
www.rexygen.com

OPC UA driver for the REXYGEN system

(the OpcUaDrv module)

User guide

REX Controls s.r.o.

Version 3.0.3
Plze¬ (Pilsen), Czech Republic

2024-11-03

www.rexygen.com

Contents

1 The OpcUaDrv driver and the REXYGEN system 2
1.1 Introduction . 2
1.2 Installation of the driver on the target device 2

1.2.1 Windows machines . 2
1.2.2 Linux machines . 3

1.3 Alternatives . 3

2 Including the driver in the project 4
2.1 Adding the OpcUaDrv driver . 4
2.2 Con�guration dialog of the OpcUaDrv driver 5
2.3 OPC UA Client . 5
2.4 OPC UA Server . 6

3 Connecting the inputs and outputs and using function blocks in the
control algorithm 9
3.1 Direct input and output signals . 9
3.2 Function blocks . 9

3.2.1 OPC UA Client . 9
3.2.2 OPC UA Server . 10

4 Examples 11

5 Troubleshooting 12

A Licensing options 13

Bibliography 14

1

Chapter 1

The OpcUaDrv driver and the

REXYGEN system

Licence: Additional I/O

1.1 Introduction

This manual describes the OpcUaDrv driver for handling of communication over the OPC
UA protocol within the REXYGEN system. The driver was developed by the REX Controls

company.
OPC UA is an open communication protocol for industrial automation. Unlike legacy

OPC, OPC UA is a multi-platform protocol, it may work as a web service and it o�ers
many advanced functions like diagnostics, method calls and various levels of security and
authentication in addition to standard events and data access. OPC UA is becoming a
preferred communication interface of many devices from various companies.

OPC UA is not a suitable protocol for hard real-time communication between control
devices, but is su�cient for soft real-time applications in many cases. A main utilization
areas of OPC UA are human-machine interfaces and interconnection of various devices
in a heterogeneous environment. See the OPC UA speci�cation [1] for more details.

1.2 Installation of the driver on the target device

1.2.1 Windows machines

The target part of the driver, which is used for running REXYGEN OpcUaDrv on Windows
10/11 is included in the Development tools of the REXYGEN system.

2

1.2.2 Linux machines

If there is no RexCore runtime module installed on your target device, install it �rst using
the Getting started guide of REXYGEN [2]. The installation includes all necessary drivers
including OpcUaDrv.

If you want to install OpcUaDrv separately, it can be done from the Linux terminal
using the command
sudo apt-get install rex-opcuadrvt

1.3 Alternatives

Apart from the OpcUaDrv there is also a standalone OPC UA server for REXYGEN ap-
plication. This application is connected to REXYGEN and exposes all the data signals
de�ned in the REXYGEN algorithm as OPC UA Nodes. See OPC UA server � User

guide [3] for more details.
In comparison to the OPC UA server for REXYGEN the OpcUaDrv lets user to in-

clude OPC UA blocks in the control algorithm to not only expose selected signals as a
server but to also communicate with other devices as a client both through the OPC UA
protocol.

3

Chapter 2

Including the driver in the project

The driver is included in the project as soon as the driver is added to the project main
�le and the inputs and outputs are connected in the control algorithm(s).

2.1 Adding the OpcUaDrv driver

The project main �le with the OpcUaDrv driver included is shown in Figure 2.1.

Figure 2.1: An example of project main �le with the OpcUaDrv driver included

To include the driver in the project a block of type IODRV must connected to the Drivers

4

output of the main EXEC block. The name of this block (OPCUA, see Fig. 2.1) must be
used as a pre�x of all blocks and input and output signals provided by this driver.

The most important parameters of IODRV block are:

• module � name of the module linked to the driver, in this case OpcUaDrv

• classname � class of the driver, which de�nes the role of the target device:

OpcUaDrvC � for OPC UA Client

OpcUaDrvS � for OPC UA Server

• cfgname � name of the driver con�guration �le, e.g. opcua_cfg.rio

• factor � multiple of the EXEC block's tick parameter de�ning the execution
period of the driver

The above mentioned parameters of the IODRV function block are con�gured in REXY-

GEN Studioprogram. The con�guration dialog is shown also in Fig. 2.1.
The Configure button opens the con�guration dialog of the OpcUaDrv driver, which

is described in chapter 2.2.

