
www.rexygen.com

Function Blocks of REXYGEN

Reference manual

REX Controls s.r.o.

Version 3.0.4
2025-03-27

Plze¬ (Pilsen), Czech Republic

www.rexygen.com

2

Contents

1 Introduction 17

1.1 How to use this manual . 17
1.2 The function block description format . 23
1.3 Conventions for variables, blocks and subsystems naming 24
1.4 Signal Quality Corresponding with OPC 25

2 EXEC � Real-time executive con�guration 27

ALARMS � REXYGEN alarms list . 29
ARC � REXYGEN archive . 32
DATA � Include external �les . 34
EXEC � Real-time executive . 35
HMI � HMI con�guration . 37
INFO � Additional project information . 39
IODRV � REXYGEN input/output driver 40
IOTASK � REXYGEN driver-triggered task 42
LPBRK � Loop break . 43
MODULE � REXYGEN extension module 44
OPCUA � REXYGEN OPCUA server con�guration 45
OSCALL � Operating system calls . 46
PROJECT � Additional project settings . 47
QTASK � REXYGEN quick task . 48
SLEEP � Timing in Simulink . 49
SRTF � Set run-time �ags . 50
STATELOAD � Load multiple block states and parameters 52
STATESAVE � Save multiple block states and parameters 54
SYSEVENT � Read system log . 56
SYSLOG � Write system log . 58
TASK � REXYGEN standard task . 59
TIODRV � REXYGEN input/output driver with tasks 61
WWW � Internal webserver content . 63

3

4 CONTENTS

3 INOUT � Input and output blocks 65
Display � Numeric display of input values 67
FromFile � From File . 69
FromWorkspace � From Workspace . 70
GotoTagVisibility � Visibility of the signal source 71
INCONN � Block for remote value acquirement 72
INQUAD, INOCT, INHEXD � Multi-input blocks 73
From, INSTD � Signal connection or input 75
IOASYNC � Asynchronous reading and writing 77
OUTCONN � Block for remote value setting 78
OUTQUAD, OUTOCT, OUTHEXD � Multi-output blocks 79
OUTRQUAD, OUTROCT, OUTRHEXD � Multi-output blocks with veri�cation . . . 81
OUTRSTD � Output block with veri�cation 82
Goto, OUTSTD � Signal source or output . 83
Inport, Outport � Input and output port 85
QFC � Quality �ags coding . 87
QFD � Quality �ags decoding . 88
SubSystem � Subsystem block . 89
ToFile � To File . 91
ToWorkspace � To Workspace . 92
VIN � Validation of the input signal . 93
VOUT � Validation of the output signal . 94

4 MATH � Math blocks 95
ABS � Absolute value . 97
ADD � Addition of two signals . 98
ADDQUAD, ADDOCT, ADDHEXD � Multi-input addition 99
CNB � Boolean (logic) constant . 100
CNE � Enumeration constant . 101
CNI � Integer constant . 102
CNR � Real constant . 103
DIF � Di�erence . 104
DIV � Division of two signals . 105
EAS � Extended addition and subtraction 106
EMD � Extended multiplication and division 107
FNX � Evaluation of single-variable function 108
FNXY � Evaluation of two-variables function 111
GAIN � Multiplication by a constant . 113
GRADS � Gradient search optimization . 114
IADD � Integer addition . 116
IDIV � Integer division . 118
IMOD � Remainder after integer division 119
IMUL � Integer multiplication . 120
ISUB � Integer subtraction . 122

CONTENTS 5

LIN � Linear interpolation . 124
MUL � Multiplication of two signals . 125
NANINF � Block for checking NaN and Inf values 126
POL � Polynomial evaluation . 128
REC � Reciprocal value . 129
REL � Relational operator . 130
RTOI � Real to integer number conversion 131
SQR � Square value . 133
SQRT � Square root . 134
SUB � Subtraction of two signals . 135
UTOI � Unsigned to signed integer number conversion 136

5 ANALOG � Analog signal processing 137
ABSROT � Absolute rotation (multiturn extension of the position sensor) . 139
ASW � Switch with automatic selection of input 141
AVG � Moving average �lter . 143
AVS � Motion control unit . 144
AVSI � Smooth trajectory interpolation . 145
BPF � Band-pass �lter . 148
CMP � Comparator with hysteresis . 149
CNDR � Nonlinear conditioner . 150
DEL � Delay with initialization . 152
DELM � Time delay . 153
DER � Derivation, �ltering and prediction from the last n+1 samples . . . 154
EVAR � Moving mean value and standard deviation 156
INTE � Controlled integrator . 157
KDER � Derivation and �ltering of the input signal 159
LPF � Low-pass �lter . 161
MINMAX � Running minimum and maximum 163
NSCL � Nonlinear scaling factor . 164
OSD � One Step Delay . 165
RDFT � Running discrete Fourier transform 166
RLIM � Rate limiter . 168
S1OF2 � One of two analog signals selector 169
SAI � Safety analog input . 172
SEL � Selector switch for analog signals . 175
SELQUAD, SELOCT, SELHEXD � Selector switch for analog signals 176
SHIFTOCT � Data shift register . 178
SHLD � Sample and hold . 180
SINT � Simple integrator . 181
SPIKE � Spike �lter . 182
SSW � Simple switch . 184
SWR � Selector with ramp . 185
VDEL � Variable time delay . 186

6 CONTENTS

ZV4IS � Zero vibration input shaper . 187

6 GEN � Signal generators 191
ANLS � Controlled generator of piecewise linear function 192
BINS � Controlled binary sequence generator 194
BIS � Binary sequence generator . 196
BISR � Binary sequence generator with reset 198
MP � Manual pulse generator . 200
PRBS � Pseudo-random binary sequence generator 201
SG, SGI � Signal generators . 203

7 REG � Function blocks for control 205
ARLY � Advance relay . 207
FIWR � Frequence Identi�cation With Reconstructor 208
FLCU � Fuzzy logic controller unit . 213
FRID � Frequency response identi�cation 215
I3PM � Identi�cation of a three parameter model 219
LC � Lead compensator . 221
LLC � Lead-lag compensator . 222
LPI � Loop performance index . 223
MCU � Manual control unit . 225
PIDAT � PID controller with relay autotuner 227
PIDE � PID controller with de�ned static error 230
PIDGS � PID controller with gain scheduling 232
PIDMA � PID controller with moment autotuner 234
PIDMAX � PID controller with extended moment autotuner 241
PIDU � PID controller unit . 248
PIDUI � PID controller unit with variable parameters 252
POUT � Pulse output . 254
PRGM � Setpoint programmer . 255
PSMPC � Pulse-step model predictive controller 257
PWM � Pulse width modulation . 261
RLY � Relay with hysteresis . 263
SAT � Saturation with variable limits . 264
SC2FA � State controller for 2nd order system with frequency autotuner . . 266
SCU � Step controller with position feedback 273
SCUV � Step controller unit with velocity input 276
SELU � Controller selector unit . 279
SMHCC � Sliding mode heating/cooling controller 281
SMHCCA � Sliding mode heating/cooling controller with autotuner 285
SWU � Switch unit . 292
TSE � Three-state element . 293

CONTENTS 7

8 LOGIC � Logic control 295

AND � Logical product of two signals . 296
ANDQUAD, ANDOCT, ANDHEXD � Multi-input logical product 297
ATMT � Finite-state automaton . 298
BDOCT, BDHEXD � Bitwise demultiplexers 300
BITOP � Bitwise operation . 301
BMOCT, BMHEXD � Bitwise multiplexers . 302
COUNT � Controlled counter . 303
EATMT � Extended �nite-state automaton 305
EDGE � Falling/rising edge detection in a binary signal 308
EQ � Equivalence two signals . 309
INTSM � Integer number bit shift and mask 310
ISSW � Simple switch for integer signals 311
ITOI � Transformation of integer and binary numbers 312
NOT � Boolean complementation . 313
OR � Logical sum of two signals . 314
ORQUAD, OROCT, ORHEXD � Multi-input logical sum 315
RS � Reset-set �ip-�op circuit . 316
SR � Set-reset �ip-�op circuit . 317
TIMER � Multipurpose timer . 318

9 TIME � Blocks for handling time 321

DATE � Current date . 322
DATETIME � Get, set and convert time . 323
TC � Timer control and status . 326
TIME � Current time . 328
TS � Current timestamp . 329
TS2NS � Timestamp di�erence in nanoseconds 331
WSCH � Week scheduler . 332

10 ARC � Data archiving 335

ACD � Archive compression using Delta criterion 338
ACLEAR � Forced archive purge . 340
AFLUSH � Forced archive �ushing . 341
ALB, ALBI � Alarms for Boolean value . 342
ALM, ALMI � Alarm store value . 344
ALN, ALNI � Alarms for numerical value . 345
ARS � Archive store value . 348
TRND � Real-time trend recording . 350
TRNDV � Real-time trend recording (for vector signals) 353

8 CONTENTS

11 STRING � Blocks for string operations 355
CNS � String constant . 356
CONCAT � Concat string by pattern . 357
FIND � Find substring . 358
ITOS � Integer number to string conversion 359
LEN � String length . 360
MID � Substring extraction . 361
PJROCT � Parse JSON string (real output) 362
PJSEXOCT � Parse JSON string (string output) 364
PJSOCT � Parse JSON string (string output) 366
REGEXP � Regular expression parser . 368
REPLACE � Replace substring . 370
RTOS � Real number to string conversion 371
SELSOCT � Selector switch for string signals 372
STOR � String to real number conversion 374
TRIM � Remove leading and trailing whitechar 375

12 PARAM � Blocks for parameter handling 377
GETPA � Block for remote array parameter acquirement 378
GETPB, GETPI, GETPR � Blocks for remote parameter acquirement 381
GETPS � Block for remote string parameter acquirement 383
GETPX � Block for remote parameter acquirement 384
PARA � Block with input-de�ned array parameter 386
PARE � Block with input-de�ned enumeration parameter 388
PARB, PARI, PARR � Blocks with input-de�ned parameter 389
PARS � Block with input-de�ned string parameter 391
PARX � Block with input-de�ned parameter 392
SETPA � Block for remote array parameter setting 394
SETPB, SETPI, SETPR � Blocks for remote parameter setting 396
SETPS � Block for remote string parameter setting 398
SETPX � Block for remote parameter setting 399
SGSLP � Set, get, save and load parameters 401
SILO � Save input value, load output value 405
SILOS � Save input string, load output string 407

13 MODEL � Dynamic systems simulation 409
CDELSSM � Continuous state space model with time delay 411
CSSM � Continuous state space model . 414
DDELSSM � Discrete state space model with time delay 417
DFIR � Discrete �nite input response �lter 419
DSSM � Discrete state space model . 420
EKF � Extended (nonlinear) Kalman �lter 423
FOPDT � First order plus dead-time model 426
IPEN2, IPEN3 � N-link inverted pendulum on cart - Physical parameters . 427

CONTENTS 9

IPEN2pu, IPEN3pu � N-link inverted pendulum on cart - Dynamic parameters430
MDL � Process model . 433
MDLI � Process model with input-de�ned parameters 434
MVD � Motorized valve drive . 435
NSSM � Nonlinear State-Space Model . 436
NUREACT � Model of nuclear reactor . 439
QCOPT � Model of quadrucopter . 440
SGEN � Synchronous generator model . 442
SGENTX � Synchronous generator model . 444
SOPDT � Second order plus dead-time model 446
STMGEN � Model of steam generator . 448
STURB � Steam turbine model . 450

14 MATRIX � Blocks for matrix and vector operations 453
CNA � Array (vector/matrix) constant . 456
MB_DASUM � Sum of the absolute values . 458
MB_DAXPY � Performs y := a*x + y for vectors x,y 460
MB_DCOPY � Copies vector x to vector y . 462
MB_DDOT � Dot product of two vectors . 464
MB_DGEMM � Performs C := alpha*op(A)*op(B) + beta*C, where op(X) =
X or op(X) = X^T . 466
MB_DGEMV � Performs y := alpha*A*x + beta*y or y := alpha*A^T*x +
beta*y . 468
MB_DGER � Performs A := alpha*x*y^T + A 470
MB_DNRM2 � Euclidean norm of a vector . 472
MB_DROT � Plain rotation of a vector . 474
MB_DSCAL � Scales a vector by a constant 476
MB_DSWAP � Interchanges two vectors . 478
MB_DTRMM � Performs B := alpha*op(A)*B or B := alpha*B*op(A), where
op(X) = X or op(X) = X^T for triangular matrix A 480
MB_DTRMV � Performs x := A*x or x := A^T*x for triangular matrix A . . 482
MB_DTRSV � Solves one of the system of equations A*x = b or A^T*x =
b for triangular matrix A . 484
ML_DGEBAK � Backward transformation to ML_DGEBAL of left or right
eigenvectors . 486
ML_DGEBAL � Balancing of a general real matrix 488
ML_DGEBRD � Reduces a general real matrix to bidiagonal form by an or-
thogonal transformation . 490
ML_DGECON � Estimates the reciprocal of the condition number of a general
real matrix . 492
ML_DGEES � Computes the eigenvalues, the Schur form, and, optionally,
the matrix of Schur vectors . 495
ML_DGEEV � Computes the eigenvalues and, optionally, the left and/or right
eigenvectors . 497

10 CONTENTS

ML_DGEHRD � Reduces a real general matrix A to upper Hessenberg form . 499
ML_DGELQF � Computes an LQ factorization of a real M-by-N matrix A . . 501
ML_DGELSD � Computes the minimum-norm solution to a real linear least
squares problem . 503
ML_DGEQRF � Computes an QR factorization of a real M-by-N matrix A . . 505
ML_DGESDD � Computes the singular value decomposition (SVD) of a real
M-by-N matrix A . 507
ML_DLACPY � Copies all or part of one matrix to another matrix 509
ML_DLANGE � Computes one of the matrix norms of a general matrix . . . 511
ML_DLASET � Initilizes the o�-diagonal elements and the diagonal elements
of a matrix to given values . 513
ML_DTRSYL � Solves the real Sylvester matrix equation for quasi-triangular
matrices A and B . 515
MX_AT � Get Matrix/Vector element . 517
MX_ATSET � Set Matrix/Vector element . 518
MX_CNADD � Add scalar to each Matrix/Vector element 519
MX_CNMUL � Multiply a Matrix/Vector by a scalar 520
MX_CTODPA � Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations . 521
MX_DIM � Matrix/Vector dimensions . 523
MX_DIMSET � Set Matrix/Vector dimensions 524
MX_DSAGET � Set subarray of A into B . 526
MX_DSAREF � Set reference to subarray of A into B 528
MX_DSASET � Set A into subarray of B . 530
MX_DTRNSP � General matrix transposition: B := alpha*A^T 532
MX_DTRNSQ � Square matrix in-place transposition: A := alpha*A^T . . . 534
MX_FILL � Fill real matrix or vector . 536
MX_FNX � Matrix and vector scalar functions 537
MX_MAT � Matrix data storage block . 539
MX_RAND � Randomly generated matrix or vector 540
MX_REFCOPY � Copies input references of matrices A and B to their output
references . 542
MX_SLFS � Save or load a Matrix/Vector into �le or string 543
MX_VEC � Vector data storage block . 546
MX_WRITE � Write a Matrix/Vector to the console/system log 547
RTOV � Vector multiplexer . 549
SWVMR � Vector/matrix/reference signal switch 551
VTOR � Vector demultiplexer . 552

15 OPTIM � Optimization blocks 553
QP_MPC2QP � Conversion of MPC problem to quadratic programming . . . 554
QP_OASES � Quadratic programming using active set method 561
QP_UPDATE � Update matrices/vectors of quadratic programming 566
SOLNP � Nonlinear optimization solver . 571

CONTENTS 11

16 SPEC � Special blocks 575
EPC � External program call . 576
HTTP � Block for generating HTTP GET or POST requests (obsolete) . . 579
HTTP2 � Block for generating HTTP requests 581
RDC � Remote data connection . 583
REXLANG � User programmable block . 587
SMTP � Block for sending e-mail alerts via SMTP 607
STEAM � Steam and water properties . 609
UART � UART communication block . 614

17 LANG � Language blocks 617
LUA, LUAQUAD, LUAOCT, LUAHEXD � User programmable blocks in Lua 618
PYTHON � User programmable block in Python 622

18 DSP � Digital Signal Processing blocks 629
BSFIFO � Binary Structure - Queueing serialize and deserialize 630
BSGET, BSGETOCT � Binary Structure - Get a single value of given type . . 632
BSGETV, BSGETOCTV � Binary Structure - Get matrix (all values of same
given type) . 634
BSSET, BSSETOCT � Binary Structure - Set a single value of given type . . . 636
BSSETV, BSSETOCTV � Binary Structure - Set matrix (all values of same
given type) . 637
FFT � Fast Fourier Transform . 638
MOSS � Motion smart senzor . 640
PCI � PCI Bus Memory Access . 642
PSD � Power Spectral Density . 643
RAWCOPY � Raw vector copy: 1, 2, or 4 Bytes per Copy 649

19 MQTTDrv � Communication via MQTT protocol 651
MqttPublish � Publish MQTT message 652
MqttSubscribe � Subscribe to MQTT topic 654

20 MC_SINGLE � Motion control - single axis blocks 657
MCP_AccelerationProfile � ∗ Acceleration pro�le 659
MCP_Halt � ∗ Stopping a movement (interruptible) 661
MCP_HaltSuperimposed � ∗ Stopping a movement (superimposed and in-
terruptible) . 662
MCP_Home � ∗ Homing . 663
MCP_MoveAbsolute � ∗ Move to position (absolute coordinate) 665
MCP_MoveAdditive � ∗ Move to position (relative to previous motion) . . . 667
MCP_MoveContinuousAbsolute � ∗ Move to position (absolute coordinate) 669
MCP_MoveContinuousRelative � ∗ Move to position (relative to previous
motion) . 671
MCP_MoveRelative � ∗ Move to position (relative to execution point) . . . 673

