
www.rexygen.com

Monarco HAT driver for the REXYGEN system

(the MonarcoDrv module)

User guide

REX Controls s.r.o.

Version 3.0.1
Plze¬ (Pilsen), Czech Republic

2024-03-01

www.rexygen.com

Contents

1 The MonarcoDrv driver and the REXYGEN system 2

1.1 Introduction . 2
1.2 Installation of the driver on the host computer 2
1.3 Installation of the driver on the target device (Raspberry Pi) 2

2 Including the driver in the project 3

2.1 Adding the MonarcoDrv driver . 3
2.2 Con�guration dialog of the MonarcoDrv driver 3

3 Connecting the inputs and outputs in the control algorithm 7

3.1 Direct input and output signals . 7
3.2 Modbus communication via RS-485 . 8
3.3 1-Wire sensors and expansion modules . 9

4 Troubleshooting 10

Bibliography 11

1

Chapter 1

The MonarcoDrv driver and the

REXYGEN system

1.1 Introduction

This manual describes the MonarcoDrv driver for direct access to inputs and outputs of
the Monarco HAT [1] within the REXYGEN system. The driver was developed by the
REX Controls company.

For a quick-start and step-by-step instructions see [2].

1.2 Installation of the driver on the host computer

The MonarcoDrv driver is included in the installation package of the Development tools of
the REXYGEN system. It is necessary to select the corresponding package in the installer.
The REXYGEN system typically installs to the
C:\Program Files\REX Controls\REX <version> folder.

The following �les are copied to the installation folder:

Bin\MonarcoDrv_H.dll � Con�guration part of the MonarcoDrv driver.

Doc\PDF\ENGLISH\MonarcoDrv_ENG.pdf � This user manual.

1.3 Installation of the driver on the target device (Rasp-
berry Pi)

If there is no RexCore runtime module installed on your Pi, install it �rst using the
Getting started guide of REXYGEN [2]. The installation includes all necessary drivers
including MonarcoDrv.

If you want to install MonarcoDrv separately, it can be done from the command line
of Raspberry Pi using the command
sudo apt-get install rex-monarcodrvt

2

Chapter 2

Including the driver in the project

The driver is included in the project as soon as the driver is added to the project main
�le and the inputs and outputs are connected in the control algorithm(s).

2.1 Adding the MonarcoDrv driver

The project main �le with the MonarcoDrv driver included is shown in Figure 2.1.
There is one block which must be added to the project to include the driver. A block
of type IODRV renamed to MNR and connected to the Drivers output of the main EXEC

block. The name of this block (MNR, see Fig. 2.1), is the pre�x of all input and output
signals provided by this driver. The four most important parameters are:

module � name of the module linked to the driver, in this case MonarcoDrv � the name
is CASE SENSITIVE!

classname � class of the driver, in this case MonarcoHatDrv � the name is CASE
SENSITIVE!

cfgname � name of the driver con�guration �le, e.g. monarcohat.rio

factor � multiple of the EXEC block's tick parameter de�ning the driver's task exe-
cution period

The above mentioned parameters of the IODRV function block are con�gured in REXY-

GEN Studioprogram. The con�guration dialog is shown also in Fig. 2.1.
The Configure button opens the con�guration dialog of the MonarcoDrv driver,

which is described in chapter 2.2.

2.2 Con�guration dialog of the MonarcoDrv driver

The con�guration dialog can be activated from REXYGEN Studio by pressing the Configure
button in the parameters dialog of the IODRV block (see chapter 2.1).

3

The RS-485 section con�gures the properties of the RS-485 bus for connecting to
external devices.

IMPORTANT: Note that the internal communication between the CPU and the
MCU of the Monarco HAT uses UART communication (/dev/ttyAMA0 on the Raspberry
Pi) at 115200 baudrate, 8 bits per byte, no parity, 1 stop bit. These are the values you
have to use in the Modbus driver con�guration if you are willing to use it. For details
about the internal structure of the Monarco HAT visit http://www.monarco.io.

The SPI con�guration section de�nes the communication between the CPU and the
Monarco HAT MCU (/dev/spidev0.0 on the Raspberry Pi, maximum clock speed is
4 MHz).

4

http://www.monarco.io

Figure 2.1: An example of project main �le with the MonarcoDrv driver included

5

Figure 2.2: Monarco HAT con�guration dialog

6

Chapter 3

Connecting the inputs and outputs

in the control algorithm

The inputs and outputs of the driver must be interconnected with the individual tasks
(.mdl �les). The individual tasks (QTASK or TASK blocks) are connected to the QTask,
Level0,. . . , Level3 outputs of the main EXEC block.

3.1 Direct input and output signals

The inputs and outputs of the MonarcoDrv driver can be accessed as shown in Fig. 3.1.
One block of the From type allowing the user to read one input has the Goto tag

set to MNR__DI1, while the other has this tag set to MNR__DI2. The number in the �ag
corresponds with the terminal pinout. The block of Goto type allowing the user to set
(write) one output has the Goto tag) set to MNR__DO3, the other output is accessed via
the MNR__DO4 �ag. The blocks always have the MNR pre�x right at the beginning of the
tag followed by two _ characters (underscore).

