis

707

MC_MoveCircularAbsolute � Circular move to position (abso-
lute coordinates)

Block Symbol Licence: COORDINATED MOTION

MC_MoveCircularAbsolute

uAxesGroup
Execute
CircMode
AuxPoint
EndPoint
PathChoice
Velocity
Acceleration
Deceleration
Jerk
LimitMode
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Starting
point

Border
point

End
point

x

y

Starting
point

Center
point

End
point

x

y

Starting
point

End
point

x

y

Spearhead
point

length = Radious of the circle

CircMode = BORDER CircMode = CENTER CircMode = RADIUS

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

CircMode Speci�es the meaning of the input signals AuxPoint and
CircDirection

Long (I32)

1 BORDER
2 CENTER
3 RADIUS

AuxPoint Next coordinates to de�ne circle (depend on CircMode) Reference

EndPoint Target axes coordinates position Reference

PathChoice Choice of path Long (I32)

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

708CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.5

velocity1

0.5

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_groupaxes

[axes_group]

position z2 � EndPoint

1

position z2 � AuxPoint

1

position z1 � EndPoint

1

position z1 � AuxPoint

1

position y2 � EndPoint

1.1

position y2 � AuxPoint

1.2

position y1 � EndPoint

1.1

position y1 � AuxPoint

1.1

position x2 � EndPoint

1.1

position x2 � AuxPoint

1

position x1 � EndPoint

0.9

position x1 � AuxPoint

0.7

orientation_of_effector2 � EndPoint

�1.5

orientation_of_effector2 � AuxPoint

�1.5

orientation_of_effector1 � EndPoint

�1.5

orientation_of_effector1 � AuxPoint

�1.5

execute2

[execute2]

execute1

[execute1]

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

0.5

acceleration1

0.5

RTOV4

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV3

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

PathChoice3

1

PathChoice1

1

MC_MoveCircularAbsolute �

Function Block 2

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularAbsolute �

Function Block 1

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

CircMode2

1

CircMode1

1

709

710CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularAbsolute �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularAbsolute �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularAbsolute �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularAbsolute �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularAbsolute �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularAbsolute �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

2 2.5 3 3.5 4 4.5 5 5.5 6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

711

MC_MoveCircularRelative � Circular move to position (relative
to execution point)

Block Symbol Licence: COORDINATED MOTION

MC_MoveCircularRelative

uAxesGroup
Execute
CircMode
AuxPoint
EndPoint
PathChoice
Velocity
Acceleration
Deceleration
Jerk
LimitMode
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Starting
point

Border
point

End
point

x

y

Starting
point

Center
point

End
point

x

y

Starting
point

End
point

x

y

Spearhead
point

length = Radious of the circle

CircMode = BORDER CircMode = CENTER CircMode = RADIUS

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

CircMode Speci�es the meaning of the input signals AuxPoint and
CircDirection

Long (I32)

1 BORDER
2 CENTER
3 RADIUS

AuxPoint Next coordinates to de�ne circle (depend on CircMode) Reference

EndPoint Target axes coordinates position Reference

PathChoice Choice of path Long (I32)

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

712CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.5

velocity1

0.5

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_groupaxes

[axes_group]

execute2

[execute2]

execute1

[execute1]

distance_orientation_of_effector2 � EndPoint

0

distance_orientation_of_effector1 � EndPoint

0

distance z2 � EndPoint

0

distance z2 � AuxPoint

0

distance z1 � EndPoint

0

distance z1 � AuxPoint

0

distance y2 � EndPoint

�0.05

distance y2 � AuxPoint

0.05

distance y1 � EndPoint

�0.1

distance y1 � AuxPoint

�0.1

distance x2 � EndPoint

0.05

distance x2 � AuxPoint

0.05

distance x1 � EndPoint

0.1

distance x1 � AuxPoint

�0.1

dintance_orientation_of_effector2 � AuxPoint

0

dintance_orientation_of_effector1 � AuxPoint

0

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

0.5

acceleration1

0.5

RTOV4

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV3

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

PathChoice2

1

PathChoice1

1

MC_MoveCircularRelative �

Function Block 2

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularRelative �

Function Block 1

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

CircMode2

1

CircMode1

1

713

714CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularRelative �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularRelative �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularRelative �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularRelative �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularRelative �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularRelative �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

2 2.5 3 3.5 4 4.5 5 5.5 6

0.8

1

1.2

commanded position y

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

715

MC_MoveDirectAbsolute � Direct move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

MC_MoveDirectAbsolute

uAxesGroup
Execute
Position
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Position Array of coordinates (positions and orientations) Reference

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

716CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

transition_parameter

1

transition_mode

1

reference_to_axesgroup

[group_axes]

position z

1

position y

0.6

position x

0.9

orientation_of_effector

�1.5

execute

[execute]

coord_system

2

buffer_mode

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveDirectAbsolute

uAxesGroup

Execute

Position

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

717

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Execute � MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Active � MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Done � MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.8

1
commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

718CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveDirectRelative � Direct move to position (relative to
execution point)

Block Symbol Licence: COORDINATED MOTION

MC_MoveDirectRelative

uAxesGroup
Execute
Distance
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Distance Array of coordinates (relative distances and orientations) Reference

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

719

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

transition_parameter

1

transition_mode

1

reference_to_axesgroup

[group_axes]

orientation_of_efector

0

execute

[execute]

distance z

0

distance y

�0.1

distance x

0.3

coord_system

2

buffer_mode

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveDirectRelative

uAxesGroup

Execute

Distance

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

720CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Execute � MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Active � MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Done � MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.8

1
commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

721

MC_MovePath � General spatial trajectory generation

Block Symbol Licence: COORDINATED MOTION

MC_MovePath

uAxesGroup
Execute
pc
pk
pw
pv
pt
TotalTime
RampTime
CoordSystem
BufferMode
TransitionMode
TransitionParameter
RampInFactor
Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

TotalTime Time [s] for whole move Double (F64)

RampTime Time [s] for acceleration/deceleration Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

722CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Parameters

pc Control-points matrix
⊙[0.0 1.0 2.0; 0.0 1.0 1.0; 0.0 1.0 0.0]

Double (F64)

pk Knot-points vector ⊙[0.0 0.0 0.0 0.0 0.5 1.0 1.0] Double (F64)

pw Weighting vector ⊙[1.0 1.0 1.0] Double (F64)

pv Polynoms for feedrate de�nition
⊙[0.0 0.05 0.95; 0.0 0.1 0.1; 0.0 0.0 0.0; 0.1 0.0 -0.1; -0.05 0.0 0.05; 0.0 0.0 0.0]

Double (F64)

pt Knot-points (time [s]) for feedrate ⊙[0.0 1.0 10.0 11.0] Double (F64)

user Only for special edit ⊙[0.0 1.0 2.0 3.0] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

723

MC_GroupSetOverride � Set group override factors

Block Symbol Licence: COORDINATED MOTION

MC_GroupSetOverride

uAxesGroup
Enable
VelFactor
AccFactor
JerkFactor

yAxesGroup
Enabled
Busy
Error

ErrorID

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

VelFactor Velocity multiplication factor Double (F64)

AccFactor Acceleration/deceleration multiplication factor Double (F64)

JerkFactor Jerk multiplication factor Double (F64)

Parameter

diff Deadband (di�erence for recalculation) ⊙0.05 Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Enabled Signal that the override faktor are set successfully Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

724CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Chapter 23

CanDrv � Communication via CAN

bus

Contents

CanItem � Secondary received CAN message 726

CanRecv � Receive CAN message 727

CanSend � Send CAN message . 729

725

726 CHAPTER 23. CANDRV � COMMUNICATION VIA CAN BUS

CanItem � Secondary received CAN message

Block Symbol Licence: CANDRV

CanItem

uRef

yRef

msgId

data

length

DRDY

Function Description

The block is used with the CanRecv block. The uRef input of the CanItem block must
be connected to the itemRef output of some CanRecv block or to the yRef output of
another CanItem block.

This block shows the previous message that has passed the �lter in the CanRecv

block.
If more than one CanItem block is connected (directly or indirectly through the yRef

output of the CanItem block already connected to the CanRecv block) then the �rst
executed CanItem block shows the �rst message before the last received message (which
is shown by the CanRecv block), the second executed CanItem block shows the second
message before the last received message (which is shown by the CanRecv block) etc. It
is strongly recommended to connect the CanItem blocks in a daisy chain. Unexpected
ordering of messages may occur if the blocks are connected in a tree-like structure.

If no message has been received since start of the CAN driver, the data outputs have
fallback values msgId = -1 and length = -1.

The DRDY output is set to DRDY= on if the message has been received during the
last period, i.e. after previous execution of the CanItem block. At the same moment, the
outputs msgId, data and length are updated. If there is no new data, DRDY output is
set to DRDY= off and the data values are kept on the other outputs (msgId, data and
length).

Input

uRef Secondary received packet reference Reference

Outputs

yRef Secondary received packet reference Reference

msgId CAN message ID (COB-ID) Long (I32)

data Message data (8 bytes maximum, LSB �rst)
↓-9.22337E+18 ↑9.22337E+18

Large (I64)

length Message length (number of bytes of data) ↓0 ↑8 Long (I32)

DRDY Received message in the last period �ag Bool

727

CanRecv � Receive CAN message

Block Symbol Licence: CANDRV

CanRecv

itemRef

msgId

data

length

nDRDY

iErr

age

Function Description

The CanRecv block receives message via CAN bus. The message is de�ned by the
msgId, data and length inputs and the RTR and EXT parameters.

Number of messages received in the current task period (i.e. since the previous exe-
cution) is indicated by the nDRDY output.

The data from the last received message is available at the msgId, data and length

outputs. Previous messages (with respect to the nmax parameter) are available using the
CanItem block(s) linked to the itemRef output.

The block must be linked with the CanDrv driver. The driver must be con�gured to
use the simple CAN mode (i.e. the parameter NodeMode = 256).

The block's name must be in the form <DRV>__<blkname> (see e.g. OUTQUAD or OUTOCT
blocks for details about referencing data from I/O drivers). The <blkname> part of the
name has no special meaning in this case and it is recommended to keep the original
CanRecv.

The block supports short (11-bit) and long (29-bit) message IDs (see the EXT param-
eter) and RequestToReceive messages (see the RTR parameter). FD mode which allows
up to 64 data bytes in a single message is not supported.