12 CONTENTS

MCP_MoveSuperimposed � ∗ Superimposed move 675
MCP_MoveVelocity � ∗ Move with constant velocity 676
MCP_PositionProfile � ∗ Position pro�le 678
MCP_SetOverride � ∗ Set override factors 680
MCP_Stop � ∗ Stopping a movement . 681
MCP_TorqueControl � ∗ Torque/force control 682
MCP_VelocityProfile � ∗ Velocity pro�le 684
MC_AccelerationProfile, MCP_AccelerationProfile � Acceleration pro-
�le . 686
MC_Halt, MCP_Halt � Stopping a movement (interruptible) 690
MC_HaltSuperimposed, MCP_HaltSuperimposed � Stopping a movement
(superimposed and interruptible) . 691
MC_Home, MCP_Home � Homing . 692
MC_MoveAbsolute, MCP_MoveAbsolute � Move to position (absolute coor-
dinate) . 694
MC_MoveAdditive, MCP_MoveAdditive � Move to position (relative to pre-
vious motion) . 698
MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute � Move to
position (absolute coordinate) . 701
MC_MoveContinuousRelative, MCP_MoveContinuousRelative � Move to
position (relative to previous motion) . 704
MC_MoveRelative, MCP_MoveRelative � Move to position (relative to ex-
ecution point) . 708
MC_MoveSuperimposed, MCP_MoveSuperimposed � Superimposed move . . 711
MC_MoveVelocity, MCP_MoveVelocity � Move with constant velocity . . . 714
MC_PositionProfile, MCP_PositionProfile � Position pro�le 718
MC_Power � Axis activation (power on/o�) 722
MC_ReadActualPosition � Read actual position 723
MC_ReadAxisError � Read axis error . 724
MC_ReadBoolParameter � Read axis parameter (bool) 725
MC_ReadParameter � Read axis parameter 726
MC_ReadStatus � Read axis status . 728
MC_Reset � Reset axis errors . 730
MC_SetOverride, MCP_SetOverride � Set override factors 731
MC_Stop, MCP_Stop � Stopping a movement 733
MC_TorqueControl, MCP_TorqueControl � Torque/force control 735
MC_VelocityProfile, MCP_VelocityProfile � Velocity pro�le 738
MC_WriteBoolParameter � Write axis parameter (bool) 742
MC_WriteParameter � Write axis parameter 743
RM_Axis � Motion control axis . 744
RM_AxisOut � Axis output . 751
RM_AxisSpline � Commanded values interpolation 752
RM_HomeOffset � ∗ Homing by setting o�set 757
RM_Track � Tracking and inching . 758

CONTENTS 13

21 MC_MULTI � Motion control - multi axis blocks 761
MCP_CamIn � ∗ Engage the cam . 763
MCP_CamTableSelect � Cam de�nition . 765
MCP_CombineAxes � ∗ Combine the motion of 2 axes into a third axis . . . 767
MCP_GearIn � ∗ Engage the master/slave velocity ratio 769
MCP_GearInPos � ∗ Engage the master/slave velocity ratio in de�ned position771
MCP_PhasingAbsolute � ∗ Create phase shift (absolute coordinate) 773
MCP_PhasingRelative � ∗ Create phase shift (relative to previous motion) 775
MC_CamIn, MCP_CamIn � Engage the cam 777
MC_CamOut � Disengage the cam . 781
MC_CombineAxes, MCP_CombineAxes � Combine the motion of 2 axes into
a third axis . 783
MC_GearIn, MCP_GearIn � Engange the master/slave velocity ratio 786
MC_GearInPos, MCP_GearInPos � Engage the master/slave velocity ratio
in de�ned position . 789
MC_GearOut � Disengange the master/slave velocity ratio 794
MC_PhasingAbsolute, MCP_PhasingAbsolute � Phase shift in synchro-
nized motion (absolute coordinates) . 796
MC_PhasingRelative, MCP_PhasingRelative � Phase shift in synchro-
nized motion (relative coordinates) . 799

22 MC_COORD � Motion control - coordinated movement blocks 801
MCP_GroupHalt � ∗ Stopping a group movement (interruptible) 805
MCP_GroupInterrupt � ∗ Read a group interrupt 806
MCP_GroupSetOverride � ∗ Set group override factors 807
MCP_GroupSetPosition � ∗ Sets the position of all axes in a group 808
MCP_GroupStop � ∗ Stopping a group movement 809
MCP_MoveCircularAbsolute � ∗ Circular move to position (absolute co-
ordinates) . 810
MCP_MoveCircularRelative � ∗ Circular move to position (relative to
execution point) . 812
MCP_MoveDirectAbsolute � ∗ Direct move to position (absolute coordinates)814
MCP_MoveDirectRelative � ∗ Direct move to position (relative to execu-
tion point) . 816
MCP_MoveLinearAbsolute � ∗ Linear move to position (absolute coordinates)818
MCP_MoveLinearRelative � ∗ Linear move to position (relative to execu-
tion point) . 820
MCP_MovePath � ∗ General spatial trajectory generation 822
MCP_MovePath_PH � ∗ General spatial trajectory generation PH 824
MCP_SetCartesianTransform � ∗ Sets Cartesian transformation 826
MCP_SetKinTransform_Arm � ∗ Kinematic transformation robot ARM . . 828
MCP_SetKinTransform_UR � ∗ Kinematic transformation for UR robot . . 830
MC_AddAxisToGroup � Adds one axis to a group 832
MC_GroupContinue � Continuation of interrupted movement 833

14 CONTENTS

MC_GroupDisable � Changes the state of a group to GroupDisabled 834
MC_GroupEnable � Changes the state of a group to GroupEnable 835
MC_GroupHalt � Stopping a group movement (interruptible) 836
MC_GroupInterrupt, MCP_GroupInterrupt � Read a group interrupt . . . 841
MC_GroupReadActualAcceleration � Read actual acceleration in the se-
lected coordinate system . 842
MC_GroupReadActualPosition � Read actual position in the selected co-
ordinate system . 843
MC_GroupReadActualVelocity � Read actual velocity in the selected co-
ordinate system . 844
MC_GroupReadError � Read a group error 845
MC_GroupReadStatus � Read a group status 846
MC_GroupReset � Reset axes errors . 847
MC_GroupSetOverride � Set group override factors 848
MC_GroupSetPosition, MCP_GroupSetPosition � Sets the position of all
axes in a group . 849
MC_GroupStop � Stopping a group movement 851
MC_MoveCircularAbsolute � Circular move to position (absolute coordi-
nates) . 854
MC_MoveCircularRelative � Circular move to position (relative to exe-
cution point) . 858
MC_MoveDirectAbsolute � Direct move to position (absolute coordinates) 862
MC_MoveDirectRelative � Direct move to position (relative to execution
point) . 865
MC_MoveLinearAbsolute � Linear move to position (absolute coordinates) 868
MC_MoveLinearRelative � Linear move to position (relative to execution
point) . 872
MC_MovePath � General spatial trajectory generation 876
MC_MovePath_PH � ∗ General spatial trajectory generation PH 878
MC_ReadCartesianTransform � Reads the parameter of the cartesian trans-
formation . 880
MC_SetCartesianTransform � Sets Cartesian transformation 881
MC_UngroupAllAxes � Removes all axes from the group 883
RM_AxesGroup � Axes group for coordinated motion control 884
RM_Feed � ∗ MC Feeder ??? . 887
RM_Gcode � ∗ CNC motion control . 888
RM_GroupTrack � T . 890

23 CanDrv � Communication via CAN bus 893
CanItem � Secondary received CAN message 894
CanRecv � Receive CAN message . 896
CanSend � Send CAN message . 898

CONTENTS 15

24 OpcUaDrv � Communication using OPC UA 899
OpcUaReadValue � Read value from OPC UA Server 900
OpcUaServerValue � Expose value as an OPC UA Node 902
OpcUaWriteValue � Write value to OPC UA Server 904

25 UNIPI � Communication blocks for Unipi 907
IM201CNT � Iris IM201CNT, 4 digital counters 909
IM201DI � Iris IM201DI, 4 digital inputs 910
IM203DO � Iris IM203DO, 8 digital outputs 911
IM203PWM � Iris IM203PWM, 8 PWM outputs 912
IM204CNT � Iris IM204CNT, 16 digital counters 913
IM204DI � Iris IM204DI, 16 digital inputs 915
IM205DO � Iris IM205DO, 16 digital outputs 916
IM205PWM � Iris IM205PWM, 16 PWM outputs 917
IM301CNT � Iris IM301CNT, 2 digital counters 919
IM301DI � Iris IM301DI, 2 digital inputs 920
IM301DO � Iris IM301DO, 2 digital outputs 921
IM502AO � Iris IM502AO, 4 analog outputs 922
IM503AI � Iris IM503AI, 8 analog inputs 923
IM504RI � Iris IM504RI, 8 resistance or temperature inputs 925
IM506AI � Iris IM506AI, 2 analog inputs 927
IM506AO � Iris IM506AO, 1 analog output 929
IRIS_MODULE � Iris - Module description info 930
UNIPI_CHANNEL � Iris module or Patron section info 931
UNIPI_PRODUCT � Product description info 933
UNIPI_S1AI � Patron section 1, analog input 934
UNIPI_S1AOR � Patron section 1, analog output or resistance input 935
UNIPI_S1CNT � Patron section 1, counters 936
UNIPI_S1DI � Patron section 1, digital inputs 937
UNIPI_S1DO � Patron section 1, digital outputs 938
UNIPI_S1LED � Patron section 1, LED outputs 939
UNIPI_S1PWM � Patron section 1, PWM outputs 940
UNIPI_S2AI � Patron section 2, analog inputs 941
UNIPI_S2AO � Patron section 2, analog outputs 942
UNIPI_S2CNT � Patron section 2, counters 943
UNIPI_S2DI � Patron section 2, digital inputs 944
UNIPI_S2RO � Patron section 2, relay outputs 945

A Licensing policy 947

B Licensing of individual function blocks 951

C Error codes of the REXYGEN system 965

16 CONTENTS

D Special signals of the REXYGEN system 971

Bibliography 973

Index 975

Note: Only a partial documentation is available in blocks marked by ∗ .

Chapter 1

Introduction

The manual �REXYGEN system function blocks� is a reference manual for the REXYGEN
system function block library RexLib. It includes description and detailed information
about all function blocks RexLib consists of.

1.1 How to use this manual

The extensive function block library RexLib, which is a standard part of the REXYGEN
system, is divided into smaller sets of logically related blocks, the so-called categories

(sub-libraries). A separate chapter is devoted to each category, introducing the general
properties of the whole category and its blocks, followed by a detailed description of
individual function blocks.

The content of individual chapters of this manual is as follows:

1 Introduction
This introductory chapter familiarizes readers with the content and ordering of the
manual. A convention used for individual function block descriptions is presented.

2 EXEC � Real-time executive con�guration
The EXEC library is essential for setting up the real-time executive in the REXY-
GEN system and includes key blocks like EXEC, TASK, QTASK, and HMI. These blocks
are fundamental for managing task execution, determining process priorities, and
interacting with user interfaces, signi�cantly contributing to the e�ciency and con-
trollability of applications within the REXYGEN ecosystem.

3 INOUT � Input and output blocks
The INOUT library serves as a crucial interface in the REXYGEN system, enabling
smooth interaction with input/output drivers. It is designed for e�cient simulta-
neous signal processing, essential for fast control tasks. This library simpli�es the
connection between control algorithms and hardware, ensuring minimal latency.
Additionally, it provides advanced features, such as virtual linking (�ags) of sig-
nals for increased clarity of diagrams and �exibility of subsystems.

17

18 CHAPTER 1. INTRODUCTION

4 MATH � Math blocks
The MATH library o�ers a comprehensive collection of mathematical operations
and functions. It includes basic arithmetic blocks like ADD, SUB, MUL, and DIV for
standard calculations, and more specialized blocks such as ABS for absolute values,
SQRT for square roots, and SQR for squaring. Advanced functionalities are pro-
vided by blocks like LIN for linear transformations, POL for polynomial evaluations,
and FNX, FNXY for customizable mathematical functions. The library also features
integer-speci�c operations through blocks like IADD, IMUL, IDIV, and IMOD.

5 ANALOG � Analog signal processing
Library presents a versatile range of functional blocks, designed for control and
signal processing applications. It includes blocks like ASW, AVG, BPF, and DEL, which
provide functionalities from signal manipulation and averaging to �ltering and com-
plex conditional operations, catering to a broad spectrum of system requirements
and scenarios.

6 GEN � Signal generators
The GEN library is specialized in signal generation. It includes blocks like ANLS for
generating a piecewise linear function of time or binary sequence generators BINS,
BIS, BISR. The library also features MP for manual pulse signal generation, PRBS for
pseudo-random binary sequence generation, and SG for periodic signals generation.
This library provides essential tools for creating and manipulating various signal
types.

7 REG � Function blocks for control
The control function blocks form the most extensive sub-library of the RexLib li-
brary. Blocks ranging from simple dynamic compensators to several modi�cations
of PID (P, I, PI, PD a PID) controller and some advanced controllers are included.
The blocks for control schemes switching and conversion of output signals for var-
ious types of actuators can be found in this sub-library. The involved controllers
include the PIDGS block, enabling online switching of parameter sets (the so-called
gain scheduling), the PIDMA block with built-in moment autotuner, the PIDAT block
with built in relay autotuner, the FLCU fuzzy controller or the PSMPC predictive con-
troller, etc.

8 LOGIC � Logic control
The LOGIC library encompasses a range of blocks for executing logical and sequen-
tial operations. It includes basic Boolean blocks like AND, OR, NOT for fundamental
logical operations, and advanced blocks like ATMT for �nite state machines. Blocks
like COUNT and TIMER extend functionality to bidirectional pulse counting and time-
based operations. Additional elements like BITOP, BMOCT, and BDOCT o�er bitwise
operations and multiplexing/demultiplexing capabilities, enhancing the library's
versatility in handling combinational and sequential logic control.

9 TIME � Blocks for handling time
The TIME library is specialized for time-based operations and scheduling in REXY-

1.1. HOW TO USE THIS MANUAL 19

GEN system. It includes blocks like DATE, TIME and DATETIME for handling date and
datetime, providing essential tools for working with temporal data. The library
features TC for itnernal timer control. Additionally, WSCH is used for scheduling,
enabling e�cient management of time-dependent tasks. This library is particularly
valuable for systems requiring precise time management and scheduling capabili-
ties.

10 ARC � Data archiving
The RexCore executive of the REXYGEN system consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.).
One of these subsystems is the archiving subsystem. The archiving subsystem takes
care of recording the history of the control algorithm.

11 STRING � Blocks for string operations
The STRING library is dedicated to string manipulation and analysis in REXYGEN

system. It includes blocks like CONCAT for concatenating strings, FIND for searching
within strings, and REPLACE for replacing string segments. The library o�ers LEN
and MID for determining string length and extracting substrings, respectively. Ad-
vanced pattern matching is provided by REGEXP. Conversion blocks such as ITOS,
STOR and RTOS convert integers and real numbers to strings, while a simple CNS

block de�nes a string constant. Additionally, the library features blocks like PJROCT
for JSON parsing. This collection of blocks is essential for handling and processing
string data in various applications.

12 PARAM � Blocks for parameter handling
The PARAM library is designed for parameter management and signal processing
in the REXYGEN system. It includes blocks like PARR and its variants for de�ning
and modifying various types of parameters. Blocks for getting parameters of other
blocks like GETPA and GETPS. Conversely, SETPA, SETPR and SETPS are used to
dynamically set parameter values of other blocks. Additionally, the library contains
SILO and SILOS for exporting and importing values from a �le. This library is
crucial for systems requiring dynamic parameter manipulation and the ability to
read/save values to a �le.

13 MODEL � Dynamic systems simulation
The MODEL library is centered around system modeling and simulation. It in-
cludes blocks like CSSM and DSSM for continuous and discrete state-space models,
and DFIR for digital �nite impulse response �lters. The library o�ers EKF for Ex-
tended Kalman Filter implementations, and FOPDT, SOPDT for �rst and second order
process time delay models. Additionally, it provides FMUCS and FMUINFO for inter-
facing with Functional Mock-up Units, and MDL, MDLI for generic model interfaces.
Advanced functionalities are covered by blocks like CDELSSM, DDELSSM for contin-
uous and discrete state space models of a linear system with time delay, and MVD

for model variable delays, catering to a wide range of modeling requirements in
REXYGEN system.

20 CHAPTER 1. INTRODUCTION

14 MATRIX � Blocks for matrix and vector operations
The MATRIX library is designed for advanced matrix computations and manip-
ulations. It encompasses a wide range of blocks such as MB_DGEMM, MB_DTRMM,
and MB_DGER for matrix-matrix and matrix-vector operations. The library includes
functions for matrix decomposition (ML_DGEBRD, ML_DGEQRF), eigenvalue problems
(ML_DGEEV, ML_DGEES), and singular value decomposition (ML_DGESDD). Addition-
ally, it o�ers utility blocks like MX_MAT, MX_VEC, and MX_FILL for matrix creation
and manipulation, as well as specialized blocks such as MX_DTRNSP for matrix trans-
position and MX_RAND for generating random matrices. This library is essential for
complex mathematical operations involving matrices in various applications.

15 OPTIM � Optimization blocks
The OPTIM library is tailored for optimization algorithms and processes. It in-
cludes QCEDPOPT for Quadratic Cost Economic Dispatch Problem optimization,
providing advanced tools for handling complex optimization problems. The library
also features blocks like QP_MPC2QP and QP_OASES for Quadratic Programming, es-
sential in Model Predictive Control (MPC) scenarios. Additionally, QP_UPDATE is
available for updating quadratic program parameters. This library is particularly
useful in systems requiring high-level optimization solutions, such as in advanced
control and decision-making algorithms.

16 SPEC � Special blocks
The SPEC library encompasses a diverse set of functional blocks designed to inte-
grate a wide range of functionalities into automation, control systems, and commu-
nication protocols. From facilitating precise thermodynamic calculations with the
STEAM block to enabling seamless data communication through UART and SMTP, the
library serves as a comprehensive toolkit for engineers and developers. It includes
specialized blocks for executing external programs (EPC), handling web-based re-
quests (HTTP2). Additionally, it o�ers unique input-output solutions (RDC) and a
versatile programming environment with REXLANG.

17 LANG � Language blocks
The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-de�ned function. For these purposes, the blocks
from the LANG library, or the REXLANG block, can be used.