Similarly for other pins we can use e.g. the �ags:

• Goto, MNR__DO4 � digital output 4

• Goto, MNR__AO1 � analog output 1

• From, MNR__AI1 � analog input (voltage mode 0..10V)

• From, MNR__AI2C � analog input (current mode 0..20mA)

• Goto, MNR__LED5 � Onboard LED 5

• Goto, MNR__LED5_Mask � Only when TRUE, onboard LED5 can be controlled from
algorithm

In general, the link to a particular signal consists of the driver name MNR, two under-
score characters __, signal reference, signal number and an optional symbol de�ning the
mode of the input. The terminal numbering of the Monarco HAT is shown in Fig. 3.2.

7

Figure 3.1: Example of input and output �ags of the MonarcoDrv driver

Figure 3.2: Terminal pinout for Monarco HAT.

The installation of the REXYGEN system includes a library of examples, where among
other things, the section 0121_Monarco_HAT is dedicated to the use of MonarcoDrv. The
example 0121-00_IO_Flags contains a library of usable inputs and outputs.

3.2 Modbus communication via RS-485

The RS-485 bus provides a standard interface to communicate with external devices
(servo drives, energy meters, etc.) or to expand the I/O capabilities of the Monarco HAT

8

itself. Modbus communication is typically used. There is a separate driver for Modbus
communication in the REXYGEN system, see [3].

IMPORTANT: Note that the internal communication between the CPU and the
MCU of the Monarco HAT uses UART communication (/dev/ttyAMA0 on the Raspberry
Pi) at 115200 baudrate, 8 bits per byte, no parity, 1 stop bit. These are the values you
have to use in the Modbus driver con�guration if you are willing to use it. For details
about the internal structure of the Monarco HAT visit http://www.monarco.io.

Figure 3.3 shows an example project main �le with multiple I/O drivers.

3.3 1-Wire sensors and expansion modules

The 1-Wire bus provides additional interface to expand the I/O capabilities of the
Monarco HAT itself (e.g. using 1-Wire temperature sensors, relative humidity sensors, re-
lay modules etc.). There is a separate driver for 1-Wire communication in the REXYGEN
system, see [4].

Figure 3.3 shows an example project main �le with multiple I/O drivers.

Figure 3.3: A project with MonarcoDrv, 1-Wire, Modbus RTU and Modbus TCP drivers

9

http://www.monarco.io

Chapter 4

Troubleshooting

First and foremost, it's advisable to explore the library of examples, especially the section
0121_Monarco_HAT, which pertains to the usage of MonarcoDrv.

In the case that the diagnostic tools of the REXYGEN system (e.g. REXYGEN Studio@)
report unexpected or incorrect values of inputs or outputs, it is desirable to test the
functionality outside the REXYGEN system (command line tools, simple scripts, etc.).
Also double check the con�guration � the most common problems include:

Hardware problem � incorrect wiring.

Internal communication problem � SPI bus, I2C bus or UART is occupied by another
service or program.

In the case that the given input or output works with other software tools and does not
work in the REXYGEN system, report the problem to us, please. E-mail is preferred, reach
us at support@rexygen.com. Please include the following information in your description
to help us process your request as soon as possible:

• Identi�cation of the REXYGEN system you are using. Simply export it to a �le
using the REXYGEN Studio program (Target → Licensing → Export).

• Short and accurate description of your problem.

• The con�guration �les of the REXYGEN system (.mdl and .rio �les) reduced to
the simplest case which still demonstrates the problematic behavior.

10

mailto:support@rexygen.com

Bibliography

[1] REX Controls s.r.o.. Internet webpage www.monarco.io, 2020.

[2] REX Controls s.r.o.. Getting started with REXYGEN and Monarco HAT, 2020. →.

[3] REX Controls s.r.o.. Modbus driver of REXYGEN � User guide, 2020. →.

[4] REX Controls s.r.o.. OwsDrv driver of REXYGEN for 1-Wire devices � user guide,
2020. →.

Documentation reference number: 16076

11

https://www.monarco.io
https://www.rexygen.com/doc/ENGLISH/MANUALS/RexygenGettingStarted_MonarcoHAT_RPi/RexygenGettingStarted_MonarcoHAT_RPi_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/MbDrv/MbDrv_ENG.html
https://www.rexygen.com/doc/CZECH/MANUALS/OwsDrv/OwsDrv_CZ.html

	1 The MonarcoDrv driver and the REXYGEN system
	1.1 Introduction
	1.2 Installation of the driver on the host computer
	1.3 Installation of the driver on the target device (Raspberry Pi)

	2 Including the driver in the project
	2.1 Adding the MonarcoDrv driver
	2.2 Configuration dialog of the MonarcoDrv driver

	3 Connecting the inputs and outputs in the control algorithm
	3.1 Direct input and output signals
	3.2 Modbus communication via RS-485
	3.3 1-Wire sensors and expansion modules

	4 Troubleshooting
	 Bibliography