Outputs

itemRef Secondary received packet reference Reference

msgId CAN message ID (COB-ID) Long (I32)

data Message data (8 bytes maximum, LSB �rst)
↓-9.22337E+18 ↑9.22337E+18

Large (I64)

length Message length (number of bytes of data) ↓0 ↑8 Long (I32)

nDRDY Number of received messages in the last period ↑255 Word (U16)

iErr Error code Error

age Elapsed time since the last received message [s] ↓0.0 Double (F64)

728 CHAPTER 23. CANDRV � COMMUNICATION VIA CAN BUS

Parameters

filterId MessageId of packets to receive by this block ↓0 ↑536870911 Long (I32)

filterIdMask Mask for the filterId parameter (marks valid bits)
↓0 ↑536870911

Long (I32)

filterLength Data length of packets to receive by this block (-1 allows all
lengths) ↓-1 ↑8

Long (I32)

RTR Request To Receive �ag ⊙on Bool

EXT Extended message ID (29bits) ⊙on Bool

timeout Error is indicated if no packet is received within the timeout
interval [s] ↓0.0

Double (F64)

nmax Maximum number of received messages in one period ↓1 ↑255 Long (I32)

729

CanSend � Send CAN message

Block Symbol Licence: CANDRV

CanSend

msgId

length

data

RUN

iErr

Function Description

The CanSend block sends message via CAN bus. The message content is de�ned by the
msgId, data and length inputs and the RTR and EXT parameters. Message is sent only
if the input RUN is set to RUN = on.

The block must be linked with the CanDrv driver. The driver must be con�gured to
use the simple CAN mode (i.e. the parameter NodeMode = 256).

The block's name must be in the form <DRV>__<blkname> (see e.g. OUTQUAD or OUTOCT
blocks for details about referencing data from I/O drivers). The <blkname> part of the
name has no special meaning in this case and it is recommended to keep the original
CanSend.

The block supports short (11-bit) and long (29-bit) message IDs (see the EXT param-
eter) and RequestToReceive messages (see the RTR parameter). FD mode which allows
up to 64 data bytes in a single message is not supported.

Inputs

msgId CAN message ID (COB-ID) ↓0 ↑536870911 Long (I32)

length Message length (number of bytes of data) ↓0 ↑8 Long (I32)

data Message data (8 bytes maximum, LSB �rst)
↓-9.22337E+18 ↑9.22337E+18

Large (I64)

RUN Sending message is enabled Bool

Output

iErr Error code Error

Parameters

RTR Request To Receive �ag ⊙on Bool

EXT Extended message ID (29bits) ⊙on Bool

730 CHAPTER 23. CANDRV � COMMUNICATION VIA CAN BUS

Chapter 24

OpcUaDrv � Communication using

OPC UA

Contents

OpcUaReadValue � Read value from OPC UA Server 732

OpcUaServerValue � Expose value as an OPC UA Node 734

OpcUaWriteValue � Write value to OPC UA Server 736

731

732 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

OpcUaReadValue � Read value from OPC UA Server

Block Symbol Licence: ADVANCED

OpcUaReadValue

READ

value

BUSY

DONE

errId

Function Description

This function block depends on the OpcUa driver. Please read the OpcUaDrv manual
[15] before use.

The OpcUaReadValue block reads value of an OPC UA Node through a connection
established by the OPC UA client driver.

The �rst two parameters are NodeId and NodeId_type. The NodeId_type speci�es
what type of information it is expected to be entered as the NodeId parameter. If the
value is string, numeric, guid than the NodeId parameter should contain the id of the
actual OPC UA Node on the server pre�xed with the index of the namespace declared
in the con�guration of the driver separated by a colon (e.g. 1:myNode).

If the value of the NodeId_type parameter is set to path than the NodeId parameter
should contain the path to the desired Node in the server structure. Every segment of
the path is composed from the attribute BrowserName of the node and the BrowserName
is similarly with regular NodeId types pre�xed with the index of the namespace declared
in the con�guration of the driver separated by a colon (e.g. /1:myDevice/1:myNode).
The path is relative to the Objects folder in the OPC UA server structure.

The parameter type speci�es the expected Node's value data type. The block converts
the Node's value to the speci�ed type and sets the value output signal in case of success
or it sets the errId to the resulting error code.

Input

READ Enable execution Bool

Parameters

NodeId OPC UA Node Id String

NodeId_type Type of Node ID ⊙1 Long (I32)

1 string
2 numeric
3 guid
4 path

733

type Expected type of incoming data ⊙1 Long (I32)

1 string
2 double
3 long
4 bool

Outputs

value Output signal Any

BUSY Busy �ag Bool

DONE Indicator of �nished transaction Bool

errId Error code Error

734 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

OpcUaServerValue � Expose value as an OPC UA Node

Block Symbol Licence: ADVANCED

OpcUaServerValue

uValue

SET

DISABLED

yValue

CHANGED

errId

Function Description

This function block depends on the OpcUa driver. Please read the OpcUaDrv manual
[15] before use.

The OpcUaServerValue block exposes an OPC UA Node through OPC UA server
driver.

The �rst two parameters are NodeId and NodeId_type. The NodeId_type speci�es
how the value entered as the NodeId parameter should be treated. The parameter NodeId
speci�es the NodeId that the OPC UA Node represented by the block should be exposed
with.

The input DISABLE controls whether the OPC UA Node is exposed on the server
or not. When the SET input is set to on the value on the input uValue port is set to
the OPC UA Node's value. If the parameter READONLY is set to off the Node's value
can also be changed from outside of the algorithm through the OPC UA communication
protocol.

The output signal yValue is set to the Node's value on every tick. The parameter
type speci�es the Node's value data type, the data type of the uValue input and yValue

output.

Inputs

uValue Input signal Any

SET Set the input value to OPC UA Node value Bool

DISABLE Disable OPC UA Node Bool

Parameters

NodeId OPC UA Node Id String

NodeId_type OPC UA Node Id type ⊙1 String

1 string
2 numeric
3 guid

735

type Value data type ⊙1 Long (I32)

1 string
2 double
3 long
4 bool

BrowseName OPC UA Node Browse name String

Description OPC UA Node description String

DisplayName OPC UA Node display name String

READONLY Set OPC Node value as read only ⊙on Bool

Outputs

yValue Output signal Any

CHANGED Value of the node changed though the OPC UA protocol Bool

errId Error code Error

736 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

OpcUaWriteValue � Write value to OPC UA Server

Block Symbol Licence: ADVANCED

OpcUaWriteValue

value

WRITE

BUSY

DONE

errId

code

status

Function Description

This function block depends on the OpcUa driver. Please read the OpcUaDrv manual
[15] before use.

The OpcUaWriteValue block writes value to the OPC UA Node through a connection
established by the OPC UA client driver.

The �rst two parameters are NodeId and NodeId_type. The NodeId_type speci�es
what type of information it is expected to be entered as the NodeId parameter. If the
value is string, numeric, guid than the NodeId parameter should contain the id of the
actual OPC UA Node on the server pre�xed with the index of the namespace declared
in the con�guration of the driver separated by a colon (e.g. 1:myNode).

If the value of the NodeId_type parameter is set to path than the NodeId parameter
should contain the path to the desired Node in the server structure. Every segment of
the path is composed from the attribute BrowserName of the node and the BrowserName
is similarly with regular NodeId types pre�xed with the index of the namespace declared
in the con�guration of the driver separated by a colon (e.g. /1:myDevice/1:myNode).
The path is relative to the Objects folder in the OPC UA server structure.

The parameter type speci�es the expected Node's value data type. The input signal
value is converted to the speci�ed type and is than written to the Node's value attribute.

When the process of writing the value is �nished the result code de�ned by OPC UA
is set to the code output and it's textual representation is set to the status output.

Inputs

value Input signal Any

WRITE Enable execution Bool

Parameters

NodeId OPC UA Node Id String

737

NodeId_type Type of Node ID ⊙1 Long (I32)

1 string
2 numeric
3 guid
4 path

type Value data type ⊙1 Long (I32)

1 string
2 double
3 long
4 bool

Outputs

BUSY Busy �ag Bool

DONE Indicator of �nished transaction Bool

errId Error code Error

code OPC UA result status code DWord (U32)

status OPC UA result status string String

738 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

Appendix A

Licensing options

From the licensing point of view, there are several versions of the RexCore runtime module
to provide maximum �exibility for individual projects. The table below compares the
individual variants.

The function blocks are divided into several licensing groups. The STANDARD func-
tion blocks are always available, the other groups require activation by a corresponding
licence.

RexCore RexCore RexCore RexCore RexCore
DEMO Starter Plus Professional Ultimate

Function blocks
STANDARD • • • • •
ADVANCED • � • • •
REXLANG • � • • •
MOTION CONTROL • � ◦ ◦ •
COORDINATED MOTION • � ◦ ◦ •
AUTOTUNING � � ◦ ◦ •
MATRIX • � ◦ ◦ •

I/O drivers
Basic I/O drivers • • • • •
Additional I/O drivers • ◦ ◦ • •

(• . . . included, ◦ . . . optional, � . . . not available)

See Appendix B for details about licensing of individual function blocks.

739

740 APPENDIX A. LICENSING OPTIONS

Appendix B

Licensing of individual function

blocks

To maximize �exibility for individual projects, function blocks of the REXYGEN system
are divided into several licensing groups. The table below shows the groups the function
blocks belong to. See Appendix A for detailed information about the individual licensing
options.

Function block name Licensing group
STANDARD Other

ABS_ •
ABSROT ADVANCED
ACD •
ADD •
ADDHEXD •
ADDOCT •
ADDQUAD •
AFLUSH •
ALB •
ALBI •
ALN •
ALNI •
ARS •
AND_ •
ANDHEXD •
ANDOCT •
ANDQUAD •
ANLS •
ARC •
ARLY •

The list continues on the next page...

741

742 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

ASW ADVANCED
ATMT •
AVG •
AVS ADVANCED
BDHEXD •
BDOCT •
BINS •
BIS •
BISR •
BITOP •
BMHEXD •
BMOCT •
BPF •
CanItem CANDRV
CanRecv CANDRV
CanSend CANDRV
CDELSSM ADVANCED
CMP •
CNA •
CNB •
CNDR •
CNE •
CNI •
CNR •
CNS •
CONCAT •
COND

COUNT •
CSSM ADVANCED
DATE_ •
DATETIME •
DDELSSM ADVANCED
DEL •
DELM •
DER •
DFIR ADVANCED
DIF_ •
Display •
DIV •

The list continues on the next page...

743

Function block name Licensing group
STANDARD Other

DSSM ADVANCED
EAS •
EATMT ADVANCED
EDGE_ •
EKF MODEL
EMD •
EPC ADVANCED
EQ •
EVAR •
EXEC •
FIND •
FLCU ADVANCED
FNX •
FNXY •
FOPDT •
FRID ADVANCED
From •
GAIN •
GETPA •
GETPB •
GETPI •
GETPR •
GETPS •
Goto •
GotoTagVisibility •
GRADS ADVANCED
HMI •
HTTP ADVANCED
HTTP2 ADVANCED
I3PM ADVANCED
IADD •
IDIV •
IMOD •
IMUL •
INFO •
INHEXD •
INOCT •
Inport •
INQUAD •

The list continues on the next page...