18 DSP � Digital Signal Processing blocks
The DSP library is tailored for advanced digital signal processing. It includes blocks
like FFT for Fast Fourier Transform operations and PSD for Power Spectral Density
analysis. The library also features BSFIFO, BSGET, BSGETV, BSSET, and BSSETV for
bu�er storage and retrieval, enabling e�cient data handling in signal processing
tasks. In addition, the library contains a MOSS block - an advanced �lter for incre-
mental sensors. This collection of blocks is essential for sophisticated signal analysis
and manipulation in digital systems.

1.1. HOW TO USE THIS MANUAL 21

19 MQTTDrv � Communication via MQTT protocol
The MQTTDrv library is designed for IoT (Internet of Things) communication
using the MQTT (Message Queuing Telemetry Transport) protocol. It consists of
two primary blocks: MqttPublish and MqttSubscribe. The MqttPublish block is
used for sending messages to an MQTT broker, enabling the publication of data to
MQTT topics. Conversely, the MqttSubscribe block is designed for subscribing to
topics and receiving messages from a broker. This library facilitates e�cient and
e�ective data communication in IoT applications, leveraging the lightweight and
widely-used MQTT protocol for message exchange.

20 MC_SINGLE � Motion control - single axis blocks
The MC_SINGLE library is designed for motion control in single-axis systems. It
features blocks like MC_MoveAbsolute, MC_MoveRelative, and MC_MoveVelocity

for precise positioning and speed control. The library includes MC_Home for homing
operations, and MC_Power for controlling the power state of the axis. Advanced
functionalities are provided by MC_AccelerationProfile, MC_PositionProfile,
and MC_VelocityProfile for customizing motion pro�les. It also o�ers moni-
toring and parameter adjustment capabilities through MC_ReadActualPosition,
MC_ReadAxisError, MC_ReadParameter, and MC_WriteParameter. Additionally, the
library contains blocks like MC_Halt, MC_Reset, and MC_Stop for emergency and
control operations. This library is essential for applications requiring precise and
controlled motion in single-axis con�gurations.

21 MC_MULTI � Motion control - multi axis blocks
The MC_MULTI library is specialized for multi-axis motion control. It includes
blocks like MC_CombineAxes for synchronizing multiple axes, MC_GearIn and MC_GearOut
for gearing operations, and MC_PhasingAbsolute, MC_PhasingRelative for precise
axis phasing. The library o�ers MC_CamIn and MC_CamOut for camming functionali-
ties, allowing complex motion pro�les to be followed. Additionally, MCP_CamTableSelect
provides �exibility in selecting cam tables, and MC_GearInPos enables position-
based gearing. This library is essential for advanced applications requiring coordi-
nated motion control across multiple axes.

22 MC_COORD � Motion control - coordinated movement blocks
The MC_COORD library is speci�cally designed for the coordination of multi-
axis motion control within complex systems. It encompasses a variety of blocks,
including MC_MoveLinearAbsolute for executing precise linear movements, com-
plemented by MC_MoveLinearRelative for relative linear motion. For the execu-
tion of circular motion, the library incorporates MC_MoveCircularAbsolute along-
side MC_MoveCircularRelative, ensuring detailed circular trajectories. In the con-
text of managing group axis control, this library introduces MC_AddAxisToGroup,
which is further supported by functionalities such as MC_GroupEnable for activa-
tion, MC_GroupDisable for deactivation, and MC_GroupHalt for immediate stopping
of grouped axes. Furthermore, the library provides MC_MoveDirectAbsolute and
MC_MoveDirectRelative, enabling direct control over axis movements. For navi-

22 CHAPTER 1. INTRODUCTION

gating through complex paths, MC_MovePath is made available. Essential monitor-
ing and control features are facilitated by MC_GroupReadActualPosition for posi-
tional data, MC_GroupReadActualVelocity for velocity insights, MC_GroupReadError
for error detection, and MC_GroupReadStatus for status updates. Additionally, the
library integrates MC_ReadCartesianTransform and MC_SetCartesianTransform,
which are vital for Cartesian transformation processes. This collection of func-
tionalities underscores the library's signi�cance in applications that demand the
synchronized control of multiple axes, particularly in the realms of robotics and
automation systems.

23 CanDrv � Communication via CAN bus
The CanDrv library is dedicated to handling CAN (Controller Area Network) bus
communication in REXYGEN system. It features CanItem for managing CAN data
items, CanRecv for receiving messages from the bus, and CanSend for sending mes-
sages. This library provides essential tools for e�cient and reliable communication
over CAN networks, facilitating data exchange and control commands between
various system components.

24 OpcUaDrv � Communication using OPC UA
The OpcUaDrv library is specialized in interfacing with OPC UA (Open Platform
Communications Uni�ed Architecture) servers for industrial automation. The �rst
block � OpcUaReadValue is designed for reading data from servers, making it pivotal
for data acquisition in automated systems. The OpcUaWriteValue block enables
writing data to servers, allowing for control and command execution. Additionally,
the OpcUaServerValue block facilitates the monitoring and management of server
values. This library serves as a critical tool for seamless communication and inter-
action with OPC UA servers, enhancing the capabilities of automation systems.

25 UNIPI � Communication blocks for Unipi
This library is used to control and monitor Unipi devices. It includes blocks for
reading and writing digital and analog inputs and outputs, blocks for controlling
relays, PWM outputs, LED diodes and reading counters. For reading buses, drivers
such as OwsDrv or MbDrv can be used. The blocks work in accordance with the
manufacturer's documentation [1], where technical details about individual devices
and their inputs and outputs can be found.

The individual chapters of this reference guide are not much interconnected, which means
they can be read in almost any order or even only the necessary information for speci�c
block can be read for understanding the function of that block. The electronic version
of this manual (in the .pdf format) is well-suited for such case as it is equipped with
hypertext bookmarks and contents, which makes the look-up of individual blocks very
easy.

Despite of that it is recommended to read the following subchapter, which describes
the conventions used for description of individual blocks in the rest of this manual.

1.2. THE FUNCTION BLOCK DESCRIPTION FORMAT 23

1.2 The function block description format

The description of each function block consists of several sections (in the following order):

Block Symbol � displays the graphical symbol of the block

Function Description � brief description of the block function, omitting too detailed
information.

Inputs � detailed description of all inputs of the block

Outputs � detailed description of all outputs of the block

Parameters � detailed description of all parameters of the block

Examples � a simple example of the use of the block in the context of other blocks and
optional graph with input and output signals for better understanding of the block
function.

If the block function is obvious, the section Examples is omitted. In case of block with
no input or no output the corresponding section is omitted as well.

The inputs, outputs and parameters description has a tabular form:

<name> [nam] Detailed description of the input (output, parameter)
<name>. Mathematical symbol nam on the right side of the
�rst column is used in the equations in the Function Description

section. It is listed only if it di�ers from the name more
than typographically. If the variable value is limited to only
enumerated values, the meaning of these values is explained in
this column. [⊙<def>] [↓<min>] [↑<max>]

<type>

The meaning of the three columns is quite obvious. The third column contains the
item <type>. The REXYGEN control system supports the types listed in table 1.1. But
the most frequently used types are Bool for Boolean variables, Long (I32) for integer
variables and Double (F64) for real variables (in �oating point arithmetics).

Each described variable (input, output or parameter) has a default value <def> in
the REXYGEN system, which is preceded by the ⊙ symbol. Also it has upper and lower
limits, preceded by the symbols ↓ and ↑ respectively. All these three values are optional
(marked by []). If the value ⊙<def> is not listed in the second column, it is equal to
zero. If the values of ↓<min> and/or ↑<max> are missing, the limits are given by the the
minimum and/or maximum of the corresponding type, see table 1.11.

1Precise range of the Large data type is -9223372036854775808 to 9223372036854775807.

24 CHAPTER 1. INTRODUCTION

Type Meaning Minimum Maximum

Bool Boolean value 0 or 1 0 1

Byte (U8) 8-bit integer number without the sign 0 255

Short (I16) 16-bit integer number with the sign -32768 32767

Long (I32) 32-bit integer number with the sign -2147483648 2147483647

Large (I64) 64-bit integer number with the sign −9.2234 · 1018 9.2234 · 1018
Word (U16) 16-bit integer number without the sign 0 65535

DWord (U32) 32-bit integer number without the sign 0 4294967295

Float (F32) 32-bit real number in �oating point arithmetics −3.4 · 1038 3.4 · 1038
Double (F64) 64-bit real number in �oating point arithmetics −1.7 · 10308 1.7 · 10308
String character string

Table 1.1: Types of variables in the REXYGEN system.

1.3 Conventions for variables, blocks and subsystems nam-
ing

Several conventions are used to simplify the use of the REXYGEN control system. All
used variable types were de�ned in the preceding chapter. The term variable refers to
function block inputs, outputs and parameters in this chapter. The majority of the blocks
uses only the following three types:

Bool � for two-state logic variables, e.g. on/o�, yes/no or true/false. The logic one (yes,
true, on, 1) is referred to as on in this manual. Similarly the logic zero (no, false,
o�, 0) is represented by off. This holds also for REXYGEN Studio. Other tools and
3rd party software may display these values as 1 for on and 0 for off. The names
of logic variables consist of uppercase letters, e.g. RUN, YCN, R1, UP, etc.

Long (I32) � for integer values, e.g. set of parameters ID, length of trend bu�er, type
of generated signal, error code, counter output, etc. The names of integer variables
use usually lowercase letters and the initial character (always lowercase) is in most
cases {i, k, l, m, n, or o}, e.g. ips, l, isig, iE, etc. But several exceptions to this
rule exist, e.g. cnt in the COUNT block, btype, ptype1, pfac and afac in the TRND
block, etc.

Double (F64) � for �oating point values (real numbers), e.g. gain, saturation limits,
results of the majority of math functions, PID controller parameters, time interval
lengths in seconds, etc. The names of �oating point variables use only lowercase
letters, e.g. hilim, y, ti, tt.

The function block names in the REXYGEN system use uppercase letters, numbers
and the '_' (underscore) character. It is recommended to append a lowercase user-de�ned
string to the standard block name when creating user instances of function blocks.

1.4. SIGNAL QUALITY CORRESPONDING WITH OPC 25

It is explicitly not recommended to use diacritic and special characters like spaces,
CR (end of line), punctuation, operators, etc. in the user-de�ned names. The use of such
characters limits the transferability to various platforms and it can lead to incompre-
hension. The names are checked by the REXYGEN Compiler compiler which generates
warnings if inappropriate characters are found.

1.4 Signal Quality Corresponding with OPC

Every signal (input, output, parameter) in the REXYGEN system has the so-called quality
�ags in addition to its own value of corresponding type (table 1.1). The quality �ags
in the REXYGEN system correspond with the OPC (Open Platform Communications)
speci�cation [2]. They can be represented by one byte, whose structure is explained in
the table 1.2.

Bit number 7 6 5 4 3 2 1 0
Bit weight 128 64 32 16 8 4 2 1
Bit �eld Quality Substatus Limits

Q Q S S S S L L
BAD 0 0 S S S S L L
UNCERTAIN 0 1 S S S S L L
not used in OPC 1 0 S S S S L L
GOOD 1 1 S S S S L L

Table 1.2: The quality �ags structure

The basic quality type is determined by the QQ �ags in the two most important
bits. Based on these the quality is distinguished between GOOD, UNCERTAIN and BAD. The
four SSSS bits provide more detailed information about the signal. They have di�erent
meaning for each basic quality. The two least signi�cant bits LL inform whether the
value exceeded its limits or if it is constant. Additional details and the meaning of all
bits can be found in [2], chapter 6.8. The list of blocks propagating signal quality is given
in table 1.3.

The principle of quality propagation between blocks operates as follows: The lowest
quality among all data inputs to a block is determined and applied to all data outputs.
Any unconnected input is considered as good quality (GOOD). Quality on control inputs is
not tracked; however, control inputs can in�uence the propagation of quality from data

inputs. On status outputs, the quality is invariably set to good (GOOD).
For instance, in a DEL block, the input u is considered data because it carries opera-

tional data. The input R1 is classi�ed as control since it controls the block's operation.
The output y is data because it conveys the block's output information. The RDY output
is status as it indicates the operational state of the block.

Except for certain cases (SAI, VIN, S1OF2), the quality does not in�uence the block's
algorithm (i.e., the actual values at the outputs). Some blocks may assign a lower quality
(UNCERTAIN, BAD) as a result of their algorithm (e.g., DEL prior to bu�er �lling or DIV

26 CHAPTER 1. INTRODUCTION

ABSROT ABS ADDHEXD ADD ANDHEXD AND ARLY ASW

ATMT AVG AVSI AVS BDHEXD BITOP BMHEXD BPF

CDELSSM CMP CNA CNB CNDR CNI CNR CNS

CONCAT COUNT CSSM DDELSSM DELM DEL DER DFIR

DIF DIV DSSM EAS EATMT EDGE EMD EQ

EVAR FIND FIWR FLCU FNXY FNX FOPDT FRID

GAIN GETPA GETPR GETPS GETPX IADD IDIV IMOD

IMUL INTE INTSM IOASYNC ISSW ISUB ITOI ITOS

KDER LC LEN LIN LLC LPBRK LPF LPI

MCU MDLI MDL MID MINMAX MUL MVD NANINF

NOT NSCL ORHEXD OR OSD PIDAT PIDE PIDGS

PIDMAX PIDMA PIDUI PIDU POL POUT PSMPC PWM

RDFT REC REL REPLACE RLIM RLY RS RTOI

RTOS RTOV SAT SC2FA SCUV SCU SELHEXD SELSOCT

SELU SETPA SETPR SETPS SETPX SHIFTOCT SHLD SINT

SMHCCA SMHCC SOPDT SPIKE SQRT SQR SR SSW

STOR SUB SWR SWU TIMER TRIM TSE UTOI

VDEL VIN VTOR ZV4IS

Table 1.3: The list of blocks prapagating signal quality

when dividing by zero).

Chapter 2

EXEC � Real-time executive

con�guration

Contents

ALARMS � REXYGEN alarms list . 29

ARC � REXYGEN archive . 32

DATA � Include external �les . 34

EXEC � Real-time executive . 35

HMI � HMI con�guration . 37

INFO � Additional project information 39

IODRV � REXYGEN input/output driver 40

IOTASK � REXYGEN driver-triggered task 42

LPBRK � Loop break . 43

MODULE � REXYGEN extension module 44

OPCUA � REXYGEN OPCUA server con�guration 45

OSCALL � Operating system calls . 46

PROJECT � Additional project settings 47

QTASK � REXYGEN quick task . 48

SLEEP � Timing in Simulink . 49

SRTF � Set run-time �ags . 50

STATELOAD � Load multiple block states and parameters 52

STATESAVE � Save multiple block states and parameters 54

SYSEVENT � Read system log . 56

SYSLOG � Write system log . 58

TASK � REXYGEN standard task 59

TIODRV � REXYGEN input/output driver with tasks 61

WWW � Internal webserver content 63

27

28 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

The EXEC library is essential for setting up the real-time executive in the REXY-

GEN system and includes key blocks like EXEC, TASK, QTASK, and HMI. These blocks are
fundamental for managing task execution, determining process priorities, and interact-
ing with user interfaces, signi�cantly contributing to the e�ciency and controllability of
applications within the REXYGEN ecosystem.

29

ALARMS � REXYGEN alarms list

Block Symbol Licence: STANDARD

ALARMS

Function Description

The ALARMS is placed in the main project �le and allows the user to con�gure list of
alarms. Alarms are activated by the ALM or ALMI blocks. Alarms are de�ned in a .csv

(Comma separated variable) �le. The afile parameter contains the �le name of the
.csv �le. An alarm could be activated also by the ALB, ALBI, ALN, ALNI blocks, but these
blocks not use de�nitions in the ALARMS block.

The con�guration �le has the following columns:

id . . . Unique alarm reference number. The number is used in the ALM

block, in archive records, etc.
level . . . The value stored into an archive record (in the level �eld).
archives . . . Bit �eld � identi�es archives for recording events associated with

the alarm (alarm starts, ends, acknowledges). E.g. 0 = not stored
in the archive, 1 = stored in the 1st archive, 2 = stored in the 2nd
archive, 4 = stored in the 3rd archive, 3 = stored in the 1st and
2nd archives, etc.

group . . . Reserved for future use, now some number (or bit�eld up to 64
bits) to �lter alarm's list in HMI.

name . . . Name of the alarm; can be used as the alarm identi�er, so it should
be unique.

description . . . A text description for the alarm, allowing for multilingual text
formatting and the incorporation of values related to the alarm
within the description.

Multilingual support

REXYGEN supports multilingual alarm description. The description �eld must be in the
form:

<lang1_ID>:<lang1 text>|<lang2_ID>:<lang2 text>|<lang3_ID>:<lang3 text>

Number of languages is not limited, but total size of the �eld is limited to 32765 bytes
(english characters). The lang1 (language 1) is used if the user sets unsupported language.
If the user sets an empty language (i.e. ""), the entire text will be displayed, i.e. all
languages including formatting marks.
Example: Let's expect the description �eld in the form: cz:P°ep¥tí|en:High voltage

alarm. The user will see High voltage alarm if the language is set to en. The user will

30 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

see P°ep¥tí if the language is set to cz. The user will see P°ep¥tí in all other cases (for
example if the language is set to de, cze, EN, en-us, etc.).

Associated values

The description �eld can contain special marks that is replaced by values from control
algorithm � so-called associated values. The mark has the form:

%<value number>[<format>][:<number of characters>[:<precision>]]

where the format is one of the following characters:
b, B . . . binary value (string on or off is shown)
d, D . . . integer number shown as decimal string, the default value for integer types
x, X . . . integer number shown as hexadecimal string
f, F . . . real number in �x point form, the precision of it is a number of digits behind

decimal point (if precision is speci�ed)
e, E . . . real number in exponential (scienti�c) form
g, G . . . the same as F or E (depends on actual value), the default format for real

number types
s, S . . . text string

The default type is used if the format is not speci�ed or if the type of the value is not
compatible with the speci�ed format. More characters than it is speci�ed is used if it is
necessary to show the correct value.