2.2 Con�guration dialog of the OpcUaDrv driver

The con�guration dialog can be activated from REXYGEN Studio by pressing the Configure
button in the parameters dialog of the IODRV block (renamed to OPCUA, see chapter 2.1).

2.3 OPC UA Client

Single instance of the driver can process multiple client connections. The con�guration
dialog for OPC UA Client driver is shown in Figure 2.2 and has a form of a table of
the client connections with buttons for adding, editing and deleting a connection. The
con�guration dialog for the client connection is shown in Figure 2.3.
Client connection parameters:

Alias � mandatory, Alias must be speci�ed in the name of the �ags and blocks that
belong to the context of this connection.

URL � address of the server

Reconnection timeout � number of seconds to wait between connection attempts

Read/Write timeout � number of seconds to wait for Read/Write operations to �nish

Authentication � section for authentication con�guration

Security � section for security con�guration

5

Figure 2.2: OPC UA Client driver � table of clients

Namespace de�nitions � section for de�nition of the namespaces as they are de�ned
on the server
� Indexes of the namespaces are used to compose the NodeId parameter of the
OPC UA blocks.
� During the initialization of the connection the namespaces de�ned in the table
get resolved and the indexes on the client side get translated to the real indexes
on the server side.

2.4 OPC UA Server

The con�guration dialog for OPC UA Server driver is shown in Figure 2.4.
Server parameters:

Port � port of the server

Application URI � identi�er of the application
� Application URI must be the same as the URI de�ned in the certi�cate used by
the server.
� If a custom certi�cate is con�gured Application URI must be set to match. Leave
empty otherwise.

Namespace � namespace to be used for all nodes

6

Figure 2.3: OPC UA Client driver � con�guration of a client

Certi�cate path � path on the target device to a custom certi�cate to be used

Private key path � path on the target device to a custom private key to be used

Authentication mode � con�guration of the authentication
� Anonymous � no authentication
� Username/Password � authentication by a username and password

Username � username

Password � password

Security policy � policy to be used as user token policy during authentication

7

Figure 2.4: OPC UA Server driver con�guration

8

Chapter 3

Connecting the inputs and outputs

and using function blocks in the

control algorithm

The inputs and outputs of the driver must be interconnected with the individual tasks
(.mdl �les). The individual tasks (QTASK or TASK blocks) are connected to the QTask,
Level0,. . . , Level3 outputs of the main EXEC block.

3.1 Direct input and output signals

The inputs and outputs of the OpcUaDrv driver can be accessed as shown in Fig. 3.1.
First block of the From type allowing the user to read connection status has the

Goto tag set to OPCUAC__OpcUaServer_ConnectionStatus. Another block of the From

type allowing the user to read status of the server has Goto tag set to OPCUAS__Status.
The blocks always have the name of the driver block as a pre�x right at the beginning
of the tag followed by two _ characters (underscore). If the block belongs to the client
driver the name of the driver with underscores must be followed by the alias of the client
connection de�ned in the driver con�guration dialog and another underscore.

3.2 Function blocks

3.2.1 OPC UA Client

The OPC UA Client driver is responsible only for maintaining the connection to the
server. To read a value of an OPC UANode over the OPC UA protocol the OpcUaReadValue
block must be used. To write value an OPC UA Node the OpcUaWriteValue block must
be used. The function blocks of the OpcUaDrv driver can be used as shown in Fig. 3.1.
The blocks always have the name of the driver block pre�x right at the beginning of the
tag followed by two _ characters (underscore) and that is followed by an Alias identifying

9

Figure 3.1: Example of input and output �ags of the OpcUaDrv driver

the client connection. To learn more about the OpcUaReadValue and OpcUaWriteValue

blocks see [4].