744 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

INSTD •
INTE •
INTSM •
IODRV •
IOTASK •
ISSW •
ISUB •
ITOI •
ITOS •
KDER ADVANCED
LC •
LEN •
LIN •
LLC •
LPBRK •
LPF •
MC_AccelerationProfile MOTION CONTROL
MC_AddAxisToGroup COORDINATED MOTION
MC_CamIn MOTION CONTROL
MC_CamOut MOTION CONTROL
MC_CombineAxes MOTION CONTROL
MC_GearIn MOTION CONTROL
MC_GearInPos MOTION CONTROL
MC_GearOut MOTION CONTROL
MC_GroupContinue COORDINATED MOTION
MC_GroupDisable COORDINATED MOTION
MC_GroupEnable COORDINATED MOTION
MC_GroupHalt COORDINATED MOTION
MC_GroupInterrupt COORDINATED MOTION
MC_GroupReadActualAcceleration COORDINATED MOTION
MC_GroupReadActualPosition COORDINATED MOTION
MC_GroupReadActualVelocity COORDINATED MOTION
MC_GroupReadError COORDINATED MOTION
MC_GroupReadStatus COORDINATED MOTION
MC_GroupReset COORDINATED MOTION
MC_GroupSetOverride COORDINATED MOTION
MC_GroupSetPosition COORDINATED MOTION
MC_GroupStop COORDINATED MOTION
MC_Halt MOTION CONTROL

The list continues on the next page...

745

Function block name Licensing group
STANDARD Other

MC_HaltSuperimposed MOTION CONTROL
MC_Home MOTION CONTROL
MC_MoveAbsolute MOTION CONTROL
MC_MoveAdditive MOTION CONTROL
MC_MoveCircularAbsolute COORDINATED MOTION
MC_MoveCircularRelative COORDINATED MOTION
MC_MoveContinuousAbsolute MOTION CONTROL
MC_MoveContinuousRelative MOTION CONTROL
MC_MoveDirectAbsolute COORDINATED MOTION
MC_MoveDirectRelative COORDINATED MOTION
MC_MoveLinearAbsolute COORDINATED MOTION
MC_MoveLinearRelative COORDINATED MOTION
MC_MovePath COORDINATED MOTION
MC_MovePath_PH COORDINATED MOTION
MC_MoveRelative MOTION CONTROL
MC_MoveSuperimposed MOTION CONTROL
MC_MoveVelocity MOTION CONTROL
MC_PhasingAbsolute MOTION CONTROL
MC_PhasingRelative MOTION CONTROL
MC_PositionProfile MOTION CONTROL
MC_Power MOTION CONTROL
MC_ReadActualPosition MOTION CONTROL
MC_ReadAxisError MOTION CONTROL
MC_ReadBoolParameter MOTION CONTROL
MC_ReadCartesianTransform COORDINATED MOTION
MC_ReadParameter MOTION CONTROL
MC_ReadStatus MOTION CONTROL
MC_Reset MOTION CONTROL
MC_SetCartesianTransform COORDINATED MOTION
MC_SetOverride MOTION CONTROL
MC_Stop MOTION CONTROL
MC_TorqueControl MOTION CONTROL
MC_UngroupAllAxes COORDINATED MOTION
MC_VelocityProfile MOTION CONTROL
MC_WriteBoolParameter MOTION CONTROL
MC_WriteParameter MOTION CONTROL
MCP_AccelerationProfile MOTION CONTROL
MCP_CamIn MOTION CONTROL
MCP_CamTableSelect MOTION CONTROL

The list continues on the next page...

746 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

MCP_CombineAxes MOTION CONTROL
MCP_GearIn MOTION CONTROL
MCP_GearInPos MOTION CONTROL
MCP_GroupHalt COORDINATED MOTION
MCP_GroupInterrupt COORDINATED MOTION
MCP_GroupSetOverride COORDINATED MOTION
MCP_GroupSetPosition COORDINATED MOTION
MCP_GroupStop COORDINATED MOTION
MCP_Halt MOTION CONTROL
MCP_HaltSuperimposed MOTION CONTROL
MCP_Home MOTION CONTROL
MCP_MoveAbsolute MOTION CONTROL
MCP_MoveAdditive MOTION CONTROL
MCP_MoveCircularAbsolute COORDINATED MOTION
MCP_MoveCircularRelative COORDINATED MOTION
MCP_MoveContinuousAbsolute MOTION CONTROL
MCP_MoveContinuousRelative MOTION CONTROL
MCP_MoveDirectAbsolute COORDINATED MOTION
MCP_MoveDirectRelative COORDINATED MOTION
MCP_MoveLinearAbsolute COORDINATED MOTION
MCP_MoveLinearRelative COORDINATED MOTION
MCP_MovePath COORDINATED MOTION
MCP_MovePath_PH COORDINATED MOTION
MCP_MoveRelative MOTION CONTROL
MCP_MoveSuperimposed MOTION CONTROL
MCP_MoveVelocity MOTION CONTROL
MCP_PhasingAbsolute MOTION CONTROL
MCP_PhasingRelative MOTION CONTROL
MCP_PositionProfile MOTION CONTROL
MCP_SetCartesianTransform COORDINATED MOTION
MCP_SetKinTransform_Arm COORDINATED MOTION
MCP_SetKinTransform_Schunk COORDINATED MOTION
MCP_SetKinTransform_UR COORDINATED MOTION
MCP_SetOverride MOTION CONTROL
MCP_Stop MOTION CONTROL
MCP_TorqueControl MOTION CONTROL
MCP_VelocityProfile MOTION CONTROL
MCU •
MDL •

The list continues on the next page...

747

Function block name Licensing group
STANDARD Other

MDLI •
MID •
MINMAX •
MODULE •
MP •
MqttPublish MQTTDRV
MqttSubscribe MQTTDRV
MUL •
MVD •
NOT_ •
NSCL •
NSSM MODEL
OpcUaReadValue ADVANCED
OpcUaServerValue ADVANCED
OpcUaWriteValue ADVANCED
OR_ •
ORHEXD •
OROCT •
ORQUAD •
OSD •
OSCALL •
OUTHEXD •
OUTOCT •
Outport •
OUTQUAD •
OUTRHEXD ADVANCED
OUTROCT ADVANCED
OUTRQUAD ADVANCED
OUTRSTD ADVANCED
OUTSTD •
PARA •
PARB •
PARE •
PARI •
PARR •
PARS •
PGAVR

PGBAT

PGBUS

The list continues on the next page...

748 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

PGCB

PGENG

PGGEN

PGGS

PGINV

PGLOAD

PGMAINS

PGSENS

PGSG

PGSIM

PGSOLAR

PGWIND

PIDAT AUTOTUNING
PIDE ADVANCED
PIDGS ADVANCED
PIDMA AUTOTUNING
PIDU •
PIDUI ADVANCED
PJROCT •
PJSEXOCT •
PJSEXOCT •
PJSOCT •
POL •
POUT •
PRBS •
PRGM •
PROJECT •
PSMPC ADVANCED
PWM •
PYTHON REXLANG
QFC ADVANCED
QFD ADVANCED
QTASK •
QP_MPC2QP ADVANCED
QP_UPDATE ADVANCED
QP_OASES ADVANCED
QCEDPOPT ADVANCED
RDC ADVANCED
REC •

The list continues on the next page...

749

Function block name Licensing group
STANDARD Other

REGEXP ADVANCED
REL •
REPLACE •
REXLANG REXLANG
RLIM •
RLY •
RM_AxesGroup COORDINATED MOTION
RM_Axis MOTION CONTROL
RM_AxisOut MOTION CONTROL
RM_AxisSpline MOTION CONTROL
RM_DirectTorque MOTION CONTROL
RM_DirectVelocity MOTION CONTROL
RM_DriveMode MOTION CONTROL
RM_Feed COORDINATED MOTION
RM_Gcode COORDINATED MOTION
RM_GroupTrack COORDINATED MOTION
RM_HomeOffset MOTION CONTROL
RM_Track MOTION CONTROL
RS •
RTOI •
RTOS •
RTOV •
S_AND

S_BC

S_CMP

S_CTS

S_LB

S_NOT

S_OR

S_PULS

S_PV

S_RS

S_SEL

S_SELVAL

S_SR

S_SUMC

S_TDE

S_TDR

S_TLATCH

The list continues on the next page...

750 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

S_VALB

S_VALC

S1OF2 ADVANCED
SAI ADVANCED
SAT •
SC2FA AUTOTUNING
SCU •
SCUV •
SEL •
SELHEXD •
SELOCT •
SELQUAD •
SELSOCT •
SELU •
SETPA •
SETPB •
SETPI •
SETPR •
SETPS •
SG •
SGI •
SGSLP ADVANCED
SHIFTOCT •
SHLD •
SILO •
SILOS •
SINT •
SLEEP •
SMHCC ADVANCED
SMHCCA AUTOTUNING
SMTP ADVANCED
SOPDT •
SPIKE ADVANCED
SQR •
SQRT_ •
SR •
SRTF ADVANCED
SSW •
STEAM •

The list continues on the next page...

751

Function block name Licensing group
STANDARD Other

STOR •
SUB •
SubSystem •
SWR •
SWU •
SWVMR •
TASK •
TIME •
TIMER_ •
TIODRV •
TRND •
TRNDV •
TSE •
UTOI •
VDEL •
VIN ADVANCED
VOUT ADVANCED
VTOR •
WASM REXLANG
WSCH •
WWW •
ZV4IS ADVANCED
DFIR ADVANCED
PGSIM

PGMAINS

PGBUS

PGLOAD

PGGEN

PGCB

PGSENS

PGENG

PGAVR

PGSG

PGINV

PGSOLAR

PGWIND

PGBAT

PGGS

CanSend CANDRV
The list continues on the next page...

752 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

CanRecv CANDRV
CanItem CANDRV
MqttPublish MQTTDRV
MqttSubscribe MQTTDRV
EKF MODEL
NSSM MODEL
RM_HomeOffset MOTION CONTROL
PARE •
EQ •
PYTHON REXLANG
WASM REXLANG
RM_DriveMode MOTION CONTROL
RM_DirectTorque MOTION CONTROL
RM_DirectVelocity MOTION CONTROL
COND

TESTS

S_CMPT

S_RCK

S_POR

OpcUaReadValue

OpcUaWriteValue

OpcUaServerValue

STEAM •
PJSEXOCT •
BISR •
DP2M

MBAL

MOFN

TB1

TB2

TB3

TB6

VAC

OSD •
CNT •
CNDT •
CONCAT_DT •
SPLIT_DT •
STR2DT •

The list continues on the next page...