Format Examples:
%2 . . . value of 2nd variable (e.g. av2 in the ALM or ALMI block)
%1:8:2 . . . value of 1st variable (e.g. av1 in the ALM or ALMI block), 2 characters behind

decimal point, total 8 characters (leading spaces are used if necessary)
%1e . . . value of 1st variable (e.g. av1 in the ALM or ALMI block) in exponential form

The ALB, ALBI blocks not use associated values. The ALN and ALNI maps it this way:
1 . . . value of the u input
2 . . . value of the h parameter (input)
3 . . . value of the hh parameter (input)
4 . . . value of the l parameter (input)
5 . . . value of the ll parameter (input)
6 . . . value of the tout parameter (input)

Remarks:

• It is possible to use comma or semicolon as a separator in the .csv �le. The �rst
row with column names is optional.

• Alarms (lines) in the �le must be in the ascending order respect to the id.

• The id must be unique including other alarming/archiving blocks (TRND, ALB, ALN,
...).

31

• It is possible to use the internal editor (the Configure button in parametric dialog)
or external tool. Internal editor generates a correct example if the .csv �le does
not exist.

• The blocks ALB, ALBI, ALN and ALNI regard lvl > 127 as an event, where only its
begin (nor end nor acknowledge) is stored into archives. The blocks ALM, ALMI do
not implement this event function.

• Alarm's associated values are stored into alarm's value when alarm is triggered
(begin). Later changes of the associated values are not updated in an alarm window
in HMI.

• Alarm window in HMI can show also alarm name. It is the name of the block
(without block type if it pre�xes the block name) that is connected to the alarm.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

afile Alarms de�nition CSV �lename String

32 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

ARC � REXYGEN archive

Block Symbol Licence: STANDARD

prev next

ARC

Function Description

The ARC block is intended for archives con�guration in the REXYGEN control system. The
archives can be used for continuous recording of alarms, events and history trends directly
on the target platform. The output Archives of the EXEC block must be connected to
the prev input of the �rst archive. The following archives can be added by connecting
the input prev with the preceding archive's output next. Only one archive block can
be connected to each next output, the output of the last archive remains unconnected.
The resulting archives sequence determines the order of allocation and initialization of
individual archives in the REXYGEN system and also the index of the archive, which
is used in the arc parameter of the archiving blocks (see chapter 10). The archives are
numbered from 1 and the maximum number of archives is limited to 15 (archive no. 0 is
the internal system log).

The atype parameter determines the type of archive from the data-available-after-
restarting point of view. The admissible types depend on the target platform properties,
which can be inspected in the Diagnostics section of the REXYGEN Studio program after
successful connecting to the target device. The following options are usually available:

• 1: RAM memory: The archive is allocated in RAM memory (it is irretrievably
lost after restarting RexCore).

• 2: Permanent memory: The archive is allocated in backup memory, e.g. CMOS
(remains after restarting RexCore).

• 3: Disk: Archive is saved to disk (remains after restarting RexCore).

Archive consists of sequenced variable-length items (memory and disk space opti-
mization) with a timestamp. Therefore the other parameters are the total archive size in
bytes asize and maximum number of timestamps nmarks for speeding-up the sequential
seeking in the archive.

The frequency of writing values can be in�uenced by the period parameter. For
devices using �ash memory or SD cards as a disk, it is not suitable to write values too
often, therefore it is appropriate to set this parameter to a value in the order of minutes.
Furthermore, it is possible to select a suitable source of time stamps with the timesrc

parameter.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

33

Input

prev Input for chaining archives Long (I32)

Parameter

atype Archive type ⊙1 Long (I32)

1 RAM memory
2 Permanent memory
3 Disk

asize Archive size [bytes] ↓256 ⊙102400 Long (I32)

nmarks Number of time stamps ↓2 ⊙720 Long (I32)

ldaymax Maximum size of archive per day [bytes]
↓1000 ↑2147480000 ⊙1048576

Large (I64)

period Period of writing data to disk [s] ⊙60.0 Double (F64)

timesrc Source of timestamps ⊙1 Long (I32)

1 CORETIMER
2 CORETIMER (precise)
3 RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC

Output

next Output for chaining archives Long (I32)

34 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

DATA � Include external �les

Block Symbol Licence: STANDARD

DATA

Function Description

The DATA block is a so-called "pseudo-block" which allows to insert external �les or whole
directories onto the target device. The only �le where the block can be placed is the main
project �le with a single EXEC block. Therefore, the block is included in the EXEC library.

The path to the �le or directory on the development device is given by the Source

parameter and can be either absolute or relative. The relative path always starts from
the project folder. The Target parameter speci�es the folder and �le name on the target
device. The target folder is always inside the /rex/data directory and the value of the
Target parameter is relative to this directory. For uploading, the IncludeData parameter
must be set to on.

The block has no inputs or outputs. The DATA block itself does not become a part of
the �nal binary con�guration, only the �les it points to do. Be careful when inserting big
�les or directories. The data can be compressed for transfer by enabling the gzip com-
pression using the Compression parameter. It reduces the demands on the transmission
line but slightly increases the demands on the processor of the target device.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

35

EXEC � Real-time executive

Block Symbol Licence: STANDARD

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

EXEC

Function Description

The EXEC block is a cornerstone of the so-called project main �le in the .mdl format,
which con�gures individual subsystems of the REXYGEN system. No similar block can
be found in the Matlab-Simulink system. The EXEC block and all connected con�guration
blocks do not implement any mathematic algorithm. Such con�guration structure is used
by the REXYGEN Compiler compiler during building of the overall REXYGEN control
system application.

The REXYGEN system con�guration consists of modules (Modules), input/output
drivers (Drivers), archive subsystem (Archives) and real-time subsystem, which in-
cludes quick computation tasks (see the QTASK function block description for details)
and four priority levels (Level0 to Level3) for inserting computation tasks (see the
TASK function block description for details).

The base (shortest) period of the application is determined by the tick parameter.
This value is checked by the REXYGEN Compiler compiler as its limits vary by selected
target platform. Generally speaking, the lower period is used, the higher computational
requirements of the REXYGEN system runtime core (RexCore) are.

The periods of individual computation levels (Level0 to Level3) are determined by
multiplying the base period tick by the parameters ntick0 to ntick3. Parameters pri0
to pri3 are the logical priorities of corresponding computation levels in the REXYGEN

system. The REXYGEN system uses 32 logical priorities, which are internally mapped to
the target platform operating system dependent priorities. The highest logical priority
of the REXYGEN system is 0, the value 31 means the lowest. Should two tasks with
di�erent priorities run at the same time, the lower priority (higher value) task would be

36 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

interrupted by the higher priority (lower value) task.
The default priorities pri0 to pri3 re�ect the commonly accepted idea that the

"fast" tasks (short sampling period) should have higher priority than the "slow" ones
(the so-called Rate monotonic scheduling). This means that the default priorities need
not to be changed in most cases. Impetuous changes can lead to unpredictable e�ects!

On multi-core CPUs, the parameters cpu_rt and cpu_other can be used to reserve
a core for real-time tasks (e.g. Drivers and Levels) and a core for other REXYGEN

tasks (e.g. diagnostics or web server). After �lling the parameter on a given CPU, only
the de�ned REXYGEN tasks will run. Furthermore, the parameters cpu0 to cpu3 can
be used to assign a core to a given Level. The CPUs are numbered starting from 0,
where -1 means the default setting. The parameters cpu0-3 have priority over cpu_rt
and cpu_other.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

target target ⊙Generic target device String

tick Base tick (period) of the runtime core [s] ⊙0.05 Double (F64)

ntick0..ntick3 Period of tasks in Level0 (tick*ntick0) ↓1 ⊙10 Long (I32)

pri0..pri3 Priority of tasks in Level0 ↓3 ↑31 ⊙5 Long (I32)

cpu_rt Default CPU core for real-time tasks (-1=default, 0=core 0,
1=core 1, ...) ↓-1 ↑127 ⊙-1

Long (I32)

cpu_other Default CPU core for non real-time tasks (-1=default, 0=core 0,
1=core 1, ...) ↓-1 ↑127 ⊙-1

Long (I32)

cpu0..cpu3 Level0 tasks CPU core (-1=default, 0=core 0, 1=core 1, ...)
↓-1 ↑127 ⊙-1

Long (I32)

Output

Modules Anchor for chain of modules Long (I32)

Drivers Anchor for chain of I/O drivers Long (I32)

Archives Anchor for chain of archives Long (I32)

QTask Anchor for connecting a quick task Long (I32)

Level0..Level3 Anchor for chain of Level0 tasks Long (I32)

37

HMI � HMI con�guration

Block Symbol Licence: STANDARD

HMI

Function Description

The HMI block is a so-called "pseudo-block" which stores additional settings and param-
eters related to the Human-Machine Interface (HMI) and the contents of the internal
web server. The only �le where the block can be placed is the main project �le with a
single EXEC block. Therefore, the block is included in the EXEC library.

The REXYGEN system currently provides three straightforward methods of how to
create Human-Machine Interface:

• WebWatch is an auto-generated HMI from the REXYGEN Studio development
tool during project compilation. It has similar look, attributes and functions as the
online mode of the REXYGEN Studio development tool. The main di�erence is that
WebWatch is stored on the target device, is available from the integrated web
server and may be viewed with any modern web browser or any application that is
compatible with HTML, SVG and JavaScript. The WebWatch is a perfect tool
for instant creation of HMI that is suitable for system developers or integrators. It
provides a graphical interaction with almost all signals in the control algorithm.

• WebBuDi, which is an acronym forWeb Buttons and Displays, is a simple JavaScript
�le with several declarative blocks that describe data points which the HMI is con-
nected to and assemble a table in which all the data is presented. It provides a
textual interaction with selected signals and is suitable for system developers and
integrators or may serve as a fall-back mode HMI for non-standard situations.

• RexHMI is a standard SVG �le that is edited using REXYGEN HMI Designer. The
REXYGEN HMI Designer is a great tool for creating graphical HMI that is suitable
for operators and other end users.

The IncludeHMI parameter includes or excludes the HMI �les from the �nal binary
form of the project. The HmiDir speci�es a path to a directory where the �nal HMI is
located and from where it is inserted into the binary �le during project compilation.
The path may be absolute or relative to the project. The GenerateWebWatch speci�es
whether a WebWatch HMI should be generated into HmiDir during compilation. The
GenerateRexHMI speci�es whether a RexHMI andWebBuDi should be generated into
HmiDir during compilation.

The logic of generating and including HMI during project compilation is as follows:

38 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

1. Delete all contents from HmiDir when GenerateWebWatch or GenerateRexHMI is
speci�ed.

2. Generate RexHMI and WebBuDi from SourceDir into HmiDir if GenerateRexHMI
is enabled. All WebBuDi source �les should be named in a *.hmi.js format and
all RexHMI source �les should be named in a *.hmi.svg format. The generated
�les are then named *.html.

3. Copy all contents from SourceDir exceptWebBuDi or RexHMI source �les into
HmiDir if IncludeHMI is enabled.

4. Insert HMI from HmiDir into binary con�guration if IncludeHMI is enabled.

The block does not have any inputs or outputs. The HMI block itself does not become
a part of the �nal binary con�guration, only the �les it points to do. Be careful when
inserting big �les or directories as the integrated web server is not designed for massive
data transfers. The data can be compressed for transfer by enabling the gzip compression
using the Compression parameter. It reduces the demands on the transmission line but
slightly increases the demands on the processor of the target device.

For a proper operation of the HMI block the compilation must be launched from the
REXYGEN Studio development tool and the REXYGEN HMI Designer must be installed.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

IncludeHMI Include HMI �les in the project ⊙on Bool

HmiDir Output folder for HMI �les ⊙hmi String

SourceDir Source directory ⊙hmisrc String

GenerateWebWatch Generate WebWatch HMI source �les from MDL �les
⊙on

Bool

GenerateRexHMI Build HMI from SVG and JS �les when compiling project
⊙on

Bool

RedirectToHMI Webserver will automatically redirect to HMI webpage
⊙on

Bool

Compression Enable data compression Bool

39

INFO � Additional project information

Block Symbol Licence: STANDARD

INFO

Function Description

The INFO block is a so-called "pseudo-block" which stores textual information about a
real-time executive. The only �le where the block can be placed is a main project �le
with a single EXEC block. Therefore, the block is included in the EXEC library.

The block does not have any inputs or outputs. The information speci�ed with this
block becomes a part of the �nal con�guration, is stored on the target device and may
be seen on di�erent diagnostics screens but does not have any impact on execution of
the control algorithm or target's behaviour.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

Title Project title String

Author Project author String

Description Brief description of the project String

Customer Information about the customer String

40 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

IODRV � REXYGEN input/output driver

Block Symbol Licence: STANDARD

prev next

IODRV

Function Description

The input/output drivers of the REXYGEN system are implemented as extension modules
(see the MODULE block). A module can contain several drivers, which are added to the
REXYGEN system con�guration by using the IODRV blocks. The prev input of the block
must be connected with the Drivers output of the EXEC block or with the next output of
a IODRV block which is already included in the con�guration. There can be only one driver
connected to the next output of the IODRV block. The next output of the last driver in the
con�guration remains unconnected. This means that the drivers create a unidirectional
chain which de�nes the order of initialization and execution of the individual drivers, see
the MODULE block for more details.

Each driver of the REXYGEN system is identi�ed by its name, which is de�ned by
the classname parameter (beware, the name is case-sensitive!). If the name of the driver
di�ers from the name of the module containing the given driver, the module name must
be speci�ed by the module parameter, it is left blank otherwise. Details about these two
parameters can be found in the documentation of the corresponding REXYGEN system
driver.

The majority of drivers stores its own con�guration data in �les with .rio extension
(REXYGEN Input/Output), whose name is speci�ed by the cfgname parameter. The .rio
�les are created in the same directory where the project main �le is located (.mdl �le with
the EXEC block). Driver is con�gured (e.g. names of the input/output signals, connection
to physical inputs/outputs, parameters of communication with the input/output device,
etc.) in an embedded editor provided by the driver itself. The editor is opened when the
Configure button is pressed in the parameter dialog of the IODRV block in the REXYGEN
Studio program of the REXYGEN control system. In Matlab/Simulink the editor is opened
upon ticking the "Tick this checkbox to call IOdrv EDIT dialog" checkbox.

The remaining parameters are useful only when the driver implements its own com-
putational task (see the corresponding driver documentation). The factor parameter
de�nes the driver's task execution period by multiplying the EXEC block's tick param-
eter factor times (factor*tick). The stack parameter de�nes the stack size in bytes.
It is recommended to keep the default setting unless stated otherwise in the driver
documentation. The parameter pri de�nes the logical priority of the driver's task. Inap-
propriate priority can in�uence the overall performance of the control system critically so
it is highly recommended to check the driver documentation and the load of the control
system (drivers, levels and tasks) in the Diagnostics section of the REXYGEN Studio

41

program. The cpu parameter can be used to specify where the driver thread should run
on multi-CPU devices.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Input for chaining I/O drivers Long (I32)

Parameter

module Module name String

classname I/O driver class name ⊙DrvClass String

cfgname Con�guration �le name ⊙iodrv.rio String

factor Execution factor ↓1 ⊙10 Long (I32)

stack Stack size [bytes] ↓1024 ⊙10240 Long (I32)

pri Driver thread logical priority ↓1 ↑31 ⊙3 Long (I32)

cpu CPU core assigned to driver thread (-1=default, 0=core 0,
1=core 1, ...) ↓-1 ↑127 ⊙-1

Long (I32)

Output

next Output for chaining I/O drivers Long (I32)

42 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

IOTASK � REXYGEN driver-triggered task

Block Symbol Licence: STANDARD

prev next

IOTASK

Function Description

Standard tasks of the REXYGEN system are integrated into the con�guration using the
TASK or QTASK blocks. Such tasks are executed by the system timer, whose tick is
con�gured by the EXEC block.

But the system timer can be unsuitable in some cases, e.g. when the shortest ex-
ecution period is too long or when the task should be executed by an external event
(input signal interrupt) etc. In such a case the IOTASK can be executed directly by the
I/O driver con�gured by the TIODRV block. The user manual of the given driver provides
more details about the possibility and conditions of using the above mentioned approach.
Note: The parameter MDLOPEN is intended for the internal needs of the REXYGEN
system and cannot be changed manually.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Input for chaining I/O tasks Long (I32)

Parameter

factor Execution factor ⊙1 Long (I32)

stack Stack size [bytes] ⊙10240 Long (I32)

filename Corresponding MDL �le String

MDLOPEN Is the corresponding MDL �le open? Bool

Output

next Output for chaining I/O tasks Long (I32)

43

LPBRK � Loop break

Block Symbol Licence: STANDARD

Function Description

The LPBRK block is an auxiliary block often used in the control schemes consisting of the
REXYGEN system function blocks. The block is usually placed in all feedback loops in
the scheme. Its behaviour di�ers in the REXYGEN system and the Simulink system.

The LPBRK block creates a one-sample delay in the Simulink system. If there exists
a feedback loop without the LPBRK block, the Simulink system detects an algebraic loop
and issues a warning (Matlab version 6.1 and above). The simulation fails after some
time.

The REXYGEN Compiler omits the LPBRK block, the only e�ect of this block is the
breaking of the feedback loop at the block's position. If there exists a loop without the
LPBRK block, the REXYGEN Compiler compiler issues a warning and breaks the loop at an
automatically determined position. It is recommended to use the LPBRK block in all loops
to achieve the maximum compatibility between the REXYGEN system and the Simulink
system.

Note: Behaviour of the LPBRK block has been changed since the version 3.0. The
block is not removed by the REXYGEN Compiler but is present in the algorithm and
clears the quality �ag of the y output. This change is useful and necessary due to the
quality propagation in function blocks. Original behaviour (e.g. the block is removed
from the algorithm) can be forced by the RB = on parameter. The main function of the
block (indication of the feedback signal) remains unchanged in all cases.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal Double (F64)

Parameter

RB Remove block from con�guration (loopback indicator only) Bool

Output

y Output signal Double (F64)

44 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

MODULE � REXYGEN extension module

Block Symbol Licence: STANDARD

prev next

MODULE

Function Description

The REXYGEN system has an open architecture thus its functionality can be extended.
Such extension is provided by modules. Each module is identi�ed by its name placed
below the block symbol. The individual modules are added to the project main �le by
connecting the prev input with the Modules output of the EXEC block or with the next
output of a MODULE which is already included in the project. There can be only one
module connected to the next output of the MODULE block. The next output of the
last module in the project remains unconnected. This means that the modules create a
unidirectional chain which de�nes the order of initialization of individual modules.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Input for chaining modules Long (I32)

Output

next Output for chaining modules Long (I32)

45

OPCUA � REXYGEN OPCUA server con�guration

Block Symbol Licence: STANDARD

OPCUA

Function Description

The OPCUA block functions as a con�guration tool for the OPC UA server and is referred
to as a "pseudo-block." This block can only be placed in the main project �le, which
contains the EXEC block. Therefore, it belongs to the EXEC category.