3.2.2 OPC UA Server

The OPC UA Server driver is responsible for handling all the communication from the
clients. To create and expose an OPC UA Node the OpcUaServerValue block must be
used. The function blocks of the OpcUaDrv driver can be used as shown in Fig. 3.1.
The blocks always have the name of the driver block as a pre�x right at the begin-
ning of the tag followed by two _ characters (underscore). To learn more about the
OpcUaServerValue block see [4].

10

Chapter 4

Examples

To get started quickly the following examples can be used as a reference and you can
modify them for your application.

• 0408-01 OPC UA Communication/OPC UA Data Exchange � The example demon-
strates communication between a Client and a Server which are both implemented
in REXYGEN.

11

Chapter 5

Troubleshooting

In the case that the diagnostic tools of the REXYGEN system (e.g. Watch mode in the
REXYGEN Studio) report unexpected or incorrect values of inputs or outputs, it is de-
sirable to test the functionality outside the REXYGEN system. There are many free
programs that can be used for monitoring of the OPC UA communication such as Ua-
Expert.
In the case that the given input or output works with other software tools and does not
work in the REXYGEN system, report the problem to us, please. E-mail is preferred, reach
us at support@rexygen.com. Please include the following information in your description
to help us process your request as soon as possible:

• Identi�cation of the REXYGEN system you are using. Simply export it to a �le
using the REXYGEN Studio (Target → Licensing... → Export).

• Short and accurate description of your problem.

• The con�guration �les of the REXYGEN system (.mdl and .rio �les) reduced to
the simplest case which still demonstrates the problematic behavior.

12

https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
mailto:support@rexygen.com

Appendix A

Licensing options

From the licensing point of view, there are several versions of the RexCore runtime module
to provide maximum �exibility for individual projects. The table below compares the
individual variants.

The function blocks are divided into several licensing groups. The STANDARD func-
tion blocks are always available, the other groups require activation by a corresponding
licence.

RexCore RexCore RexCore RexCore RexCore
DEMO Starter Plus Professional Ultimate

Function blocks
STANDARD • • • • •
ADVANCED • � • • •
REXLANG • � • • •
MOTION CONTROL • � ◦ ◦ •
COORDINATED MOTION • � ◦ ◦ •
AUTOTUNING � � ◦ ◦ •
MATRIX • � ◦ ◦ •

I/O drivers
Basic I/O drivers • • • • •
Additional I/O drivers • ◦ ◦ • •

(• . . . included, ◦ . . . optional, � . . . not available)

See the Function Blocks - Reference Manual for details about licensing of individual
function blocks.

13

Bibliography

[1] OPC Foundation. OPC Uni�ed Architecture Speci�cation.
https://opcfoundation.org/developer-tools/speci�cations-uni�ed-architecture,
2020.

[2] REX Controls s.r.o.. Getting started with REXYGEN, 2020. →.

[3] REX Controls s.r.o.. OPC UA server for REXYGEN � user guide, 2019. →.

[4] REX Controls s.r.o.. Function blocks of REXYGEN � reference manual, 2020. →.

14

https://www.rexygen.com/getting-started/
https://www.rexygen.com/doc/ENGLISH/MANUALS/RexOpcUa/RexOpcUa_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/BRef/BRef_ENG.html

Documentation reference number: 16843

15

	1 The OpcUaDrv driver and the REXYGEN system
	1.1 Introduction
	1.2 Installation of the driver on the target device
	1.2.1 Windows machines
	1.2.2 Linux machines

	1.3 Alternatives

	2 Including the driver in the project
	2.1 Adding the OpcUaDrv driver
	2.2 Configuration dialog of the OpcUaDrv driver
	2.3 OPC UA Client
	2.4 OPC UA Server

	3 Connecting the inputs and outputs and using function blocks in the control algorithm
	3.1 Direct input and output signals
	3.2 Function blocks
	3.2.1 OPC UA Client
	3.2.2 OPC UA Server

	4 Examples
	5 Troubleshooting
	A Licensing options
	 Bibliography