753

Function block name Licensing group
STANDARD Other

DT2STR •
WEEK •
T2STR •
TZ2UTC •
UTC2TZ •
SYSLOG •
SYSEVENT •
ALM •
ALARMS •
TRIM •

754 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Appendix C

Error codes of the REXYGEN

system

Success codes

0 Success
-1 False
-2 First value is greater
-3 Second value is greater
-4 Parameter changed
-5 Success, no server transaction done
-6 Value too big
-7 Value too small
-8 Operation in progress
-9 REXYGEN I/O driver warning
-10 No more archive items
-11 Object is array
-12 Closed
-13 End of �le
-14 Parameter may be incorrect

General failure codes

-100 Not enough memory
-101 Assertion failure
-102 Timeout
-103 General input variable error
-104 Invalid con�guration version
-105 Not implemented
-106 Invalid parameter
-107 COM/OLE error
-108 REXYGEN Module error - some driver or block is not installed or licensed

755

756 APPENDIX C. ERROR CODES OF THE REXYGEN SYSTEM

-109 REXYGEN I/O driver error
-110 Task creation error
-111 Operating system call error
-112 Invalid operating system version
-113 Access denied by operating system
-114 Block period has not been set
-115 Initialization failed
-116 REXYGEN con�guration is being changed
-117 Invalid target device
-118 Access denied by REXYGEN security mechanism
-119 Block or object is not installed or licensed
-120 Checksum mismatch
-121 Object already exists
-122 Object doesn't exist
-123 System user doesn't belong to any REXYGEN group
-124 Password mismatch
-125 Bad user name or password
-126 Target device is not compatible
-127 Resource is locked by another module and can not be used
-128 String is not valid in UTF8 codepage
-129 Start of executive not allowed
-130 Some resource count reached limit
-131 Text value has been truncated
-132 Unsu�cient bu�er for requested operation
-133 Block execution halted due to runtime error

Class registration, symbol and validation error codes

-200 Class not registered
-201 Class already registered
-202 Not enough space for registry
-203 Registry index out of range
-204 Invalid context
-205 Invalid identi�er
-206 Invalid input �ag
-207 Invalid input mask
-208 Invalid object type
-209 Invalid variable type
-210 Invalid object workspace
-211 Symbol not found
-212 Symbol is ambiguous
-213 Range check error
-214 Not enough search space
-215 Write to read-only variable denied
-216 Data not ready

757

-217 Value out of range
-218 Input connection error
-219 Loop of type UNKNOWN detected
-220 REXLANG compilation error

Stream and �le system codes

-300 Stream over�ow
-301 Stream under�ow
-302 Stream send error
-303 Stream receive error
-304 Stream download error
-305 Stream upload error
-306 File creation error
-307 File open error
-308 File close error
-309 File read error
-310 File write error
-311 Invalid format
-312 Unable to compress �les
-313 Unable to extract �les

Communication errors

-400 Network communication failure
-401 Communication already initialized
-402 Communication �nished successfully
-403 Communicaton closed unexpectedly
-404 Unknown command
-405 Unexpected command
-406 Communicaton closed unexpectedly, probably 'Too many clients'
-407 Communication timeout
-408 Target device not found
-409 Link failed
-410 REXYGEN con�guration has been changed
-411 REXYGEN executive is being terminated
-412 REXYGEN executive was terminated
-413 Connection refused
-414 Target device is unreachable
-415 Unable to resolve target in DNS
-416 Error reading from socket
-417 Error writing to socket
-418 Invalid operation on socket
-419 Reserved for socket 1
-420 Reserved for socket 2
-421 Reserved for socket 3

758 APPENDIX C. ERROR CODES OF THE REXYGEN SYSTEM

-422 Reserved for socket 4
-423 Reserved for socket 5
-424 Unable to create SSL context
-425 Unable to load certi�cate
-426 SSL handshake error
-427 Certi�cate veri�cation error
-428 Reserved for SSL 2
-429 Reserved for SSL 3
-430 Reserved for SSL 4
-431 Reserved for SSL 5
-432 Relay rejected
-433 STARTTLS rejected
-434 Authentication method rejected
-435 Authentication failed
-436 Send operation failed
-437 Receive operation failed
-438 Communication command failed
-439 Receiving bu�er too small
-440 Sending bu�er too small
-441 Invalid header
-442 HTTP server responded with error
-443 HTTP server responded with redirect
-444 Operation would blok
-445 Invalid operation
-446 Communication closed
-447 Connection cancelled

Numerical error codes

-500 General numeric error
-501 Division by zero
-502 Numeric stack over�ow
-503 Invalid numeric instruction
-504 Invalid numeric address
-505 Invalid numeric type
-506 Not initialized numeric value
-507 Numeric argument over�ow/under�ow
-508 Numeric range check error
-509 Invalid subvector/submatrix range
-510 Numeric value too close to zero

Archive system codes

-600 Archive seek under�ow
-601 Archive semaphore fatal error
-602 Archive cleared

759

-603 Archive reconstructed from saved vars
-604 Archive reconstructed from normal vars
-605 Archive check summ error
-606 Archive integrity error
-607 Archive sizes changed
-608 Maximum size of disk archive �le exceeded

Motion control codes

-700 MC - Invalid parameter
-701 MC - Out of range
-702 MC - Position not reachable
-703 MC - Invalid axis state
-704 MC - Torque limit exceeded
-705 MC - Time limit exceeded
-706 MC - Distance limit exceeded
-707 MC - Step change in position or velocity
-708 MC - Base axis error or invalid state
-709 MC - Stopped by drive FAULT
-710 MC - Stopped by POSITION limit
-711 MC - Stopped by VELOCITY limit
-712 MC - Stopped by ACCELERATION limit
-713 MC - Stopped by LIMITSWITCH
-714 MC - Stopped by position LAG
-715 MC - Axis disabled during motion
-716 MC - Transition failed
-717 MC - Servodrive failed or disabled
-718 MC - Not used
-719 MC - Not used
-720 MC - General failure
-721 MC - Not implemented
-722 MC - Command is aborted
-723 MC - Con�ict in block and axis periods
-724 MC - Busy, waiting for activation

Licensing codes

-800 Unable to identify Ethernet interface
-801 Unable to identify CPU
-802 Unable to identify HDD
-803 Invalid device code
-804 Invalid licensing key
-805 Not licensed

760 APPENDIX C. ERROR CODES OF THE REXYGEN SYSTEM

Webserver-related errors

-900 Web request too large
-901 Web reply too large
-902 Invalid format
-903 Invalid parameter

RexVision-related errors

-1000 . . . Result is not evaluated
-1001 . . . The searched object/pattern can not be found
-1002 . . . The search criterion returned more corresponding objects

FMI standard related errors

-1100 . . . FMI Context allocation failure
-1101 . . . Invalid FMU version
-1102 . . . FMI XML parsing error
-1103 . . . FMI Model Exchange kind required
-1104 . . . FMI Co-Simulation kind required
-1105 . . . Could not create FMU loading mechanism
-1106 . . . Instantiation of FMU failed
-1107 . . . Termination of FMU failed
-1108 . . . FMU reset failed
-1109 . . . FMU Experiment setup failed
-1110 . . . Entering FMU initialization mode failed
-1111 . . . Exiting FMU initialization mode failed
-1112 . . . Error getting FMU variable list
-1113 . . . Error getting FMU real variable
-1114 . . . Error setting FMU real variable
-1115 . . . Error getting FMU integer variable
-1116 . . . Error setting FMU integer variable
-1117 . . . Error getting FMU boolean variable
-1118 . . . Error setting FMU boolean variable
-1119 . . . Doing a FMU simulation step failed
-1120 . . . FMU has too many inputs
-1121 . . . FMU has too many ouputs
-1122 . . . FMU has too many parameters

Bibliography

[1] OPC Foundation. Data Access Custom Interface Speci�cation Version 3.00. OPC
Foundation, P.O. Box 140524, Austin, Texas, USA, 2003.

[2] REX Controls s.r.o.. REXYGEN Studio � User manual, 2020. →.

[3] Schlegel Milo². Fuzzy controller: a tutorial. www.rexcontrols.com.

[4] Milo² Schlegel, Pavel Balda, and Milan �t¥tina. Robust PID autotuner: method of
moments. Automatizace, 46(4):242�246, 2003.

[5] M. Schlegel and P. Balda. Diskretizace spojitého lineárního systému (in Czech).
Automatizace, 11, 1987.

[6] BLAS 3.8.0. � netlib.org. Basic Linear Algebra Subprograms Version 3.8.0, 2017.

[7] LAPACK 3.8.0 � netlib.org. Linear Algebra PACKage Version 3.8.0, 2018.

[8] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-�ve years later. SIAM Review, 45(1):3�49, 2003.

[9] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, England.,
2002.

[10] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES: A para-
metric active-set algorithm for quadratic programming. Mathematical Programming
Computation, 6(4):327�363, 2014.

[11] H.J. Ferreau. qpOASES User's Manual, Version 3.2 (April 2017), 2017.

[12] Python Software Foundation. Python documentation, 2019.

[13] REX Controls s.r.o.. MQTTDrv driver of REXYGEN � user guide, 2020. →.

[14] OASIS. MQTT Version 3.1.1, 2014.

[15] REX Controls s.r.o.. OpcUaDrv driver of REXYGEN � user guide, 2020. →.

761

https://www.rexygen.com/doc/ENGLISH/MANUALS/RexygenStudio/RexygenStudio_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/MQTTDrv/MQTTDrv_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/OpcUaDrv/OpcUaDrv_ENG.html

762 BIBLIOGRAPHY

Index

REXYGEN Compiler

compiler, 36
REXYGEN Compiler compiler, 27
TODO

SRTF DLOG, 43

ABS, 79
ABS_, 741
absolute

position sensor, 119
absolute value, 79
ABSROT, 119, 741
ACD, 301, 741
ADD, 80, 81, 741
ADDHEXD, 81, 741
addition, 80

extended, 88
integer, 97

ADDOCT, 80, 81, 114, 741
ADDQUAD, 81, 741
AFLUSH, 311, 741
alarm, 295

Boolean value, 293
numerical value, 296

ALARMS, 22, 295, 296, 753
ALB, 22, 293, 741
ALBI, 22, 293, 741
algebraic loop, 36
ALM, 22, 295, 753
ALMI, 22, 295
ALN, 22, 296, 741
ALNI, 22, 296, 741
analog input

safety, 149
AND, 254
AND_, 255, 741

ANDHEXD, 255, 741
ANDOCT, 254, 255, 741
ANDQUAD, 255, 741
ANLS, 170, 741
application

of the REXYGEN System, 27
ARC, 25, 28, 294, 297, 302, 305, 307, 311,

741
architecture

open, 37
archiv, 292
archive, 25

backed-up memory, 292
con�guration, 25
disk, 292
RAM memory, 292

archiving
delta criterion, 301

ARLY, 185, 741
ARS, 299, 741
ASW, 121, 742
ATMT, 16, 256, 265, 336, 346, 350, 742
automaton

�nite-state, 256, 265
average

moving, 123
AVG, 123, 742
AVS, 16, 124, 742

band
frequency transmission, 125

band-pass �lter, 125
bandwidth, 138
BDHEXD, 259, 265, 742
BDOCT, 259, 265, 742
Bessel �lter, 138