The server is con�gured using the opcua_cfg parameter, the options for which are
detailed in the documentation [3], see table 4.2. By default, the parameter contains a
sample con�guration.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

opcua_cfg Con�guration of the OPCUA server String

46 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

OSCALL � Operating system calls

Block Symbol Licence: STANDARD

TRG
E

iE

OSCALL

Function Description

The OSCALL block is intended for executing operating system functions from within the
REXYGEN system. The chosen action is performed upon a rising edge (off→on) at the
TRG input. However, not all actions are supported on individual platforms. The result of
the operation and the possible error code are displayed by the E and iE outputs.

Note that there is also the EPC block available, which allows execution of external
programs.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

TRG Trigger of the selected action Bool

Parameter

action System function to perform ⊙1 Long (I32)

1 Reboot system
2 System shutdown
3 System halt
4 Flush disc caches
5 Lock system partition
6 Unlock system partition
7 Disable internal webserver
8 Enable internal webserver

cmd Reserved for internal use String

Output

E Error indicator Bool

off . . . No error
on An error occurred

iE Error code Long (I32)

47

PROJECT � Additional project settings

Block Symbol Licence: STANDARD

PROJECT

Function Description

The PROJECT block is a so-called "pseudo-block" which stores additional settings and
parameters related to a project and a real-time executive. The only �le where the block
can be placed is a main project �le with a single EXEC block an so it belongs to the EXEC
category.

The block does not have any inputs or outputs. The information speci�ed with this
block becomes a part of the �nal con�guration, is stored on the target device and may
be seen on di�erent diagnostics screens but does not have any impact on execution of
the control algorithm or target's behaviour.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

CompileParams RexComp command-line options String

SourcesOnTarget Store source �les on target device ⊙on Bool

TargetURL Default URL address of the target device String

LibraryPath Path to libraries referenced in the project String

PreBuild Command executed (by operating system) before compilation String

PostBuild Command executed (by operating system) after compilation String

48 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

QTASK � REXYGEN quick task

Block Symbol Licence: STANDARD

prev

QTASK

Function Description

The QTASK block is used for including the so-called quick task with high priority into the
executive of the REXYGEN system. This task is used where the fastest processing of the
input signals is necessary, e.g. digital �ltering of input signals corrupted with noise or
immediate processing of switches connected via digital inputs. The quick task is added
into the con�guration by connecting the prev input with the EXEC block's QTask output.
The quick task is initialized before the initialization of the Level0 computation level (see
the TASK block).

There can be only one QTASK block in the REXYGEN control system. It runs with the
logical priority no. 2. The algorithm of the quick task is con�gured the same way as the
standard TASK, it is a separate .mdl �le.

The execution period of the task is given by a multiple of the factor parameter and
the tick of the EXEC block. The task is executed with the shortest period of tick seconds
for factor=1. In that case the system load is the highest. Under all circumstances the
QTASK must be executed within tick seconds, otherwise a real-time executive fatal error
occurs and no other tasks are executed. Therefore the QTASK block must be used with
consideration. The block's execution time is shown in the Diagnostics section of the
REXYGEN Studio program.
Note: The parameter MDLOPEN is intended for the internal needs of the REXYGEN
system and cannot be changed manually.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Connection to EXEC block Long (I32)

Parameter

factor Execution factor ⊙1 Long (I32)

stack Stack size [bytes] ⊙10240 Long (I32)

filename Corresponding MDL �le String

MDLOPEN Is the corresponding MDL �le open? Bool

49

SLEEP � Timing in Simulink

Block Symbol Licence: STANDARD

SLEEP

Function Description

The Matlab/Simulink system works natively in simulation time, which can run faster or
slower than real time, depending on the complexity of the algorithm and the computing
power available. Therefore the SLEEP block must be used when accurate timing and
execution of the algorithm in the Matlab/Simulink system is required. In the REXYGEN
system, timing and execution is provided by system resources (see the EXEC block) and
the SLEEP block is ignored.

In order to perform real-time simulation of the algorithm, the SLEEP block must be
included. It guarantees that the algorithm is executed with the period given by the ts

parameter unless the execution time is longer than the requested period.
The SLEEP block is implemented for Matlab/Simulink running in Microsoft Win-

dows operating system. It is recommended to use periods of 100 ms and above. For the
proper functionality the 'Solver type' must be set to fixed-step and discrete (no

continuous states) in the 'Solver' tab of the 'Simulation parameters' dialog. Further
the Fixed step size parameter must be equal to the ts parameter of the SLEEP block.
There should be at most one SLEEP block in the whole simulation scheme (including all
subsystems).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

ts Sleep time [s] ⊙0.1 Double (F64)

50 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

SRTF � Set run-time �ags

Block Symbol Licence: ADVANCED

EXDIS

EXOSH

DGEN

DGRES

DGLOG

E

iE

SRTF

Function Description

The SRTF block (Set Run-Time Flags) can be used to in�uence the execution of tasks
, subsystems (sequences) and blocks of the REXYGEN system. This block is not meant
for use in Matlab-Simulink. When describing this block, the term object refers to a
REXYGEN system object running in real-time, i.e. input/output driver, one of the tasks,
subsystem or a simple function block of the REXYGEN system.

All the operations described below a�ect the object, whose full path is given by the
bname parameter. Should the parameter be left blank (empty string), the operation ap-
plies to the nearest owner of the SRTF object, i.e. the subsystem in which the block is
directly included or the task containing the block. The full path to the block (object) is
case sensitive. Individual layers are separated by dots, object names except tasks (TASK,
QTASK) begin with one of the following special characters:

• � � computational level (Level), e.g. �0 for Level0

• & � input-output driver (I/O Driver), e.g. &WcnDrv

The name of the task executed by the I/O controller (IOTASK) is entered in the form
&<driver_name>.<task_name>.

The run-time �ags allow the following operations:

• Disable execution of the object by setting the EXDIS input to on. The execution
can be enabled again by using the input signal EXDIS = off. The EXDIS input sets
the same run-time �ag as the Halt/Run button in the upper right corner of the
Workspace tab in the Diagnostics of the REXYGEN Studio program.

• One-shot execution of the object. If the object execution is disabled by the
EXDIS = on input or by the Diagnostics section of the REXYGEN Studio program,
it is possible to trigger one-shot execution by EXOSH = on.

• Enable diagnostics for the given object by DGEN = on. The result is equivalent to
ticking the Enable checkbox in the Diagnostics section of the corresponding tab
(I/O Driver, Level, Quick Task, Task, I/O Task, Sequence) of the REXYGEN

Studio program.

51

• Reset diagnostic data of the given object by DGRES = on. The same �ag can be
set by the Reset button in the Diagnostics section of the corresponding tab in
the REXYGEN Studio program. The �ag is automatically set back to 0 when the
data reset is performed.

The following table shows the �ags available for various objects in the REXYGEN

system.

Object type EXDIS EXOSH DGEN DGRES

I/O Driver
√ √ √ √

Level
√

×
√ √

Task
√ √ √ √

Quick Task
√ √ √ √

I/O Task
√ √ √ √

Sequence, subsystem
√

×
√ √

Block
√

× × ×

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

EXDIS Disable execution Bool

EXOSH One-shot execution Bool

DGEN Enable diagnostics Bool

DGRES Reset diagnostic data Bool

DGLOG Enable verbose diagnostics Bool

Parameter

bname Full path to the controlled task or block String

Output

E Error indicator Bool

off . . . No error
on An error occurred

iE Error code Long (I32)

0 No error
1 Object not found (invalid bname parameter)
2 REXYGEN internal error (invalid pointers)
3 Flag could not be set (timeout)

52 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

STATELOAD � Load multiple block states and parameters

Block Symbol Licence: ADVANCED

LOAD

InState

uChain

DONE

iE

STATELOAD

Function Description

The STATELOAD block reloads values of state and parameters from a �le or string. The
�le is speci�ed by the filename parameter and must be in JSON format, usually stored
by the STATESAVE block. It is also possible to read data from the InState input, which
is a JSON string in the same format as the input �le. The InState input is used if the
filename parameter is empty.

All values con�gured by the parameters blocks, depth, and mask that are stored in
the �le are loaded. The blocks parameter contains relative paths (starting with a dot) to
the loaded blocks separated by semicolons. If blocks is empty, all blocks of the current
subsystem are loaded. If the loaded block is a subsystem, the depth parameter speci�es
how many levels are also loaded:

• 0: current level only,

• n: current level and blocks in subsystems of other n levels.

Furthermore, you can use mask to specify which objects will be loaded. Each bit of a
number means:

• 1: inputs,

• 2: outputs,

• 4: parameters,

• 8: internal states,

• 16: array parameters,

• 32: array states,

• 64: cyclic (trend) bu�ers,

• 256: metadata (STATESAVE only).

If the parameter Strict is set to on, the block checks if the con�gured blocks and values
match those stored in the �le, and the �le is refused if there is a mismatch.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

53

Input

LOAD Trigger to load the state Bool

InState JSON string to load if the �lename parameter is empty String

uChain Useful for placing the block in the correct execution order Long (I32)

Parameter

filename Filename from which to load String

blocks List of blocks to load String

depth Speci�es how many levels are loaded ↓0 ↑65535 Long (I32)

mask Select which objects are loaded ↓0 ↑65535 ⊙65535 Long (I32)

LoadOnInit The �le is loaded during the con�guration initialization ⊙on Bool

STRICT The �le is checked against the current con�guration ⊙on Bool

Output

DONE State has been loaded Bool

iE Error code Error

54 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

STATESAVE � Save multiple block states and parameters

Block Symbol Licence: ADVANCED

SAVE

uChain

OutState

DONE

iE

STATESAVE

Function Description

The STATESAVE block stores the values of states and parameters in a �le. The �le is
speci�ed by the filename parameter and is in JSON format, which can usually be
reloaded by the STATELOAD block. It is also possible to store data in the OutState output,
which is a JSON string in the same format as the �le output. The OutState output is
used if the filename parameter is empty.

All values con�gured by the parameters blocks, depth, and mask are stored. The
blocks parameter contains relative paths (starting with a dot) to the stored blocks
separated by semicolons. If blocks is empty, all blocks of the current subsystem are
saved. If the stored block is a subsystem, the depth parameter speci�es how many levels
are also stored:

• 0: current level only,

• n: current level and blocks in subsystems of other n levels.

Furthermore, you can use mask to specify which objects will be stored. Each bit of a
number means:

• 1: inputs,

• 2: outputs,

• 4: parameters,

• 8: internal states,

• 16: array parameters,

• 32: array states,

• 64: cyclic (trend) bu�ers,

• 256: metadata (STATESAVE only).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

55

Input

SAVE Trigger to save the state Bool

uChain Useful for placing the block in the correct execution order Long (I32)

Parameter

filename Filename where to store String

blocks List of blocks to store String

depth Speci�es how many levels are stored ↓0 ↑65535 Long (I32)

mask Select which objects are saved ↓0 ↑65535 ⊙65535 Long (I32)

SaveOnExit The �le is stored when the con�guration is terminated ⊙on Bool

Output

OutState JSON string where values are stored if the �lename parameter
is empty

String

DONE State has been saved Bool

iE Error code Error

56 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

SYSEVENT � Read system log

Block Symbol Licence: STANDARD

VALID

sEvent

sVal

iVal

SYSEVENT

Function Description

This block serves to read records from the system log or archive. The archive to be read
is selected by the arc parameter. Not all entries are displayed, but only those that pass
through the �lter. It is possible to �lter by item ID (in the case of the system log it is
meaningless - currently, all entries have id=1), by the level of alarm/event (in the case
of the system log, categories are encoded there), and in the case of a text item, also by
value.

The �lter by ID is set using the idfrom and idto parameters, which select the interval
to be displayed. If both values are the same, only one id is displayed, and if idfrom>idto,
�ltering by id is turned o� and all ids are displayed.

The �lter by level is set using the lvlfrom and lvlto parameters, with the same
rules as in the previous case applying.

The �lter by value applies only to text items (in the system log, these are all entries).
An item is displayed only if it contains the text from the filter parameter. If the
parameter is empty, all items are displayed. This parameter has no e�ect on other than
text items, and they are always displayed (if they meet the settings of other �lters).

As long as there are items in the archive that meet the �lter, they are displayed so
that one item is on the output in each tick (in the order they are stored in the archive)
and the VALID output is set to on. When there are no more items, the outputs have the
values corresponding to the last read item, but VALID is set to off.

The output sVal contains the value of the text item (for other types of items, it is
empty). The output iVal contains the value of the integer item (for other types of items,
it is 0). In all cases, all parameters (including the value) are stored in JSON format on
the sEvent output. To retrieve the required values, the PJSOCT block, or possibly the
PJROCT block, can be used.

Note: If multiple sysevent blocks are used, each goes through the respective archive
separately. Depending on the set �lter, it can happen that a certain item from the archive
is output by both blocks, but usually at a di�erent moment.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

57

Parameter

arc Archive to read (0=system log) ↓0 ↑16 Long (I32)

filter String that item must contain String

idfrom Minimum item ID to show ↓0 ↑65535 Long (I32)

idto Maximum item ID to show ↓0 ↑65535 ⊙65655 Long (I32)

lvlfrom Minimum item level to show ↓0 ↑255 Long (I32)

lvlto Maximum item level to show ↓0 ↑255 ⊙255 Long (I32)

Output

VALID Output data are valid (actual) Bool

sEvent Whole archive item in JSON String

sVal Archive item value (string) String

iVal Archive item value (integer) Long (I32)

58 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

SYSLOG � Write system log

Block Symbol Licence: STANDARD

msg
lvl
RUN

SYSLOG

Function Description

The SYSLOG block is intended for writing any messages to the REXYGEN system log. It
can be used for basic logging of user events. To write, it is necessary to have messages
of the given level enabled in the System Logs Con�guration (Target -> System Logs
Con�guration -> Function block messages).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

msg String writing into system log String

lvl Message level Long (I32)

0 Error
1 Warning
2 Information
3 Verbose

Parameter

RUN Enable writing message Bool

59

TASK � REXYGEN standard task

Block Symbol Licence: STANDARD

prev next

TASK

Function Description

The overall control algorithm of the REXYGEN system consists of individual tasks. These
are included by using the TASK block. There can be one or more tasks in the control
algorithm. The REXYGEN system contains four main computational levels represented
by the Level0 to Level3 outputs of the EXEC block. The individual tasks are added to
the given computational level <i> by connecting the prev input with the corresponding
Level<i> output or with the next output of a TASK, which is already included in the given
level <i>. There can be only one task connected to the next output of the TASK block.
The next output of the last task in the given level remains unconnected. This means that
the tasks in one level create a unidirectional chain which de�nes the order of initialization
and execution of the individual tasks of the given level in the REXYGEN system. The
individual levels are ordered from Level0 to Level3 (the QTASK block precedes Level0).

All tasks at the given level <i> are executed with the same priority, which is deter-
mined by the pri<i> parameter of the EXEC block. The execution period of the task is
calculated as a multiple of the factor parameter and the base tick of the ntick<i>∗tick
in the EXEC block.

The time allocated for task execution starts at the start tick and ends at the stop
tick. The start and stop values can be �xed or left to be controlled by the RexCore. For
RexCore control, the parameters can be �lled in as follows:

• start = -1: The execution begins as soon as the previous Task ends.

• start = -2: The execution starts on the next tick after the completion of the
previous task.

• stop = -1: The task execution must �nish before the end of ntick<i>*tick.

• stop = -2: The task execution must �nish in the next tick.

For �xed execution times, start and stop should be a non-negative integer.
The REXYGEN Compiler compiler additionally veri�es that the stop parameter of the

preceding task is less than or equal to the stop parameter of the succeeding task. This
ensures that the allocated time intervals for individual tasks do not overlap. If the timing
of individual levels is inappropriate, tasks may be interrupted by tasks and other events
with higher priority. In such cases, execution is not aborted but delayed (in contrast to
the QTASK block). The Diagnostics section of the REXYGEN Studio program assesses
whether the execution delay is occasional or permanent (the Level and Task tabs).

60 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

Note: The parameter MDLOPEN is intended for the internal needs of the REXYGEN
system and cannot be changed manually.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Input for chaining tasks Long (I32)

Parameter

factor Execution factor ⊙1 Long (I32)

start Start tick Long (I32)

stop Stop tick ⊙1 Long (I32)

stack Stack size [bytes] ⊙10240 Long (I32)

filename Corresponding MDL �le String

MDLOPEN Is the corresponding MDL �le open? Bool

Output

next Output for chaining tasks Long (I32)

61

TIODRV � REXYGEN input/output driver with tasks

Block Symbol Licence: STANDARD

prev
next
Tasks

TIODRV

Function Description

The TIODRV block is used for con�guration of special drivers of the REXYGEN system
which are able to execute tasks de�ned by the IOTASK blocks. See the corresponding
driver documentation. The prev input of the IOTASK block must be connected with the
Tasks output of the TIODRV block. If the driver allows so, the next output of a TIODRV

block which is already included in the con�guration can be used to add more tasks. The
next output of the last task remains unconnected. On the contrary to standard tasks,
the number and order of the driver's tasks are not checked by the REXYGEN Compiler

compiler but by the input-output driver itself.
If the driver cannot guarantee periodic execution of some task (e.g. task is triggered

by an external event), a corresponding �ag is set for the given task. Such a task cannot
contain blocks which require constant sampling period (e.g. the majority of controllers).
If some of these restricted blocks are used, the executive issues a task execution error,
which can be traced using the Diagnostics section of the REXYGEN Studio program. The
cpu parameter can be used to specify where the driver thread should run on multi-CPU
devices.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Input for chaining drivers (with tasks) Long (I32)

Parameter

module Module name String

classname I/O driver class name ⊙DrvClass String

cfgname Con�guration �le name ⊙iodrv.rio String

factor Execution factor ↓1 ⊙10 Long (I32)

stack Stack size [bytes] ↓1024 ⊙10240 Long (I32)

pri Driver thread logical priority ↓1 ↑31 ⊙3 Long (I32)

cpu CPU core assigned to driver thread (-1=default, 0=core 0,
1=core 1, ...) ↓-1 ↑127 ⊙-1

Long (I32)

62 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

Output

next Output for chaining drivers (with tasks) Long (I32)

Tasks Anchor for chain of I/O tasks Long (I32)

63

WWW � Internal webserver content

Block Symbol Licence: STANDARD

WWW

Function Description

The WWW block is a so-called "pseudo-block" which stores additional information about a
contents of an internal web server. The only �le where the block can be placed is a main
project �le with a single EXEC block. Therefore, the block is included in the EXEC library.