763

764 INDEX

binary number
transformation, 272

binary sequence
generator, 172, 174, 176

BINS, 172, 174, 176, 742
BIS, 172, 174, 178, 742
BISR, 176, 742, 752
BITOP, 260, 742
block

description, 17
description format, 17
execution, 42
inputs, 17
mathematic, 15
matrix, 16
modeling, 16
outputs, 17
parameters, 17
symbol, 17
vector, 16

blocks
analog signal processing, 16
data archiving, 16
generators, 16
input-output, 15
logic control, 16
parameter-related, 16
regulation, 16
special, 17

BMHEXD, 262, 265, 742
BMOCT, 262, 265, 742
Boolean complementation, 273
BPF, 125, 742
BSFIFO, 551
BSGET, 546, 548, 549
BSGETOCT, 546, 549
BSGETOCTV, 548, 550
BSGETV, 548, 550
BSSET, 546, 549
BSSETOCT, 546, 549
BSSETOCTV, 548, 550
BSSETV, 548, 550
Butterworth �lter, 138

CanItem, 726, 727, 742, 752
CanRecv, 726, 727, 742, 752
CanSend, 729, 742, 751
CDELSSM, 358, 742
circuit

�ip-�op Reset-Set, 276
�ip-�op Set-Reset, 277

CMP, 126, 742
CNA, 388, 742
CNB, 82, 742
CNDR, 127, 742
CNDT, 752
CNE, 83, 742
CNI, 84, 742
CNR, 85, 742
CNS, 314, 742
CNT, 752
coe�cient

relative damping, 125, 138
comparator, 126
compatibility

REXYGEN and Simulink, 36
compensator

lead, 192
lead-lag, 193
nonlinearity, 127
simple nonlinearity, 141

compiler
REXYGEN Compiler, 27, 36

compression, 301
CONCAT, 315, 742
CONCAT_DT, 752
COND, 742, 752
conditioner

nonlinear, 127
con�guration

REXYGEN System, 27
archives, 27
computation task, 27
input-output drivers, 27
modules, 27

constant
Boolean, 82
integer, 84

INDEX 765

logic, 82
real, 85

control
motion, 16, 17
sequential, 256, 265

control unit
manual, 194

controller
fuzzy logic, 186
PID, 209
PID with gain scheduling, 201
PID with input-de�ned parameters, 212
PID with relay autotuner, 196
PID with static error, 199
step, 233, 236
with frequency autotuner, 226

conversion
real to integer, 110

COUNT, 19, 263, 742
counter

controlled, 263
CSSM, 361, 742

data
remote connection, 509

data storing, 303, 306
data types, 18
DATE, 282
DATE_, 283, 742
DATETIME, 282, 283, 287, 742
DDELSSM, 363, 742
dead time, 375, 382
DEL, 129, 742
delay

transport, 130
variable, 163
with initialization, 129

DELM, 130, 742
delta criterion, 301
demultiplexer

bitwise, 259
denominator, 89
DER, 131, 742
derivation, 131, 136

detection
edge, 268

deviation
standard, 133

DFIR, 365, 742, 751
DIF, 86
DIF_, 742
di�erence, 86
Display, 56, 742
DIV, 87, 742
division

extended, 89
integer, 103, 104
remainder, 104
two signals, 87

DP2M, 752
driver

REXYGEN System, 33
.rio �le extension, 33
con�guration data, 33
input-output, 15
input/output, 33
input/output with tasks, 52
user manual, 35

drivers
REXYGEN system, 15

DSSM, 366, 743
DT2STR, 753

EAS, 88, 743
EATMT, 265, 743
EDGE, 268
edge detection, 268
EDGE_, 155, 743
EKF, 368, 380, 743, 752
element

three state, 252
EMD, 89, 743
EPC, 38, 498, 743
EQ, 269, 743, 752
error

fatal, 40
EVAR, 133, 743

766 INDEX

EXEC, 25, 27, 33�35, 37, 40, 41, 50�53, 142,
285, 743

executive
con�guration, 15, 21
real-time, 27
RexCore program, 15

external program, 498

feedback loop, 36
�lter

band-pass, 125
Bessel, 138
Butterworth, 138
low-pass, 138
moving average, 123
nonlinear, 159
spike, 159

�ltering, 131, 136
digital, 40

FIND, 316, 743
�nite-state machine, 256, 265
�rst order system, 382
FLCU, 16, 186, 743
�ip-�op circuit

Reset-Set, 276
Set-Reset, 277

FMUCS, 371
FMUINFO, 374
FNX, 90, 743
FNXY, 92, 743
FOPDT, 382
FOPDT, 375, 743
frequency transmission band, 125
FRID, 188, 743
From, 58, 61, 62, 743
function

operating system, 38
single variable, 90
two variables, 92

fuzzy logic, 186

GAIN, 94, 743
gain, 94
generator

binary sequence, 172, 174, 176
piecewise linear function, 170
signal, 181
time function, 215

GETPA, 64, 334, 337, 344, 743
GETPB, 336, 743
GETPI, 336, 522, 523, 743
GETPR, 336, 350, 743
GETPS, 338, 743
Goto, 58�60, 62, 743
GotoTagVisibility, 61, 62, 743
GRADS, 95, 743

HMI, 30, 743
HTTP, 501, 743
HTTP2, 503, 743
hysteresis, 126

I3PM, 190, 743
IADD, 97, 743
identi�cation

three parameter model, 190
IDIV, 103, 743
IMOD, 104, 743
IMUL, 101, 743
INFO, 32, 743
INHEXD, 67, 743
INOCT, 67, 743
Inport, 63, 65, 337, 347, 631, 743
INQUAD, 67, 743
INSTD, 58, 67, 68, 744
INTE, 134, 158, 744
integer

division, 103
integer number

transformation, 272
integer signal

switching, 271
integrator

controlled, 134
simple, 158

interpolation
linear, 105

INTSM, 270, 744

INDEX 767

IODRV, 28, 33, 58, 60, 744
IOTASK, 35, 43, 52, 334, 336, 344, 346, 358,

361, 744
ISSW, 271, 744
ISUB, 99, 744
ITOI, 272, 744
ITOS, 317, 744

KDER, 136, 744

LC, 192, 744
least squares method, 131
LEN, 318, 744
LIN, 105, 744
linear

interpolation, 105
linear function

generator, 170
LLC, 193, 382, 744
logical sum, 274
loop

algebraic, 36
feedback, 36

low-pass �lter, 138
LPBRK, 36, 121, 744
LPF, 138, 744
LSM, 131

maximum, 140
MB_DASUM, 389
MB_DAXPY, 390
MB_DCOPY, 392
MB_DDOT, 394
MB_DGEMM, 396
MB_DGEMV, 398
MB_DGER, 400
MB_DNRM2, 402, 440
MB_DROT, 403
MB_DSCAL, 405
MB_DSWAP, 406
MB_DTRMM, 408
MB_DTRMV, 410
MB_DTRSV, 413
MBAL, 752

MC_AccelerationProfile, 571, 603, 604, 623,
624, 744

MC_AddAxisToGroup, 674, 744
MC_CamIn, 638, 645, 649, 659, 662, 744
MC_CamOut, 638, 642, 744
MC_CombineAxes, 646, 744
MC_GearIn, 649, 652, 657, 659, 662, 744
MC_GearInPos, 652, 744
MC_GearOut, 657, 744
MC_GroupContinue, 694, 695, 744
MC_GroupDisable, 677, 744
MC_GroupEnable, 676, 744
MC_GroupHalt, 689, 744
MC_GroupInterrupt, 694, 695, 744
MC_GroupReadActualAcceleration, 685, 744
MC_GroupReadActualPosition, 683, 744
MC_GroupReadActualVelocity, 684, 744
MC_GroupReadError, 697, 744
MC_GroupReadStatus, 696, 744
MC_GroupReset, 698, 744
MC_GroupSetOverride, 723, 744
MC_GroupSetPosition, 681, 744
MC_GroupStop, 686, 744
MC_Halt, 575, 744
MC_HaltSuperimposed, 576, 745
MC_Home, 577, 608, 745
MC_MoveAbsolute, 579, 592, 616, 635, 653,

745
MC_MoveAdditive, 579, 583, 745
MC_MoveCircularAbsolute, 707, 745
MC_MoveCircularRelative, 711, 745
MC_MoveContinuousAbsolute, 592, 745
MC_MoveContinuousRelative, 595, 745
MC_MoveDirectAbsolute, 715, 745
MC_MoveDirectRelative, 718, 745
MC_MoveLinearAbsolute, 699, 745
MC_MoveLinearRelative, 703, 745
MC_MovePath, 721, 745
MC_MovePath_PH, 745
MC_MoveRelative, 579, 586, 589, 595, 745
MC_MoveSuperimposed, 579, 589, 659, 662,

745
MC_MoveVelocity, 563, 599, 635, 745
MC_PhasingAbsolute, 659, 745

768 INDEX

MC_PhasingRelative, 662, 745
MC_PositionProfile, 571, 572, 603, 623,

624, 635, 644, 745
MC_Power, 607, 745
MC_ReadActualPosition, 608, 745
MC_ReadAxisError, 609, 745
MC_ReadBoolParameter, 610, 745
MC_ReadCartesianTransform, 680, 745
MC_ReadParameter, 611, 745
MC_ReadStatus, 613, 745
MC_Reset, 615, 698, 745
MC_SetCartesianTransform, 678, 745
MC_SetOverride, 616, 745
MC_SetPosition, 577
MC_Stop, 575, 618, 745
MC_TorqueControl, 620, 745
MC_UngroupAllAxes, 675, 745
MC_VelocityProfile, 571, 572, 603, 604,

623, 745
MC_WriteBoolParameter, 627, 745
MC_WriteParameter, 628, 745
MCP_AccelerationProfile, 571, 745
MCP_CamIn, 638, 745
MCP_CamTableSelect, 638, 639, 644, 745
MCP_CombineAxes, 646, 746
MCP_GearIn, 649, 746
MCP_GearInPos, 652, 746
MCP_GroupHalt, 746
MCP_GroupInterrupt, 694, 746
MCP_GroupSetOverride, 746
MCP_GroupSetPosition, 681, 746
MCP_GroupStop, 746
MCP_Halt, 575, 746
MCP_HaltSuperimposed, 576, 746
MCP_Home, 577, 746
MCP_MoveAbsolute, 579, 746
MCP_MoveAdditive, 583, 746
MCP_MoveCircularAbsolute, 746
MCP_MoveCircularRelative, 746
MCP_MoveContinuousAbsolute, 592, 746
MCP_MoveContinuousRelative, 595, 746
MCP_MoveDirectAbsolute, 746
MCP_MoveDirectRelative, 746
MCP_MoveLinearAbsolute, 746

MCP_MoveLinearRelative, 746
MCP_MovePath, 746
MCP_MovePath_PH, 746
MCP_MoveRelative, 586, 746
MCP_MoveSuperimposed, 589, 746
MCP_MoveVelocity, 599, 746
MCP_PhasingAbsolute, 659, 746
MCP_PhasingRelative, 662, 746
MCP_PositionProfile, 603, 746
MCP_SetCartesianTransform, 746
MCP_SetKinTransform_Arm, 746
MCP_SetKinTransform_Schunk, 746
MCP_SetKinTransform_UR, 746
MCP_SetOverride, 616, 746
MCP_Stop, 618, 746
MCP_TorqueControl, 620, 746
MCP_VelocityProfile, 623, 746
MCU, 194, 251, 746
MDL, 376, 377, 746
MDLI, 377, 747
mean value, 133
MID, 319, 747
minimum, 140
MINMAX, 140, 747
ML_DGEBAK, 416
ML_DGEBAL, 418
ML_DGEBRD, 420
ML_DGECON, 422
ML_DGEES, 424
ML_DGEEV, 426
ML_DGEHRD, 428
ML_DGELQF, 430
ML_DGELSD, 432
ML_DGEQRF, 434
ML_DGESDD, 436
ML_DLACPY, 438
ML_DLANGE, 402, 440
ML_DLASET, 442
ML_DTRSYL, 444
model

�rst order, 375
FOPDT, 382
process, 365, 376, 377
second order, 382

INDEX 769

state space
continuous, 361
continuous with time delay, 358
discrete, 366
discrete with time delay, 363

modulation
pulse width, 221

MODULE, 28, 33, 37, 747
module, 37

extending the REXYGEN System, 37
extension, 33

MOFN, 752
MOSS, 553
motion control, 16, 17, 124
moving average, 123
MP, 178, 747
MPC, 217
MqttPublish, 556, 747, 752
MqttSubscribe, 558, 747, 752
MUL, 106, 747
multiplexer

bitwise, 262
multiplication

by a constant, 94
extended, 89
two signals, 106

MVD, 378, 747
MX_AT, 446
MX_ATSET, 447
MX_CNADD, 448
MX_CNMUL, 449
MX_CTODPA, 450
MX_DIM, 452
MX_DIMSET, 453
MX_DSAGET, 455
MX_DSAREF, 457
MX_DSASET, 459
MX_DTRNSP, 461
MX_DTRNSQ, 463
MX_FILL, 464
MX_MAT, 465, 483, 493
MX_RAND, 466
MX_REFCOPY, 468
MX_SLFS, 469

MX_VEC, 471
MX_WRITE, 472

negation, 273
nonlinear transformation

simple, 141
NOT, 273
NOT_, 747
NSCL, 141, 747
NSSM, 368, 379, 747, 752

OPC server, 513
OpcUaReadValue, 732, 747, 752
OpcUaServerValue, 734, 747, 752
OpcUaWriteValue, 736, 747, 752
operating system, 38
operation

binary, 109
bitwise, 260

operator
relational, 109

optimization
gradient based, 95
quadratic programming, 487

OR, 274
OR_, 275, 747
order

driver execution, 33
driver initialization, 33
module initialization, 37
of task execution, 50
of task initialization, 50

ORHEXD, 275, 747
OROCT, 274, 275, 747
ORQUAD, 275, 747
OSCALL, 38, 500, 747
OSD, 142, 747, 752
OUTHEXD, 68, 70, 747
OUTOCT, 68, 70, 727, 729, 747
Outport, 63, 66, 337, 347, 631, 747
output

pulse, 214
three state, 252

output saturation, 224

770 INDEX

OUTQUAD, 68, 70, 727, 729, 747
OUTRHEXD, 70, 747
OUTROCT, 70, 747
OUTRQUAD, 70, 747
OUTRSTD, 71, 747
OUTSTD, 60, 67, 68, 71, 747
overhead

control system core, 27

PARA, 339, 747
parameter

tick, 27
input-de�ned, 341
remote, 334, 336, 344, 346
remote acquirement, 334, 336

PARB, 341, 747
PARE, 340, 747, 752
PARI, 341, 747
PARR, 157, 341, 747
PARS, 343, 747
path

full, 42
period

of quick task execution, 40
of task execution, 50

PGAVR, 747, 751
PGBAT, 747, 751
PGBUS, 747, 751
PGCB, 748, 751
PGENG, 748, 751
PGGEN, 748, 751
PGGS, 748, 751
PGINV, 748, 751
PGLOAD, 748, 751
PGMAINS, 748, 751
PGSENS, 748, 751
PGSG, 748, 751
PGSIM, 748, 751
PGSOLAR, 748, 751
PGWIND, 748, 751
PID

autotuning, 203
controller, 209
with gain scheduling, 201

with input-de�ned parameters, 212
with moment autotuner, 203
with relay autotuner, 196
with static error, 199

PIDAT, 16, 196, 748
PIDE, 199, 748
PIDGS, 16, 201, 748
PIDMA, 16, 203, 512, 748
PIDU, 196, 199, 201, 203, 209, 212, 251, 512,

564, 748
PIDUI, 212, 748
PJROCT, 320, 748
PJSEXOCT, 324, 748, 752
PJSOCT, 322, 324, 748
POL, 107, 748
polynomial

evaluation, 107
position sensor

absolute, 119
POUT, 214, 748
PRBS, 179, 748
prediction, 131
predictive control, 217
PRGM, 215, 748
priority

dependancy on the operating system,
27

logic, 27
logical, 33, 40
of tasks, 50

process
model, 365, 376
model with variable parameters, 377

product
Boolean, 254, 255
logical, 254, 255

program
REXYGEN Studio, 25, 33, 40, 42, 50, 52,

63, 334, 336, 344
REXYGEN Studio, Enable checkbox, 42
REXYGEN Studio, Halt/Run button, 42
REXYGEN Studio, Reset button, 42
external, 498

programmable block, 514

INDEX 771

programmable block in Python, 538
programme

weekly, 288
programmer, 215
PROJECT, 39, 748
project

main �le, 27, 33
protocol

UDP/IP, 509
PSMPC, 16, 217, 748
puls, 214
pulse

manually generated, 178
pulse counting

bidirectional, 263
pulse output, 214
pulse width modulation, 221
PWM, 202, 208, 211, 213, 221, 240, 244, 245,

748
PYTHON, 534, 538, 546, 748, 752

QCEDPOPT, 748
QFC, 72, 73, 521, 748
QFD, 70�73, 521, 748
QP_MPC2QP, 480, 492, 748
QP_OASES, 480, 487, 748
QP_UPDATE, 480, 492, 748
QTASK, 27, 28, 35, 40, 43, 50, 358, 361, 503,

505, 748
quadratic programming, 487
quotient, 87

integer, 103

rate limiter, 145
rate monotonic scheduling, 28
RDC, 17, 509, 748
RDFT, 143
real-time

executive, 21, 27
REC, 108, 748
reciprocal value, 108
REGEXP, 325, 749
REL, 109, 749
relative damping coe�cient, 125, 138

relay
advance, 185
with hysteresis, 223

remote
data connection, 509
parameter, 334, 336

REPLACE, 328, 749
REXLANG, 17, 514, 534, 546, 749
RLIM, 145, 749
RLY, 185, 223, 749
RM_AxesGroup, 668, 674, 697, 749
RM_Axis, 476, 563, 564, 577, 607�611, 618,

629, 631, 674, 749
RM_AxisOut, 629, 749
RM_AxisSpline, 64, 564, 630, 749
RM_DirectTorque, 749, 752
RM_DirectVelocity, 749, 752
RM_DriveMode, 749, 752
RM_Feed, 671, 749
RM_Gcode, 672, 749
RM_GroupTrack, 749
RM_HomeOffset, 749, 752
RM_Track, 635, 749
root

square, 113
RS, 276, 749
RTOI, 110, 749
RTOS, 329, 749
RTOV, 474, 498, 499, 749

S1OF2, 146, 750
S_AND, 749
S_BC, 749
S_CMP, 749
S_CMPT, 752
S_CTS, 749
S_LB, 749
S_NOT, 749
S_OR, 749
S_POR, 752
S_PULS, 749
S_PV, 749
S_RCK, 752
S_RS, 749

772 INDEX

S_SEL, 749
S_SELVAL, 749
S_SR, 749
S_SUMC, 749
S_TDE, 749
S_TDR, 749
S_TLATCH, 749
S_VALB, 750
S_VALC, 750
safety analog input, 149
safety selector, 146
SAI, 146, 148, 149, 750
sample and hold, 157
SAT, 224, 750
SC2FA, 226, 750
schedule

weekly, 288
SCU, 202, 208, 211, 213, 233, 750
SCUV, 202, 208, 210, 211, 213, 236, 750
SEL, 152, 750
selector

active controller, 239
analog signal, 146, 152, 153
safety, 146
with ramp, 162

SELHEXD, 153, 750
SELOCT, 153, 750
SELQUAD, 152, 153, 750
SELSOCT, 330, 750
SELU, 239, 476, 750
sensor

absolute position, 119
sequence

pseudo-random binary, 179
sequential control, 256, 265
SETPA, 63, 334, 344, 347, 750
SETPB, 346, 750
SETPI, 346, 523, 750
setpoint, 215
SETPR, 346, 350, 750
SETPS, 348, 750
SG, 181, 512, 750
SGI, 181, 750
SGSLP, 349, 353, 750

SHIFTOCT, 155, 750
SHLD, 157, 341, 750
signal generator, 181
SILO, 351, 353, 750
SILOS, 355, 750
simulation

parameters, 41
real-time, 41

Simulink, 41
SINT, 134, 158, 750
SLEEP, 41, 750
SMHCC, 240, 750
SMHCCA, 244, 750
SMTP, 505, 750
SOPDT, 382, 750
SPIKE, 149�151, 159, 750
SPLIT_DT, 752
SQR, 112, 750
SQRT, 113
SQRT_, 750
square root, 113
square value, 112
SR, 277, 750
SRTF, 42, 750
SSW, 161, 476, 512, 750
stack

size, 33
standard deviation, 133
starting unit, 124
state machine, 256, 265
state space model, 361, 366

with time delay, 358, 363
STATELOAD, 44
STATESAVE, 44, 46
STEAM, 507, 750, 752
step controller

with position feedback, 233
with velocity output, 236

STOR, 331, 751
STR2DT, 752
SUB, 81, 114, 751
SubSystem, 59, 61, 65, 67, 68, 751
subsystem

archiving, 291

INDEX 773

execution, 42
subtraction

extended, 88
two signals, 114

sum, 80
Boolean, 275
logical, 274, 275

switch, 152, 153
integer signals, 271
simple, 161
unit, 251
with automatic selection of input, 121

SWR, 162, 476, 751
SWU, 239, 251, 751
SWVMR, 476, 751
SYSEVENT, 48, 753
SYSLOG, 49, 753
system

�rst order, 375
second order, 382

T2STR, 753
TASK, 27, 28, 35, 40, 43, 50, 358, 361, 751
task

driver-triggered, 35
execution, 42
execution period, 50
priority, 50
quick, 40
quick, execution period, 40
standard, 50