The block does not have any inputs or outputs. The block itself does not become
a part of a �nal binary con�guration but the data it points to does. Be careful when
inserting big �les or directories as the integrated web server is not optimized for a large
data. It is possible to shrink the data by enabling gzip compression. The compression
also reduces amount of data transferred to the client, but decompression must be per-
formed on the server side when a client does not support gzip compression which brings
additional load on the target device.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

Source Source directory String

Target Target directory String

Compression Enable data compression Bool

64 CHAPTER 2. EXEC � REAL-TIME EXECUTIVE CONFIGURATION

Chapter 3

INOUT � Input and output blocks

Contents

Display � Numeric display of input values 67

FromFile � From File . 69

FromWorkspace � From Workspace 70

GotoTagVisibility � Visibility of the signal source 71

INCONN � Block for remote value acquirement 72

INQUAD, INOCT, INHEXD � Multi-input blocks 73

From, INSTD � Signal connection or input 75

IOASYNC � Asynchronous reading and writing 77

OUTCONN � Block for remote value setting 78

OUTQUAD, OUTOCT, OUTHEXD � Multi-output blocks 79

OUTRQUAD, OUTROCT, OUTRHEXD � Multi-output blocks with veri�cation 81

OUTRSTD � Output block with veri�cation 82

Goto, OUTSTD � Signal source or output 83

Inport, Outport � Input and output port 85

QFC � Quality �ags coding . 87

QFD � Quality �ags decoding . 88

SubSystem � Subsystem block . 89

ToFile � To File . 91

ToWorkspace � To Workspace . 92

VIN � Validation of the input signal 93

VOUT � Validation of the output signal 94

The INOUT library serves as a crucial interface in the REXYGEN system, enabling
smooth interaction with input/output drivers. It is designed for e�cient simultaneous
signal processing, essential for fast control tasks. This library simpli�es the connection
between control algorithms and hardware, ensuring minimal latency. Additionally, it

65

66 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

provides advanced features, such as virtual linking (�ags) of signals for increased clarity
of diagrams and �exibility of subsystems.

67

Display � Numeric display of input values

Block Symbol Licence: STANDARD

???

Function Description

The Display block shows input value in a selected format. A text su�x may be ap-
pended to the value by specifying the suffix parameter. An actual value is immediately
displayed in REXYGEN Studio after turning on Watch mode. The conversion of the input
into its text representation is performed on the target device at each Decimation period,
so the displayed value can also be retrieved via the REST interface or used in the user
interface.

The Format parameter allows selecting from various value display styles. The display
modes di�er for non-integer and integer values. The o�ered display styles include: For
non-integer values:

• 1: Best �t: Default display of most numbers in the "Full Precision" style, switches
to "Scienti�c Long" style for extremely small or large values.

• 2: short: Displays values with a maximum of 3 decimal places.

• 3: long: Displays values with the maximum number of decimal places (up to 15).

• 4: short_e: Exponential (scienti�c) display of values with a maximum of 3 decimal
places.

• 5: long_e: Exponential (scienti�c) display of values with the maximum number
of decimal places (up to 15).

• 6: bank: Displays values with 2 decimal places.

For integer values:

• 7: hex: The number in hexadecimal format.

• 8: bin: The number in binary format.

• 9: dec: Standard display of numbers in decimal format.

• 10: oct: The number in octal format.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

68 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Input

u Input signal Any

Parameter

Format Format of displayed value ⊙1 Long (I32)

Best fit

short

long . .
short_e

long_e

bank . .
hex . . .
bin . . .
dec . . .oct . . .

Decimation Value is evaluated in each <Decimation> period
↓1 ↑100000 ⊙1

Long (I32)

Suffix A string to append to the value String

DispValue Displayed value String

69

FromFile � From File

Block Symbol Licence: STANDARD

value

FromFile

Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

FileName MAT �le name or path to MAT �le String

Output

value Output signal Any

70 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

FromWorkspace � From Workspace

Block Symbol Licence: STANDARD

value

FromWorkspace

Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

VariableName Name of the variable to load String

Output

value Output signal Any

71

GotoTagVisibility � Visibility of the signal source

Block Symbol Licence: STANDARD

GotoTagVisibility

Function Description

The GotoTagVisibility blocks specify the visibility of the Goto blocks with scoped vis-
ibility. The symbol (tag) de�ned in the Goto block by the GotoTag parameter is available
for all From blocks in the subsystem which contains the appropriate GotoTagVisibility
block and also in all subsystems below in the hierarchy.

The GotoTagVisibility block is required only for Goto blocks whose TagVisibility
parameter is set to scoped. There is no need for the GotoTagVisibility block for local
or global visibility.

The GotoTagVisibility block is used only during project compilation by the REXY-
GEN Compiler compiler. It is not included in the binary con�guration �le for real-time
execution.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

GotoTag Goto tag String

72 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

INCONN � Block for remote value acquirement

Block Symbol Licence: STANDARD

Function Description

The INCONN block allows for remote reading of parameter values (as well as inputs and
outputs) of other blocks, similar to GETPR, GETPS, GETPA, and others. Its use is particularly
suitable in situations requiring a quick response, such as in time-critical tasks.

The sc parameter, which speci�es the path to the target parameter, must be given
as either a relative path or a relative to task path (see the documentation for the GETPR

block). This means the INCONN block must be placed within the same task as the target
parameter, regardless of their hierarchical levels. Unlike the GETP blocks, the sc param-
eter cannot be modi�ed during runtime.

The data type of the val output is determined by the type of the read value. Unlike
the GETP blocks, the INCONN block does not allow for a one-time read setting. The value
is refreshed in every execution period.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

sc String connection to the parameter String

Output

val Parameter value Any

73

INQUAD, INOCT, INHEXD � Multi-input blocks

Block Symbols Licence: STANDARD

val0

val1

val2

val3

INQUAD

val0

val1

val2

val3

val4

val5

val6

val7

INOCT

val0

val1

val2

val3

val4

val5

val6

val7

val8

val9

val10

val11

val12

val13

val14

val15

INHEXD

Function Description

The REXYGEN system allows not only reading of a single input signal but also simulta-
neous reading of multiple signals through just one block (for example all signals from one
module or plug-in board). The blocks INQUAD, INOCT and INHEXD are designed for these
purposes. They di�er only in the maximum number of signals (4, 8 and 16, respectively).

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks.
E.g. the digital inputs of a Modbus I/O device might be referenced by MBM__DI. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for data acquisition through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are read simultane-
ously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the name MBM__module<id> will refer to module 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

74 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Output

val0..val15 Signal coming from I/O driver Any

75

From, INSTD � Signal connection or input

Block Symbols Licence: STANDARD

DRV__signal

Function Description

The From (signal connection) and INSTD (standard input) blocks share the same symbol
and are used to connect an input signal to the control algorithm at the value output.
The output type is determined by the type of the input signal.

In the function block library, you can only �nd the From block. It is converted to the
INSTD block at compile time if necessary. The following rules de�ne how the REXYGEN
Compiler compiler distinguishes between the two block types:

• If the parameter GotoTag contains the __ delimiter (two successive '_' characters),
then the block is of the INSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRV type block contained in the main �le of the project. The REXYGEN Compiler

compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the corresponding
driver. This name is validated by the driver and in the case of success, an instance
of the INSTD block is created. This instance collects real-time data from the driver
and feeds the data into the control algorithm at each execution of the task it is
included in.

• If there is no __ delimiter in the GotoTag parameter, the block is of type From.
A matching Goto block with the same GotoTag parameter and required visibility
given by the TagVisibility parameter (see the Goto block description) is searched.
In case it is not found, the REXYGEN Compiler compiler issues a warning and
deletes the From block. Otherwise an "invisible" connection is created between the
corresponding blocks. The From block is removed also in this case and thus it is
not contained in the resulting control system con�guration.

In the case of INSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver:

<DRV>__<signal>

E.g. the �rst digital input of a Modbus I/O device might be referenced by MBM__DI1.
Detailed information about signal naming can be found in the user manual of the corre-
sponding I/O driver.

76 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the �ag MBM__DI<id> will refer to digital input 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Output

value Signal coming from I/O driver or Goto block Any

77

IOASYNC � Asynchronous reading and writing

Block Symbol Licence: STANDARD

u

RF

WF

y

BUSY

DONE

IOASYNC

Function Description

The IOASYNC block is designed for asynchronous reading and writing of inputs and out-
puts. Unlike the INSTD, OUTSTD, INOCT, OUTOCT blocks and their variants, the operation
of the IOASYNC block is not controlled by the periodic timing of the driver. The main
di�erence is that reading and writing occur exclusively at the moment of detecting a
rising edge off→on signal on the respective inputs. Writing the value from the input u
is triggered by a rising edge on the input WF, while reading to the output y is triggered
by a rising edge on the input RF.

Unlike other blocks, where writing can be canceled by setting a special signal _WriteEnable
to off (see documentation for the respective driver), the IOASYNC block ensures that at
the startup of the executive, not even a one-time initialization of the value to be written
occurs. This initialization may be undesirable in some applications.

To establish a connection with a speci�c driver signal, it is necessary to rename the
block instance according to the established format of driver signal names, which uses a
pair of underscores, similarly to the INSTD block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Signal going to I/O driver Any

RF Read force Bool

WF Write force Bool

Output

y Signal coming from I/O driver Any

BUSY Busy �ag Bool

DONE Operation done Bool

78 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

OUTCONN � Block for remote value setting

Block Symbol Licence: STANDARD

Function Description

The OUTCONN block enables remote setting of parameter values of other blocks, similar to
SETPR, SETPS, SETPA, and others. Its use is particularly suitable in situations requiring
a quick response, such as in time-critical tasks.

The sc parameter, which speci�es the path to the target parameter, must be given
as either a relative path or a task-relative path (see the documentation for the SETPR

block). This means the OUTCONN block must be placed within the same task as the target
parameter, regardless of their hierarchical levels. For details on formatting the path to
the parameter, see the documentation for the SETPR block. Unlike the SETP blocks, the
sc parameter cannot be modi�ed during runtime.

The data type of the val input is determined by the type of the connected value.
Unlike the SETP blocks, the OUTCONN block does not allow for a one-time setting. The
value is set in every execution period.
Warning: Setting the connected input of a remote block may lead to unde�ned behavior.
Similarly, setting a block parameter inside a subsystem when this parameter is set in the
subsystem's mask.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

val Parameter value Any

Parameter

sc String connection to the parameter String

79

OUTQUAD, OUTOCT, OUTHEXD � Multi-output blocks

Block Symbols Licence: STANDARD

val0

val1

val2

val3

OUTQUAD

val0

val1

val2

val3

val4

val5

val6

val7

OUTOCT

val0

val1

val2

val3

val4

val5

val6

val7

val8

val9

val10

val11

val12

val13

val14

val15

OUTHEXD

Function Description

The REXYGEN system allows not only writing of a single output signal but also simul-
taneous writing of multiple signals through just one block (for example all signals of
one module or plug-in board). The blocks OUTQUAD, OUTOCT and OUTHEXD are designed
for these purposes. They di�er only in the maximum number of signals (4, 8 and 16,
respectively). These blocks are not included in the RexLib function block library for
Matlab-Simulink.

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks. E.g.
the digital outputs of a Modbus I/O device might be referenced by MBM__DO. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for setting the outputs through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are written simulta-
neously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver signals.
This is useful inside subsystems where this placeholder is replaced by the value of sub-
system parameter. E.g. the name MBM__module<id> will refer to signals of module 1, 2,
3 etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

80 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

Input

val0..val15 Signal going to I/O driver Any

81

OUTRQUAD, OUTROCT, OUTRHEXD � Multi-output blocks with veri-
�cation

Block Symbols Licence: ADVANCED

val0

val1

val2

val3

raw0

raw1

raw2

raw3

OUTRQUAD

val0

val1

val2

val3

val4

val5

val6

val7

raw0

raw1

raw2

raw3

raw4

raw5

raw6

raw7

OUTROCT

val0

val1

val2

val3

val4

val5

val6

val7

val8

val9

val10

val11

val12

val13

val14

val15

raw0

raw1

raw2

raw3

raw4

raw5

raw6

raw7

raw8

raw9

raw10

raw11

raw12

raw13

raw14

raw15

OUTRHEXD

Function Description

The OUTRQUAD, OUTROCT and OUTRHEXD blocks allow simultaneous writing of multiple
signals, they are similar to the OUTQUAD, OUTOCT and OUTHEXD blocks. Additionally they
provide feedback information about the result of write operation for the given output.

There are two ways to inform the control algorithm about the result of write operation
through the rawi output:

• Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of A/D converter (thus the raw notation).

• Through reading the quality �ags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The rawi outputs are not always refreshed right at the moment of block execution, there
is some delay given by the properties of the driver, communication line and/or target
platform.

The type and location of individual val and raw signals are described in the user
manual of the corresponding driver.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

val0..val15 Signal going to I/O driver Any

Output

raw0..raw15 Write operation result (see documentation) Any

82 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

OUTRSTD � Output block with veri�cation

Block Symbol Licence: ADVANCED

raw

OUTRSTD

Function Description

The OUTRSTD block is similar to the OUTSTD block. Additionally it provides feedback
information about the result of write operation for the output signal.

There are two ways to inform the control algorithm about the result of write operation
through the raw output:

• Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of A/D converter (thus the raw notation).

• Through reading the quality �ags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The raw outputs is not refreshed right at the moment of block execution, there is some
delay given by the properties of the driver, communication line and/or target platform.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

value Signal going to I/O driver Any

Output

raw Write operation result (see documentation) Any

83

Goto, OUTSTD � Signal source or output

Block Symbols Licence: STANDARD

DRV__signal

Function Description

The Goto (signal source) and OUTSTD (standard output) blocks have the same symbol
and are used to connect the output signal from the control algorithm.

In the function block library, you can only �nd the Goto block. It is converted to the
OUTSTD block at compile time if necessary. The following rules de�ne how the REXYGEN
Compiler compiler distinguishes between the two block types:

• If the parameter GotoTag contains the __ delimiter (two successive '_' characters),
then the block is of the OUTSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRV type block contained in the main �le of the project. The REXYGEN Compiler

compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the appropriate driver.
This name is validated by the driver and in the case of success, an instance of the
OUTSTD block is created. This instance collects real-time data from the driver and
feeds the data into the control algorithm at each execution of the task it is included
in.

• If there is no __ delimiter in the GotoTag parameter, the block is of type Goto. A
matching From block with the same GotoTag parameter for which the Goto block is
visible is searched. In case it is not found, the REXYGEN Compiler compiler issues a
warning and deletes the Goto block. Otherwise an "invisible" connection is created
between the corresponding blocks. The Goto block is removed also in this case thus
it is not contained in the resulting control system con�guration.

The second parameter TagVisibility of the Goto block determines the visibility of
the given block within the .mdl �le. It can have the following values:

• local: Both blocks must be located at the same hierarchical level.

• global: Blocks can be placed anywhere in the given .mdl �le.

• scoped: Blocks must be placed within the same subsystem or at any hierarchi-
cal level beneath the placement of the GotoTagVisibility block with the same
GotoTag parameter.

84 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

If the given block is compiled as an OUTSTD block, this parameter is ignored.
In the case of OUTSTD block, the GotoTag parameter includes the symbol of the driver

<DRV> and the name of the signal <signal> of the given driver <DRV>__<signal>. E.g. the
�rst digital output of a Modbus I/O device might be referenced by MBM__DO1. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the �ag MBM__DO<id> will refer to digital output 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on de�ning subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

value Signal going to I/O driver or From block Any

85

Inport, Outport � Input and output port

Block Symbols Licence: STANDARD

0

Inport

0

Outport

Function Description

The Inport and Outport blocks are used for connecting signals over individual hierar-
chical levels. There are two possible ways to use these blocks in the REXYGEN system:

1. To connect inputs and outputs of the subsystem. The blocks create an interface
between the symbol of the subsystem and its inner algorithm (sequence of blocks
contained in the subsystem). The Inport or Outport blocks are located inside the
subsystem, the name of the given port is displayed in the subsystem symbol in the
upper hierarchy level.

2. To provide connection between various tasks. The port blocks are located in the
highest hierarchy level of the given task (.mdl �le) in this case. The corresponding
Inport and Outport blocks should have the same Block name. The connection
between blocks in various tasks is checked and created by the REXYGEN Compiler

compiler.

The ordering of the blocks to be connected is based on the Port parameter of the
given block. The numberings of the input and output ports are independent on each
other. The numbering is automatic in REXYGEN Studio and it starts at 1. The numbers
of ports must be unique in the given hierarchy level, in case of manual modi�cation of
the port number the other ports are re-numbered automatically. Be aware that after
re-numbering in an already connected subsystem the inputs (or outputs) in the upper
hierarchy level are re-ordered, which results in probably unintended change in signal
mapping!

In the Inport and Outport blocks, it's also possible to explicitly specify the data type
of the transferred value using the OutDataTypeStr parameter. If no value is selected, or
the option Inherit: auto is chosen, the value type is determined automatically.

The Description parameter can be used to add a textual description of the block.
This description is displayed in the properties of the subsystem and library block if
Inport or Outport is used to de�ne the inputs and outputs of the subsystem.