TB1, 752
TB2, 752
TB3, 752
TB6, 752
TC, 285
TESTS, 752
TIME, 283, 287, 751
time delay, 130, 375, 382

variable, 163
TIMER, 278
timer

control, 285
system, 35

weekly, 288
TIMER_, 751
TIODRV, 28, 35, 52, 751
trajectory

time-optimal, 124
transformation

binary number, 272
integer number, 272

transport delay, 130
trend

recording, 303, 306
TRIM, 753
TRND, 19, 303, 306, 512, 553, 751
TRNDLF, 308
TRNDV, 306, 751
TRNDVLF, 310
TSE, 233, 236, 252, 751
type

input, 18
output, 18
parameter, 18

types
of variables, 18

TZ2UTC, 753

UART, 524, 534
user programmable block, 514
user programmable block in Python, 538
UTC2TZ, 753
UTOI, 115, 751

VAC, 752
value

default, 18
maximal, 18
mean, 133
minimal, 18
reciprocal, 108
substitute, 87, 89, 90, 92, 103, 104, 108,

113
valve

motor driven, 378
servo, 378

variance, 133

774 INDEX

VDEL, 163, 751
VIN, 70, 71, 73, 74, 521, 751
VOUT, 72, 75, 521, 751
VTOR, 143, 477, 499, 751

WASM, 751, 752
WEEK, 753
weekly

schedule, 288
WSCH, 288, 751
WWW, 54, 751

ZV4IS, 164, 751

INDEX 775

Documentation reference number: 15831

	1 Introduction
	1.1 How to use this manual
	1.2 The function block description format
	1.3 Conventions for variables, blocks and subsystems naming
	1.4 The signal quality corresponding with OPC

	2 EXEC - Real-time executive configuration
	 ALARMS - Alarms Definition Configuration
	 ARC - The REXYGEN system archive
	 EXEC - Real-time executive
	 HMI - Human-Machine Interface Configuration
	 INFO - Description of Algorithm
	 IODRV - The REXYGEN system input/output driver
	 IOTASK - Driver-triggered task of the REXYGEN system
	 LPBRK - Loop break
	 MODULE - Extension module of the REXYGEN system
	 OSCALL - Operating system calls
	 PROJECT - Additional Project Settings
	 QTASK - Quick task of the REXYGEN system
	 SLEEP - Timing in Simulink
	 SRTF - Set run-time flags
	 STATELOAD - Load multiple block states and parameters
	 STATESAVE - Save multiple block states and parameters
	 SYSEVENT - * Read system log
	 SYSLOG - Write system log
	 TASK - Standard task of the REXYGEN system
	 TIODRV - The REXYGEN system input/output driver with tasks
	 WWW - Internal Web Server Content

	3 INOUT - Input and output blocks
	 Display - Numeric display of input values
	 From, INSTD - Signal connection or input
	 Goto, OUTSTD - Signal source or output
	 GotoTagVisibility - Visibility of the signal source
	 Inport, Outport - Input and output port
	 SubSystem - Subsystem block
	 INQUAD, INOCT, INHEXD - Multi-input blocks
	 OUTQUAD, OUTOCT, OUTHEXD - Multi-output blocks
	 OUTRQUAD, OUTROCT, OUTRHEXD - Multi-output blocks with verification
	 OUTRSTD - Output block with verification
	 QFC - Quality flags coding
	 QFD - Quality flags decoding
	 VIN - Validation of the input signal
	 VOUT - Validation of the output signal

	4 MATH - Math blocks
	 ABS - Absolute value
	 ADD - Addition of two signals
	 ADDQUAD, ADDOCT, ADDHEXD - Multi-input addition
	 CNB - Boolean (logic) constant
	 CNE - Enumeration constant
	 CNI - Integer constant
	 CNR - Real constant
	 DIF - Difference
	 DIV - Division of two signals
	 EAS - Extended addition and subtraction
	 EMD - Extended multiplication and division
	 FNX - Evaluation of single-variable function
	 FNXY - Evaluation of two-variables function
	 GAIN - Multiplication by a constant
	 GRADS - Gradient search optimization
	 IADD - Integer addition
	 ISUB - Integer subtraction
	 IMUL - Integer multiplication
	 IDIV - Integer division
	 IMOD - Remainder after integer division
	 LIN - Linear interpolation
	 MUL - Multiplication of two signals
	 POL - Polynomial evaluation
	 REC - Reciprocal value
	 REL - Relational operator
	 RTOI - Real to integer number conversion
	 SQR - Square value
	 SQRT - Square root
	 SUB - Subtraction of two signals
	 UTOI - Unsigned to signed integer number conversion

	5 ANALOG - Analog signal processing
	 ABSROT - Processing data from absolute position sensor
	 ASW - Switch with automatic selection of input
	 AVG - Moving average filter
	 AVS - Motion control unit
	 BPF - Band-pass filter
	 CMP - Comparator with hysteresis
	 CNDR - Nonlinear conditioner
	 DEL - Delay with initialization
	 DELM - Time delay
	 DER - Derivation, filtering and prediction from the last n+1 samples
	 EVAR - Moving mean value and standard deviation
	 INTE - Controlled integrator
	 KDER - Derivation and filtering of the input signal
	 LPF - Low-pass filter
	 MINMAX - Running minimum and maximum
	 NSCL - Nonlinear scaling factor
	 OSD - One step delay
	 RDFT - Running discrete Fourier transform
	 RLIM - Rate limiter
	 S1OF2 - One of two analog signals selector
	 SAI - Safety analog input
	 SEL - Selector switch for analog signals
	 SELQUAD, SELOCT, SELHEXD - Selector switch for analog signals
	 SHIFTOCT - Data shift register
	 SHLD - Sample and hold
	 SINT - Simple integrator
	 SPIKE - Spike filter
	 SSW - Simple switch
	 SWR - Selector with ramp
	 VDEL - Variable time delay
	 ZV4IS - Zero vibration input shaper

	6 GEN - Signal generators
	 ANLS - Controlled generator of piecewise linear function
	 BINS - Controlled binary sequence generator
	 BIS - Binary sequence generator
	 BISR - Binary sequence generator with reset
	 MP - Manual pulse generator
	 PRBS - Pseudo-random binary sequence generator
	 SG, SGI - Signal generators

	7 REG - Function blocks for control
	 ARLY - Advance relay
	 FLCU - Fuzzy logic controller unit
	 FRID - * Frequency response identification
	 I3PM - Identification of a three parameter model
	 LC - Lead compensator
	 LLC - Lead-lag compensator
	 MCU - Manual control unit
	 PIDAT - PID controller with relay autotuner
	 PIDE - PID controller with defined static error
	 PIDGS - PID controller with gain scheduling
	 PIDMA - PID controller with moment autotuner
	 PIDU - PID controller unit
	 PIDUI - PID controller unit with variable parameters
	 POUT - Pulse output
	 PRGM - Setpoint programmer
	 PSMPC - Pulse-step model predictive controller
	 PWM - Pulse width modulation
	 RLY - Relay with hysteresis
	 SAT - Saturation with variable limits
	 SC2FA - State controller for 2nd order system with frequency autotuner
	 SCU - Step controller with position feedback
	 SCUV - Step controller unit with velocity input
	 SELU - Controller selector unit
	 SMHCC - Sliding mode heating/cooling controller
	 SMHCCA - Sliding mode heating/cooling controller with autotuner
	 SWU - Switch unit
	 TSE - Three-state element

	8 LOGIC - Logic control
	 AND - Logical product of two signals
	 ANDQUAD, ANDOCT, ANDHEXD - Logical product of multiple signals
	 ATMT - Finite-state automaton
	 BDOCT, BDHEXD - Bitwise demultiplexers
	 BITOP - Bitwise operation
	 BMOCT, BMHEXD - Bitwise multiplexers
	 COUNT - Controlled counter
	 EATMT - Extended finite-state automaton
	 EDGE - Falling/rising edge detection in a binary signal
	 EQ - Equivalence of two signals
	 INTSM - Integer number bit shift and mask
	 ISSW - Simple switch for integer signals
	 ITOI - Transformation of integer and binary numbers
	 NOT - Boolean complementation
	 OR - Logical sum of two signals
	 ORQUAD, OROCT, ORHEXD - Logical sum of multiple signals
	 RS - Reset-set flip-flop circuit
	 SR - Set-reset flip-flop circuit
	 TIMER - Multipurpose timer

	9 TIME - Blocks for handling time
	 DATE - Current date
	 DATETIME - Get, set and convert time
	 TC - Timer control and status
	 TIME - Current time
	 WSCH - Weekly schedule

	10 ARC - Data archiving
	10.1 Functionality of the archiving subsystem
	10.2 Generating alarms and events
	 ALB, ALBI - Alarms for Boolean value
	 ALM, ALMI - Alarm activation
	 ALN, ALNI - Alarms for numerical value
	 ARS - Archive store value
	10.3 Trends recording
	 ACD - Archive compression using Delta criterion
	 TRND - Real-time trend recording
	 TRNDV - Real-time trend recording with vector input
	 TRNDLF - * Real-time trend recording (lock-free)
	 TRNDVLF - * Real-time trend recording (for vector signals, lock-free)
	10.4 Archive management
	 AFLUSH - Forced archive flushing

	11 STRING - Blocks for string operations
	 CNS - String constant
	 CONCAT - Concat string by pattern
	 FIND - Find a Substring
	 ITOS - Integer number to string conversion
	 LEN - String length
	 MID - Substring Extraction
	 PJROCT - Parse JSON string (real output)
	 PJSOCT - Parse JSON string (string output)
	 PJSEXOCT - Parse JSON string (string output)
	 REGEXP - Regular expresion parser
	 REPLACE - Replace substring
	 RTOS - Real Number to String Conversion
	 SELSOCT - Selector switch for string signals
	 STOR - String to real number conversion

	12 PARAM - Blocks for parameter handling
	 GETPA - Block for remote array parameter acquirement
	 GETPR, GETPI, GETPB - Blocks for remote parameter acquirement
	 GETPS - * Block for remote string parameter acquirement
	 PARA - Block with input-defined array parameter
	 PARE - Block with input-defined enumeration parameter
	 PARR, PARI, PARB - Blocks with input-defined parameter
	 PARS - * Block with input-defined string parameter
	 SETPA - Block for remote array parameter setting
	 SETPR, SETPI, SETPB - Blocks for remote parameter setting
	 SETPS - * Block for remote string parameter setting
	 SGSLP - Set, get, save and load parameters
	 SILO - Save input value, load output value
	 SILOS - Save input string, load output string