Warning: The blocks Inport and Outport should not be use to connect arrays
and other references between tasks (references often have ref in name and have a type
intptr in the Diagnostics section of the REXYGEN Studio program). Consistence is
not guaranteed in this case; incorrect value could be get and runtime code can crash
in worst case scenario. Typical behaviour is that some array members are from one
period of execution and other members of array from next period.The blocks SETPA and

86 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

GETPA ensure consistent read and write of the array between task. Some blocks guarantee
consistence of references over task boundary (for example RM_AxisSpline). In this case,
this is explicitly stated in the block manual.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

value Value going to the output pin or Inport Any

Parameter

OutDataTypeStr Data type of item String

Inherit auto
double

single

uint8

int16

uint16

int32

uint32

boolean

float

int64

stringarray

Description Description of the port String

Port Ordering of the output pins Long (I32)

87

QFC � Quality �ags coding

Block Symbol Licence: STANDARD

iq
is
il

iqf

QFC

Function Description

The QFC block creates the resulting signal iqf representing the quality �ags by combining
three components iq, is and il. The quality �ags are part of each input or output signal
in the REXYGEN system. Further details about quality �ags can be found in chapter 1.4
of this manual. The RexLib function block library for Matlab-Simulink does not use any
quality �ags.

It is possible to use the QFC block together with the VOUT block to force arbitrary
quality �ags for a given signal. Reversed function to the QFC block is performed by the
QFD block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

iq Basic quality type �ags Long (I32)

is Substatus �ags Long (I32)

il Limits �ags Long (I32)

Output

iqf Bit combination of the input signals Long (I32)

88 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

QFD � Quality �ags decoding

Block Symbol Licence: STANDARD

iqf
iq
is
il

QFD

Function Description

The QFD decomposes quality �ags to individual components iq, is and il. The quality
�ags are part of each input or output signal in the REXYGEN system. Further details
about quality �ags can be found in chapter 1.4 of this manual. The RexLib function block
library for Matlab-Simulink does not use any quality �ags.

It is possible to use the QFD block together with the VIN block for detailed processing
of quality �ags of a given signal. Reversed function to the QFD block is performed by the
QFC block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

iqf Quality �ags to be decomposed Long (I32)

Output

iq Basic quality type �ags Long (I32)

is Substatus �ags Long (I32)

il Limits �ags Long (I32)

89

SubSystem � Subsystem block

Block Symbol Licence: STANDARD

SubSystem

Function Description

The SubSystem block is a cornerstone of hierarchical organization of block diagrams in
REXYGEN. A subsystem is a container for a group of function blocks and their con-
nections, which then appear as a single block. Nesting of subsystems is allowed, i.e. a
subsystem can include additional subsystems.

The runtime core or REXYGEN executes the subsystem as an ordered sequence of
blocks. Therefore the subsystem is sometimes referred to as sequence. All blocks from
the surroundings of the subsystem are executed strictly before or strictly after the whole
subsystem is executed.

u1
u2

y

ADD
5

CNR

u y

GAIN

1

u
1

y

2

CNR_myvalue

???u y

Subsystem_amplifier

A subsystem can be created in two ways:

• By copying the SubSystem block from the INOUT library into the given schematic
(�le .mdl). After opening the created subsystem, blocks can be added to it, includ-
ing input ports Inport and output ports Outport.

• By selecting a group of blocks and choosing the Create Subsystem command from
the Edit menu. The selected blocks are replaced by a subsystem, which, when
opened, shows the original blocks and Inport and Outport blocks facilitating con-
nections with blocks at the higher (original) level.

Once the subsystem is created, it can be entered by double-clicking.
For SubSystem, it is possible to create a so-called subsystem mask and de�ne param-

eters whose values can be used inside the subsystem. Select the subsystem and go to the
menu Edit→Declaration of parameters. A dialog will appear where you can de�ne
parameters and their labels (meanings). Once a mask is de�ned for a subsystem, it starts
behaving like a standard block � double-clicking it will open the Block properties dialog.

90 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

This dialog contains the parameters de�ned in the subsystem mask. If you need to edit
the content of a masked subsystem, select it and go to the menu Edit→Open Subsystem.

Subsystems are also used for creating user-de�ned reusable components, which are
then placed in user libraries. A library reference can be distinguished from a standard
subsystem by the style of the upper border. See image below.

u1
u2
SW

out1

out2

MyBlock1

u1
u2
SW

out1

out2

MyBlock2

Please refer to [4] for details on using subsystems and creating reusable components
in REXYGEN.

Also see examples 0101-02 and 0101-03 demonstrating the use of subsystems. The
examples are included in REXYGEN.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

91

ToFile � To File

Block Symbol Licence: STANDARD

u

ToFile

Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal Any

Parameter

FileName MAT �le name or path to MAT �le String

92 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

ToWorkspace � To Workspace

Block Symbol Licence: STANDARD

u

ToWorkspace

Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal Any

Parameter

VariableName Name of the variable String

93

VIN � Validation of the input signal

Block Symbol Licence: STANDARD

u

sv

yg
QG
iqf

VIN

Function Description

The VIN block can be used for veri�cation of the input signal quality in the REXYGEN
system. Further details about quality �ags can be found in chapter 1.4 of this manual.

The block continuously separates the quality �ags from the input u and feeds them to
the iqf output. Based on these quality �ags and the GU parameter (Good if Uncertain),
the input signals are processed in the following manner:

• For GU = off the output QG is set to on if the quality is GOOD. It is set to QG = off

in case of BAD or UNCERTAIN quality.

• For GU = on the output QG is set to onif the quality is GOOD or UNCERTAIN. It is set
to QG = off only in case of BAD quality.

if the input signal u is evaluated as Quality Good QG = on, it is fed to the output yg.
In case of signal quality problems, a substitute signal from the input sv (substitution
variable) is used for the output.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Any

sv Substitute value for an error case Any

Parameter

GU Acceptability of UNCERTAIN quality Bool

off . . . Uncertain quality unacceptable
on Uncertain quality acceptable

Output

yg Validated signal Any

QG Input signal acceptability indicator Bool

iqf Complete quality �ag of the input signal Long (I32)

94 CHAPTER 3. INOUT � INPUT AND OUTPUT BLOCKS

VOUT � Validation of the output signal

Block Symbol Licence: STANDARD

u
iqf

yq

VOUT

Function Description

It is possible to use the VOUT block to force arbitrary quality �ags for a given signal. The
desired quality �ags are given by the input signal iqf. Further details about quality �ags
can be found in chapter 1.4 of this manual.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal requiring quality �ags modi�cation Any

iqf Desired quality �ags Long (I32)

Output

yq Resulting composed signal Any

Chapter 4

MATH � Math blocks

Contents

ABS � Absolute value . 97

ADD � Addition of two signals . 98

ADDQUAD, ADDOCT, ADDHEXD � Multi-input addition 99

CNB � Boolean (logic) constant . 100

CNE � Enumeration constant . 101

CNI � Integer constant . 102

CNR � Real constant . 103

DIF � Di�erence . 104

DIV � Division of two signals . 105

EAS � Extended addition and subtraction 106

EMD � Extended multiplication and division 107

FNX � Evaluation of single-variable function 108

FNXY � Evaluation of two-variables function 111

GAIN � Multiplication by a constant 113

GRADS � Gradient search optimization 114

IADD � Integer addition . 116

IDIV � Integer division . 118

IMOD � Remainder after integer division 119

IMUL � Integer multiplication . 120

ISUB � Integer subtraction . 122

LIN � Linear interpolation . 124

MUL � Multiplication of two signals 125

NANINF � Block for checking NaN and Inf values 126

POL � Polynomial evaluation . 128

REC � Reciprocal value . 129

REL � Relational operator . 130

95

96 CHAPTER 4. MATH � MATH BLOCKS

RTOI � Real to integer number conversion 131

SQR � Square value . 133

SQRT � Square root . 134

SUB � Subtraction of two signals . 135

UTOI � Unsigned to signed integer number conversion 136

The MATH library o�ers a comprehensive collection of mathematical operations and
functions. It includes basic arithmetic blocks like ADD, SUB, MUL, and DIV for standard
calculations, and more specialized blocks such as ABS for absolute values, SQRT for square
roots, and SQR for squaring. Advanced functionalities are provided by blocks like LIN for
linear transformations, POL for polynomial evaluations, and FNX, FNXY for customizable
mathematical functions. The library also features integer-speci�c operations through
blocks like IADD, IMUL, IDIV, and IMOD.

97

ABS � Absolute value

Block Symbol Licence: STANDARD

u
y

sgn

ABS

Function Description

The ABS block computes the absolute value of the analog input signal u. The output y
is equal to the absolute value of the input and the sgn output denotes the sign of the
input signal.

sgn =

−1, for u < 0,
0, for u = 0,
1, for u > 0.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Output

y Absolute value of the input signal Double (F64)

sgn Indication of the input signal sign Long (I32)

98 CHAPTER 4. MATH � MATH BLOCKS

ADD � Addition of two signals

Block Symbol Licence: STANDARD

u1
u2

y

ADD

Function Description

The ADD blocks sums two analog input signals. The output is given by

y = u1+ u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Output

y Sum of the input signals Double (F64)

99

ADDQUAD, ADDOCT, ADDHEXD � Multi-input addition

Block Symbols Licence: STANDARD

u1
u2
u3
u4

y

ADDQUAD

u1
u2
u3
u4
u5
u6
u7
u8

y

ADDOCT

u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

y

ADDHEXD

Function Description

The ADDQUAD, ADDOCT and ADDHEXD blocks sum (or subtract) up to 16 input signals. The
nl parameter de�nes the inputs which are subtracted instead of adding. For an empty nl

parameter the block output is given by y = u1+ u2+ u3+ u4+ u5+ u6+ u7+ . . .+ u16.
For e.g. nl=2,5,7, the block implements the function y = u1− u2+ u3+ u4− u5+ u6−
u7+ . . .+ u16.

Note that the ADD and SUB blocks are available for simple addition and subtraction
operations.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1..u16 Analog input of the block Double (F64)

Parameter

nl List of signals to subtract Long (I32)

Output

y Sum of the input signals Double (F64)

100 CHAPTER 4. MATH � MATH BLOCKS

CNB � Boolean (logic) constant

Block Symbol Licence: STANDARD

on

CNB

Function Description

The CNB block stands for a Boolean (logic) constant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter

YCN Boolean constant ⊙on Bool

off . . . Disabled
on Enabled

Output

Y Logical output of the block Bool

101

CNE � Enumeration constant

Block Symbol Licence: STANDARD

1: option A

CNE

Function Description

The CNE block allows selection of a constant from a prede�ned popup list. The popup list
of constants is de�ned by the pupstr string, whose syntax is obvious from the default
value shown below. The output value corresponds to the number at the beginning of the
selected item. In case the pupstr string format is invalid, the output is set to 0.

There is a library called CNEs in Simulink, which contains CNE blocks with the most
common lists of constants.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

yenum Enumeration constant ⊙1: option A String

pupstr Popup list de�nition
⊙1: option A|2: option B|3: option C

String

Output

iy Integer output of the block Long (I32)

102 CHAPTER 4. MATH � MATH BLOCKS

CNI � Integer constant

Block Symbol Licence: STANDARD

1

CNI

Function Description

The CNI block stands for an integer constant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter

icn Integer constant ⊙1 Long (I32)

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

Output

iy Integer output of the block Long (I32)

103

CNR � Real constant

Block Symbol Licence: STANDARD

1

CNR

Function Description

The CNR block stands for a real constant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter

ycn Real constant ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

104 CHAPTER 4. MATH � MATH BLOCKS

DIF � Di�erence

Block Symbol Licence: STANDARD

u
R1
HLD

y

DIF

Function Description

The DIF block di�erentiates the input signal u according to the following formula

yk = uk − uk−1,

where uk = u, yk = y and uk−1 is the value of input u in the previous cycle (delay TS ,
which is the execution period of the block).

The parameter ISSF sets the behavior of the block in the �rst cycle of task execution.
If off, y = u will be output in the �rst cycle. For the value on, the output will be y = 0
in the �rst cycle.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

HLD Hold Bool

Parameter

ISSF Zero output at start-up Bool

off . . . Non-zero output in the �rst cycle
on Zero output in the �rst cycle

Output

y Di�erence of the input signal Double (F64)

105

DIV � Division of two signals

Block Symbol Licence: STANDARD

u1
u2

y
E

DIV

Function Description

The DIV block divides two analog input signals y = u1/u2. In case u2 = 0, the output E
is set to onand the output y is substituted by y = yerr.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Parameter

yerr Substitute value for an error case ⊙1.0 Double (F64)

Output

y Quotient of the inputs Double (F64)

E Error �ag - division by zero Bool

off . . . No error
on An error occurred

106 CHAPTER 4. MATH � MATH BLOCKS

EAS � Extended addition and subtraction

Block Symbol Licence: STANDARD

u1
u2
u3
u4

y

EAS

Function Description

The EAS block sums input analog signals u1, u2, u3 and u4 with corresponding weights
a, b, c and d. The output y is then given by

y = a ∗ u1+ b ∗ u2+ c ∗ u3+ d ∗ u4+ y0.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1..u4 Analog input of the block Double (F64)

Parameter

a Weighting coe�cient of the u1 input ⊙1.0 Double (F64)

b Weighting coe�cient of the u2 input ⊙1.0 Double (F64)

c Weighting coe�cient of the u3 input ⊙1.0 Double (F64)

d Weighting coe�cient of the u4 input ⊙1.0 Double (F64)

y0 Additive constant (bias) Double (F64)

Output

y Analog output of the block Double (F64)

107

EMD � Extended multiplication and division

Block Symbol Licence: STANDARD

u1
u2
u3
u4

y

E

EMD

Function Description

The EMD block multiplies and divides analog input signals u1, u2, u3 and u4 with corre-
sponding weights a, b, c and d. The output y is then given by

y =
(a ∗ u1+ a0)(b ∗ u2+ b0)

(c ∗ u3+ c0)(d ∗ u4+ d0)
. (4.1)

The output E is set to on in the case that the denominator in the equation (4.1) is equal
to 0 and the output y is substituted by y = yerr.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1..u4 Analog input of the block Double (F64)

Parameter

a Weighting coe�cient of the u1 input ⊙1.0 Double (F64)

a0 Additive constant for u1 input Double (F64)

b Weighting coe�cient of the u2 input ⊙1.0 Double (F64)

b0 Additive constant for u1 input Double (F64)

c Weighting coe�cient of the u3 input ⊙1.0 Double (F64)

c0 Additive constant for u1 input Double (F64)

d Weighting coe�cient of the u4 input ⊙1.0 Double (F64)

d0 Additive constant for u1 input Double (F64)

yerr Substitute value for an error case ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

E Error �ag - division by zero Bool

off . . . No error
on An error occurred

108 CHAPTER 4. MATH � MATH BLOCKS

FNX � Evaluation of single-variable function

Block Symbol Licence: STANDARD

u
y
E

FNX

Function Description

The FNX block evaluates basic math functions of single variable. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.
List of functions:

ifn: shortcut function constraints on u

1: acos arccosine u ∈< −1.0, 1.0 >
2: asin arcsine u ∈< −1.0, 1.0 >
3: atan arctangent �
4: ceil rounding towards the nearest higher integer �
5: cos cosine �
6: cosh hyperbolic cosine �
7: exp exponential function eu �
8: exp10 exponential function 10u �
9: fabs absolute value �
10: floor rounding towards the nearest lower integer �
11: log logarithm u > 0
12: log10 decimal logarithm u > 0
13: random arbitrary number z ∈< 0, 1 > (u independent) �
14: sin sine �
15: sinh hyperbolic sine �
16: sqr square function �
17: sqrt square root u > 0
18: srand changes the seed for the random function to u u ∈ N
19: tan tangent �
20: tanh hyperbolic tangent �

Note: All trigonometric functions process data in radians.

The error output is activated (E = on) in the case when the input value u falls out of
its bounds or an error occurs during evaluation of the selected function (implementation
dependent), e.g. square root of negative number. The output is set to substitute value
in such case (y = yerr).

109

This block propagates the signal quality. More information can be found in the 1.4
section.

110 CHAPTER 4. MATH � MATH BLOCKS

Input

u Analog input of the block Double (F64)

Parameter

ifn Function type ⊙1 Long (I32)

1 acos
2 asin
3 atan
4 ceil
5 cos
6 cosh
7 exp
8 exp10
9 fabs
10 �oor
11 log
12 log10
13 random
14 sin
15 sinh
16 sqr
17 sqrt
18 srand
19 tan
20 tanh

yerr Substitute value for an error case Double (F64)

Output

y Result of the selected function Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

111

FNXY � Evaluation of two-variables function

Block Symbol Licence: STANDARD

u1
u2

y
E

FNXY

Function Description

The FNXY block evaluates basic math functions of two variables. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.
List of functions:

ifn: shortcut function constraints on u1, u2
1: atan2 arctangent u1/u2 �
2: fmod remainder after division u1/u2 u2 ̸= 0.0
3: pow exponentiation of the inputs y = u1u2 �

The atan2 function result belongs to the interval ⟨−π, π⟩. The signs of both inputs
u1 a u2 are used to determine the appropriate quadrant.

The fmod function computes the remainder after division u1/u2 such that u1 = i · u2+ y,
where i is an integer, the signs of the y output and the u1 input are the same and the
following holds for the absolute value of the y output: |y| < |u2|.