	13 MODEL - Dynamic systems simulation
	 CDELSSM - Continuous state space model of a linear system with time delay
	 CSSM - Continuous state space model of a linear system
	 DDELSSM - Discrete state space model of a linear system with time delay
	 DFIR - Discrete finite input response filter
	 DSSM - Discrete state space model of a linear system
	 EKF - Extended (nonlinear) Kalman filter
	 FMUCS - * Import modelu FMU CS (pro Co-Simulation)
	 FMUINFO - * Imformace o importovaném modelu FMU
	 FOPDT - First order plus dead-time model
	 MDL - Process model
	 MDLI - Process model with input-defined parameters
	 MVD - Motorized valve drive
	 NSSM - Nonlinear State-Space Model
	 SOPDT - Second order plus dead-time model

	14 MATRIX - Blocks for matrix and vector operations
	 CNA - Array (vector/matrix) constant
	 MB_DASUM - Sum of the absolute values
	 MB_DAXPY - Performs y := a*x + y for vectors x,y
	 MB_DCOPY - Copies vector x to vector y
	 MB_DDOT - Dot product of two vectors
	 MB_DGEMM - Performs C := alpha*op(A)*op(B) + beta*C, where op(X) = X or op(X) = X^T
	 MB_DGEMV - Performs y := alpha*A*x + beta*y or y := alpha*A^T*x + beta*y
	 MB_DGER - Performs A := alpha*x*y^T + A
	 MB_DNRM2 - Euclidean norm of a vector
	 MB_DROT - Plain rotation of a vector
	 MB_DSCAL - Scales a vector by a constant
	 MB_DSWAP - Interchanges two vectors
	 MB_DTRMM - Performs B := alpha*op(A)*B or B := alpha*B*op(A), where op(X) = X or op(X) = X^T for triangular matrix A
	 MB_DTRMV - Performs x := A*x or x := A^T*x for triangular matrix A
	 MB_DTRSV - Solves one of the system of equations A*x = b or A^T*x = b for triangular matrix A
	 ML_DGEBAK - Backward transformation to ML_DGEBAL of left or right eigenvectors
	 ML_DGEBAL - Balancing of a general real matrix
	 ML_DGEBRD - Reduces a general real matrix to bidiagonal form by an orthogonal transformation
	 ML_DGECON - Estimates the reciprocal of the condition number of a general real matrix
	 ML_DGEES - Computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
	 ML_DGEEV - Computes the eigenvalues and, optionally, the left and/or right eigenvectors
	 ML_DGEHRD - Reduces a real general matrix A to upper Hessenberg form
	 ML_DGELQF - Computes an LQ factorization of a real M-by-N matrix A
	 ML_DGELSD - Computes the minimum-norm solution to a real linear least squares problem
	 ML_DGEQRF - Computes an QR factorization of a real M-by-N matrix A
	 ML_DGESDD - Computes the singular value decomposition (SVD) of a real M-by-N matrix A
	 ML_DLACPY - Copies all or part of one matrix to another matrix
	 ML_DLANGE - Computes one of the matrix norms of a general matrix
	 ML_DLASET - Initilizes the off-diagonal elements and the diagonal elements of a matrix to given values
	 ML_DTRSYL - Solves the real Sylvester matrix equation for quasi-triangular matrices A and B
	 MX_AT - Get Matrix/Vector element
	 MX_ATSET - Set Matrix/Vector element
	 MX_CNADD - Add scalar to each Matrix/Vector element
	 MX_CNMUL - Multiply a Matrix/Vector by a scalar
	 MX_CTODPA - Discretizes continuous model given by (A,B) to (Ad,Bd) using Pade approximations
	 MX_DIM - Matrix/Vector dimensions
	 MX_DIMSET - Set Matrix/Vector dimensions
	 MX_DSAGET - Set subarray of A into B
	 MX_DSAREF - Set reference to subarray of A into B
	 MX_DSASET - Set A into subarray of B
	 MX_DTRNSP - General matrix transposition: B := alpha*A^T
	 MX_DTRNSQ - Square matrix in-place transposition: A := alpha*A^T
	 MX_FILL - Fill real matrix or vector
	 MX_MAT - Matrix data storage block
	 MX_RAND - Randomly generated matrix or vector
	 MX_REFCOPY - Copies input references of matrices A and B to their output references
	 MX_SLFS - Save or load a Matrix/Vector into file or string
	 MX_VEC - Vector data storage block
	 MX_WRITE - Write a Matrix/Vector to the console/system log
	 RTOV - Vector multiplexer
	 SWVMR - Vector/matrix/reference signal switch
	 VTOR - Vector demultiplexer

	15 OPTIM - Optimization blocks
	 QP_MPC2QP - Conversion of MPC problem to quadratic programming
	 QP_OASES - Quadratic programming using active set method
	 QP_UPDATE - Update matrices/vectors of quadratic programming

	16 SPEC - Special blocks
	 EPC - External program call
	 HTTP - HTTP GET or POST request (obsolete)
	 HTTP2 - Block for generating HTTP GET or POST requests
	 SMTP - Send e-mail message via SMTP
	 STEAM - Steam and water properties
	 RDC - Remote data connection
	 REXLANG - User programmable block
	 UART - UART communication block

	17 LANG - Special blocks
	 PYTHON - User programmable block in Python

	18 DSP - Digital Signal Processing blocks
	 BSGET, BSGETOCT - Binary Structure - Get a single value of given type
	 BSGETV, BSGETOCTV - Binary Structure - Get matrix (all values of the same given type)
	 BSSET, BSSETOCT - Binary Structure - Set a single value of given type
	 BSSETV, BSSETOCTV - Binary Structure - Set matrix of given type
	 BSFIFO - Binary Structure - Queueing serialize and deserialize
	 MOSS - Motion smart sensor

	19 MQTT - Communication via MQTT protocol
	 MqttPublish - Publish MQTT message
	 MqttSubscribe - Subscribe to MQTT topic

	20 MC_SINGLE - Motion control - single axis blocks
	 RM_Axis - Motion control axis
	 MC_AccelerationProfile, MCP_AccelerationProfile - Acceleration profile
	 MC_Halt, MCP_Halt - Stopping a movement (interruptible)
	 MC_HaltSuperimposed, MCP_HaltSuperimposed - Stopping a movement (superimposed and interruptible)
	 MC_Home, MCP_Home - Homing
	 MC_MoveAbsolute, MCP_MoveAbsolute - Move to position (absolute coordinate)
	 MC_MoveAdditive, MCP_MoveAdditive - Move to position (relative to previous motion)
	 MC_MoveRelative, MCP_MoveRelative - Move to position (relative to execution point)
	 MC_MoveSuperimposed, MCP_MoveSuperimposed - Superimposed move
	 MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute - Move to position (absolute coordinate)
	 MC_MoveContinuousRelative, MCP_MoveContinuousRelative - Move to position (relative to previous motion)
	 MC_MoveVelocity, MCP_MoveVelocity - Move with constant velocity
	 MC_PositionProfile, MCP_PositionProfile - Position profile
	 MC_Power - Axis activation (power on/off)
	 MC_ReadActualPosition - Read actual position
	 MC_ReadAxisError - Read axis error
	 MC_ReadBoolParameter - Read axis parameter (bool)
	 MC_ReadParameter - Read axis parameter
	 MC_ReadStatus - Read axis status
	 MC_Reset - Reset axis errors
	 MC_SetOverride, MCP_SetOverride - Set override factors
	 MC_Stop, MCP_Stop - Stopping a movement
	 MC_TorqueControl, MCP_TorqueControl - Torque/force control
	 MC_VelocityProfile, MCP_VelocityProfile - Velocity profile
	 MC_WriteBoolParameter - Write axis parameter (bool)
	 MC_WriteParameter - Write axis parameter
	 RM_AxisOut - Axis output
	 RM_AxisSpline - Commanded values interpolation
	 RM_Track - Tracking and inching

	21 MC_MULTI - Motion control - multi axis blocks
	 MC_CamIn, MCP_CamIn - Engage the cam
	 MC_CamOut - Disengage the cam
	 MCP_CamTableSelect - Cam definition
	 MC_CombineAxes, MCP_CombineAxes - Combine the motion of 2 axes into a third axis
	 MC_GearIn, MCP_GearIn - Engange the master/slave velocity ratio
	 MC_GearInPos, MCP_GearInPos - Engage the master/slave velocity ratio in defined position
	 MC_GearOut - Disengange the master/slave velocity ratio
	 MC_PhasingAbsolute, MCP_PhasingAbsolute - Phase shift in synchronized motion (absolute coordinates)
	 MC_PhasingRelative, MCP_PhasingRelative - Phase shift in synchronized motion (relative coordinates)

	22 MC_COORD - Motion control - coordinated movement blocks
	 RM_AxesGroup - Axes group for coordinated motion control
	 RM_Feed - * MC Feeder ???
	 RM_Gcode - * CNC motion control
	 MC_AddAxisToGroup - Adds one axis to a group
	 MC_UngroupAllAxes - Removes all axes from the group
	 MC_GroupEnable - Changes the state of a group to GroupEnable
	 MC_GroupDisable - Changes the state of a group to GroupDisabled
	 MC_SetCartesianTransform - Sets Cartesian transformation
	 MC_ReadCartesianTransform - Reads the parameter of the cartesian transformation
	 MC_GroupSetPosition, MCP_GroupSetPosition - Sets the position of all axes in a group
	 MC_GroupReadActualPosition - Read actual position in the selected coordinate system
	 MC_GroupReadActualVelocity - Read actual velocity in the selected coordinate system
	 MC_GroupReadActualAcceleration - Read actual acceleration in the selected coordinate system
	 MC_GroupStop - Stopping a group movement
	 MC_GroupHalt - Stopping a group movement (interruptible)
	 MC_GroupInterrupt, MCP_GroupInterrupt - Read a group interrupt
	 MC_GroupContinue - Continuation of interrupted movement
	 MC_GroupReadStatus - Read a group status
	 MC_GroupReadError - Read a group error
	 MC_GroupReset - Reset axes errors
	 MC_MoveLinearAbsolute - Linear move to position (absolute coordinates)
	 MC_MoveLinearRelative - Linear move to position (relative to execution point)
	 MC_MoveCircularAbsolute - Circular move to position (absolute coordinates)
	 MC_MoveCircularRelative - Circular move to position (relative to execution point)
	 MC_MoveDirectAbsolute - Direct move to position (absolute coordinates)
	 MC_MoveDirectRelative - Direct move to position (relative to execution point)
	 MC_MovePath - General spatial trajectory generation
	 MC_GroupSetOverride - Set group override factors

	23 CanDrv - Communication via CAN bus
	 CanItem - Secondary received CAN message
	 CanRecv - Receive CAN message
	 CanSend - Send CAN message

	24 OpcUaDrv - Communication using OPC UA
	 OpcUaReadValue - Read value from OPC UA Server
	 OpcUaServerValue - Expose value as an OPC UA Node
	 OpcUaWriteValue - Write value to OPC UA Server

	A Licensing options
	B Licensing of individual function blocks
	C Error codes of the REXYGEN system
	 Bibliography
	 Index