The error output is activated (E = on) in the case when the input value u2 does
not meet the constraints or an error occurs during evaluation of the selected function
(implementation dependent), e.g. division by zero. The output is set to substitute value
in such case (y = yerr).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Parameter

ifn Function type ⊙1 Long (I32)

1 atan2
2 fmod
3 pow

yerr Substitute value for an error case Double (F64)

112 CHAPTER 4. MATH � MATH BLOCKS

Output

y Result of the selected function Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

113

GAIN � Multiplication by a constant

Block Symbol Licence: STANDARD

u y

GAIN

Function Description

The GAIN block multiplies the analog input u by a real constant k. The output is then

y = ku.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

k Gain ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

114 CHAPTER 4. MATH � MATH BLOCKS

GRADS � Gradient search optimization

Block Symbol Licence: ADVANCED

f

x0

START

BRK

x
xopt
fopt
BSY
iter
E
iE

GRADS

Function Description

The GRADS block performs one-dimensional optimization of the f(x, v) function by gra-
dient method, where x ∈ ⟨xmin, xmax⟩ is the optimized variable and v is an arbitrary
vector variable. It is assumed that the value of the function f(x, v) for given x at time
k is enumerated and fed to the f input at time k + n ∗ TS , where TS is the execution
period of the GRADS block. This means that the individual optimization iterations have
a period of n ∗ TS . The length of step of the gradient method is given by

grad = (fi − fi−1) ∗ (dx)i−1

(dx)i = −gamma ∗ grad,

where i stands for i-th iteration. The step size is restricted to lie within the interval
⟨dmin, dmax⟩. The value of the optimized variable for the next iteration is given by

xi+1 = xi + (dx)i

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

f Value of the optimized function f(.) for given x Double (F64)

x0 Optimization starting point Double (F64)

START Starting signal (rising edge) Bool

BRK Termination signal Bool

Parameter

xmin Lower limit for the x variable Double (F64)

xmax Upper limit for the x variable ⊙10.0 Double (F64)

gamma Step size coe�cient ⊙0.3 Double (F64)

d0 Initial step size ⊙0.05 Double (F64)

115

dmin Minimum step size ⊙0.01 Double (F64)

dmax Maximum step size ⊙1.0 Double (F64)

n Iteration period (in sampling periods Ts) ⊙100 Long (I32)

itermax Maximum number of iterations ⊙20 Long (I32)

Output

x Current value of the optimized variable Double (F64)

xopt Resulting optimal value of the x variable Double (F64)

fopt Resulting optimal value of the function f Double (F64)

BSY Busy �ag Bool

iter Number of current iteration Long (I32)

E Error indicator Bool

off . . . No error
on An error occurred

iE Error code Long (I32)

1 x out of limits
2 x at the limit

116 CHAPTER 4. MATH � MATH BLOCKS

IADD � Integer addition

Block Symbol Licence: STANDARD

i1

i2

n

E

IADD

Function Description

The IADD block sums two integer input signals n = i1 + i2. The range of integer num-
bers in a computer is always restricted by the variable type. This block uses the vtype

parameter to specify the type. If the sum �ts in the range of the given type, the result
is the ordinary sum. In the other cases the result depends on the SAT parameter.

The over�ow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 + 2770 = -32766.

For SAT = on the over�ow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 30000
+ 2770 = 32767.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameter

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

SAT Saturation (over�ow) checking Bool

off . . . Over�ow is not checked
on Over�ow is checked

Output

n Integer sum of the input signals Long (I32)

117

E Error indicator Bool

off . . . No error
on An error occurred

118 CHAPTER 4. MATH � MATH BLOCKS

IDIV � Integer division

Block Symbol Licence: STANDARD

i1

i2

n

E

IDIV

Function Description

The IDIV block performs an integer division of two integer input signals, n = i1÷ i2,
where ÷ stands for integer division operator. If the ordinary (non-integer, normal) quo-
tient of the two operands is an integer number, the result of integer division is the same.
In other cases the resulting value is obtained by trimming the non-integer quotient's
decimals (i.e. rounding towards lower integer number). In case i2 = 0, the output error
is set to on and the output n is substituted by n = nerr.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameter

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

nerr Substitute value for an error case ⊙1 Long (I32)

Output

n Integer quotient of the inputs Long (I32)

E Error �ag - division by zero Bool

off . . . No error
on An error occurred

119

IMOD � Remainder after integer division

Block Symbol Licence: STANDARD

i1

i2

n

E

IMOD

Function Description

The IMOD block divides two integer input signals, n = i1%i2, where % stands for remain-
der after integer division operator (modulo). If both numbers are positive and the divisor
is greater than one, the result is either zero (for commensurable numbers) or a positive
integer lower than the divisor. In the case that one of the numbers is negative, the result
has the sign of the dividend, e.g. 15%10 = 5, 15%(−10) = 5, but (−15)%10 = −5. In
case i2 = 0, the output E is set to on and the output n is substituted by n = nerr.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameter

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

nerr Substitute value for an error case ⊙1 Long (I32)

Output

n Remainder after integer division Long (I32)

E Error �ag - division by zero Bool

off . . . No error
on An error occurred

120 CHAPTER 4. MATH � MATH BLOCKS

IMUL � Integer multiplication

Block Symbol Licence: STANDARD

i1

i2

n

E

IMUL

Function Description

The IMUL block multiplies two integer input signals n = i1 ∗ i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the multiple �ts in the range of the given type,
the result is the ordinary multiple. In the other cases the result depends on the SAT

parameter.
The over�ow is not checked for SAT = off, i.e. the output E = off and the output

value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 2000 * 20 = -25536.

For SAT = on the over�ow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 2000
* 20 = 32767.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameter

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

SAT Saturation (over�ow) checking Bool

off . . . Over�ow is not checked
on Over�ow is checked

121

Output

n Integer product of the input signals Long (I32)

E Error indicator Bool

off . . . No error
on An error occurred

122 CHAPTER 4. MATH � MATH BLOCKS

ISUB � Integer subtraction

Block Symbol Licence: STANDARD

i1

i2

n

E

ISUB

Function Description

The ISUB block subtracts two integer input signals n = i1 − i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the di�erence �ts in the range of the given
type, the result is the ordinary sum. In the other cases the result depends on the SAT

parameter.
The over�ow is not checked for SAT = off, i.e. the output E = off and the output

value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 - -2770 = -32766

For SAT = on the over�ow results in setting the error output to E = on and the n

output to the nearest displayable value. For the above mentioned example we get 30000
- -2770 = 32767.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

i2 Second integer input of the block ↓-9.22E+18 ↑9.22E+18 Long (I32)

Parameter

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

SAT Saturation (over�ow) checking Bool

off . . . Over�ow is not checked
on Over�ow is checked

123

Output

n Integer di�erence between the input signals Long (I32)

E Error indicator Bool

off . . . No error
on An error occurred

124 CHAPTER 4. MATH � MATH BLOCKS

LIN � Linear interpolation

Block Symbol Licence: STANDARD

u y

LIN

Function Description

The LIN block performs linear interpolation. The following �gure illustrates the in�uence
of the input u and given interpolation points [u1, y1] and [u2, y2] on the output y.

u1 u u2

y1

y

y2

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

u1 x-coordinate of the 1st interpolation node Double (F64)

y1 y-coordinate of the 1st interpolation node Double (F64)

u2 x-coordinate of the 2nd interpolation node ⊙1.0 Double (F64)

y2 y-coordinate of the 2nd interpolation node ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

125

MUL � Multiplication of two signals

Block Symbol Licence: STANDARD

u1
u2

y

MUL

Function Description

The MUL block multiplies two analog input signals y = u1 · u2.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Output

y Product of the input signals Double (F64)

126 CHAPTER 4. MATH � MATH BLOCKS

NANINF � Block for checking NaN and Inf values

Block Symbol Licence: STANDARD

u
y
is

NANINF

Function Description

The NANINF block serves to detect and correct unusual values on an analog input u. If the
input value is a standard number, it is directly forwarded to the output y (y = u), and
the output is is set to 0. In cases where the input value is in�nity (±Inf) or is of the type
"not a number" (NaN), a replacement value de�ned in the respective parameter infp,
infn or nan is sent to the output y with a bad quality (BAD) label. Simultaneously, a
code indicating the type of abnormality of the input value is sent to the output is.

Note: From the perspective of a mathematical coprocessor, Inf or NaN values are
almost normal values that can be operated with in all operations. They may arise, for
example, when dividing by zero or when taking the square root of a negative number.
From the perspective of the control system, however, these are nonsensical values that
de�nitely cannot be set to a physical output. The REXYGEN system understands this and
such values are not generated by its blocks (e.g., the SQRT block has a replacement value
for negative numbers, similarly the DIV block for division by 0). However, sometimes
such non-standard values occur, and then it is necessary to have the means to deal with
them, which is where this block comes into play.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 Analog input of the block Double (F64)

Parameter

infp Substitute value for +Inf Double (F64)

infn Substitute value for -Inf Double (F64)

nan Substitute value for NaN Double (F64)

Output

y Analog output of the block Double (F64)

127

is Status (0:OK, 1:+Inf, 2:-Inf, 3:NaN) Long (I32)

0 OK
1 +Inf
2 -Inf
3 NaN

128 CHAPTER 4. MATH � MATH BLOCKS

POL � Polynomial evaluation

Block Symbol Licence: STANDARD

u y

POL

Function Description

The POL block evaluates the polynomial of the form:

y = a0 + a1u+ a2u
2 + a3u

3 + a4u
4 + a5u

5 + a6u
6 + a7u

7 + a8u
8.

The polynomial is internally evaluated by using the Horner scheme to

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

a0..a8 Coe�cient of the polynomial Double (F64)

Output

y Analog output of the block Double (F64)

129

REC � Reciprocal value

Block Symbol Licence: STANDARD

u
y
E

REC

Function Description

The REC block computes the reciprocal value of the input signal u. The output is then

y =
1

u
.

In case u = 0, the error indicator is set to E = on and the output is set to the substitu-
tional

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

yerr Substitute value for an error case ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

E Error �ag - division by zero Bool

off . . . No error
on An error occurred

130 CHAPTER 4. MATH � MATH BLOCKS

REL � Relational operator

Block Symbol Licence: STANDARD

u1

u2
Y

REL

Function Description

The REL block evaluates the binary relation u1 ◦ u2 between the values of the input
signals and sets the output Y according to the result of the relation "◦". The output
is set to Y = on when relation holds, otherwise it is zero (relation does not hold). The
binary operation codes are listed below.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Parameter

irel Relation type ⊙1 Long (I32)

1 equality (==)
2 inequality (!=)
3 less than (<)
4 greater than (>)
5 less or equal (<=)
6 greater or equal (>=)

Output

Y Logical output of the block Bool

131

RTOI � Real to integer number conversion

Block Symbol Licence: STANDARD

r i

RTOI

Function Description

The RTOI block converts the real number r to a signed integer number i. The resulting
rounded value is de�ned by:

i =

−2147483648, for r ≤ −2147483648.0,

round(r), for −2147483648.0 < r ≤ 2147483647.0 ,
2147483647, for r > 2147483647.0,

where round(r) stands for rounding to the nearest integer number. The number of the
form n+0.5 (n is integer) is rounded to the integer number with the higher absolute
value, i.e. round(1.5) = 2, round(−2.5) = −3.

Note that the numbers −2147483648 and 2147483647 correspond with the lowest and
the highest signed number representable in 32-bit format respectively (0x7FFFFFFF and
0x80000000 in hexadecimal form in the C language). This limits are valid if the vtype

parameter has default value.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

r Analog input of the block Double (F64)

Parameter

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

SAT Saturation (over�ow) checking ⊙on Bool

off . . . Over�ow is not checked
on Over�ow is checked

132 CHAPTER 4. MATH � MATH BLOCKS

Output

i Rounded and converted input signal Long (I32)

133

SQR � Square value

Block Symbol Licence: STANDARD

u y

SQR

Function Description

The SQR block raises the input u to the power of 2. The output is then

y = u2.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Output

y Square of the input signal Double (F64)

134 CHAPTER 4. MATH � MATH BLOCKS

SQRT � Square root

Block Symbol Licence: STANDARD

u
y
E

SQRT

Function Description

The SQRT block computes the square root of the input u. The output is then

y =
√
u.

In case u < 0, the error indicator is activated (E = on) and the output y is set to the
substitute value.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

yerr Substitute value for an error case ⊙1.0 Double (F64)

Output

y Square root of the input signal Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

135

SUB � Subtraction of two signals

Block Symbol Licence: STANDARD

u1
u2

y

SUB

Function Description

The SUB block subtracts two input signals. The output is given by

y = u1− u2.

Consider using the ADDOCT block for addition or subtraction of multiple signals.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 Analog input of the block Double (F64)

u2 Analog input of the block Double (F64)

Output

y Di�erence between input signals Double (F64)

136 CHAPTER 4. MATH � MATH BLOCKS

UTOI � Unsigned to signed integer number conversion

Block Symbol Licence: STANDARD

u i

UTOI

Function Description

The UTOI block facilitates the conversion of an unsigned integer to a signed integer using
two's complement representation, which is the common representation used in processors.
For instance, in 8-bit representation, the number -1 is represented as 255, and in 16-bit
representation as 65535. The parameter bits determines which bit representation is
assumed.

This block is primarily used in scenarios where a value from a driver contains multiple
signals extracted by masking (typically using INTSM or BITOP blocks). The result of this
masking is always an unsigned (positive) number. However, if the signal from the driver
is meant to be interpreted as a signed number, this block is used to obtain the correct
value.

Since processors may vary in how they store multi-byte numbers (most commonly
in little-endian format, where the less signi�cant byte is stored at a lower address, but
big-endian format processors also exist, where the opposite is true), the UTOI block
o�ers the option to swap the byte order if it has not been handled by the driver. This
adjustment is facilitated by the SWAP parameter.

Caution: Swapping the byte order (by setting SWAP=on) typically addresses issues
with di�erent byte orders in the processor only for bits=16 or bits=32 values.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Unsigned input signal ↓-9.22337E+18 ↑9.22337E+18 Large (I64)

Parameter

bits Valid (LSB) bits in input signal ↓2 ↑64 ⊙16 Long (I32)

SWAP Swap input byte order Bool

Output

i Converted (signed) input signal Large (I64)

Chapter 5

ANALOG � Analog signal

processing

Contents

ABSROT � Absolute rotation (multiturn extension of the position
sensor) . 139

ASW � Switch with automatic selection of input 141

AVG � Moving average �lter . 143

AVS � Motion control unit . 144

AVSI � Smooth trajectory interpolation 145

BPF � Band-pass �lter . 148

CMP � Comparator with hysteresis 149

CNDR � Nonlinear conditioner . 150

DEL � Delay with initialization . 152

DELM � Time delay . 153

DER � Derivation, �ltering and prediction from the last n+1 samples154

EVAR � Moving mean value and standard deviation 156

INTE � Controlled integrator . 157

KDER � Derivation and �ltering of the input signal 159

LPF � Low-pass �lter . 161

MINMAX � Running minimum and maximum 163

NSCL � Nonlinear scaling factor . 164

OSD � One Step Delay . 165

RDFT � Running discrete Fourier transform 166

RLIM � Rate limiter . 168

S1OF2 � One of two analog signals selector 169

SAI � Safety analog input . 172

SEL � Selector switch for analog signals 175

137

138 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SELQUAD, SELOCT, SELHEXD � Selector switch for analog signals . . . 176

SHIFTOCT � Data shift register . 178

SHLD � Sample and hold . 180

SINT � Simple integrator . 181

SPIKE � Spike �lter . 182

SSW � Simple switch . 184

SWR � Selector with ramp . 185

VDEL � Variable time delay . 186

ZV4IS � Zero vibration input shaper 187

Library presents a versatile range of functional blocks, designed for control and sig-
nal processing applications. It includes blocks like ASW, AVG, BPF, and DEL, which provide
functionalities from signal manipulation and averaging to �ltering and complex condi-
tional operations, catering to a broad spectrum of system requirements and scenarios.

139

ABSROT � Absolute rotation (multiturn extension of the posi-
tion sensor)

Block Symbol Licence: ADVANCED

u

R1

y
irev
MPI
OLI

ABSROT

Function Description

The ABSROT function block is intended for processing the data from absolute position
sensor on rotary equipment, e.g. a shaft. The absolute sensor has a typical range of 5◦

to 355◦ (or -175◦ to +175◦) but in some cases it is necessary to control the rotation
over a range of more than one revolution. The function block assumes a continuous
position signal, therefore the transition from 355◦ to 5◦ in the input signal means that
one revolution has been completed and the angle is in fact 365◦.

In the case of long-term unidirectional operation the precision of the estimated po-
sition y deteriorates due to the precision of the double data type. For that case the R1

input is available to reset the position y to the base range of the sensor. If the RESR �ag
is set to RESR = on, the irev revolutions counter is also reset by the R1 input. In all cases
it is necessary to reset all accompanying signals (e.g. the sp input of the corresponding
controller).

The MPI output indicates that the absolute sensor reading is near to the middle of
the range, which may be the appropriate time to reset the block. On the other hand, the
OLI output indicates that the sensor reached the so-called dead-angle where it cannot
report valid data.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Signal from the absolute position sensor Double (F64)

R1 Block reset Bool

Parameter

lolim Lower limit of the sensor reading ⊙-3.14159265 Double (F64)

hilim Upper limit of the sensor reading ⊙3.14159265 Double (F64)

tol Tolerance for the mid-point indicator ⊙0.5 Double (F64)

hys Hysteresis for the mid-point indicator Double (F64)

140 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

RESR Flag for resetting the revolutions counter Bool

off . . . Reset only the estimated position
on Reset also the revolutions counter

Output

y Position output Double (F64)

irev Number of revolutions Long (I32)

MPI Mid-point indicator Bool

OLI O�-limits indicator Bool

141

ASW � Switch with automatic selection of input

Block Symbol Licence: ADVANCED

u1
u2
u3
u4
iSW

y

oSW

ASW

Function Description

The ASW block copies one of the inputs u1, . . . , u4 or one of the parameters p1, . . . , p4
to the output y. The appropriate input signal is copied to the output as long as the
input signal iSW belongs to the set {1, 2, 3, 4} and the parameters are copied when iSW

belongs to the set {−1,−2,−3,−4} (i.e. y = p1 for iSW = −1, y = u3 for iSW = 3 etc.).
If the iSW input signal di�ers from any of these values (i.e. iSW = 0 or iSW < −4 or
iSW > 4), the output is set to the value of input or parameter which has changed the
most recently. The signal or parameter is considered changed when it di�ers by more
than delta from its value at the moment of its last change (i.e. the changes are measured
integrally, not as a di�erence from the last sample). The following priority order is used
when changes occur simultaneously in more than one signal: p4, p3, p2, p1, u4, u3, u2,
u1. The identi�er of input signal or parameter which is copied to the output y is always
available at the oSW output.

The ASW block has one special feature. The updated value of y is copied to all the
parameters p1, . . . , p4. This results in all external tools reading the same value y. This is
particularly useful in higher-level systems which use the set&follow method (e.g. a slider
in Iconics Genesis). This feature is not implemented in Simulink as there are no ways to
read the values of inputs by external programs.

ATTENTION! One of the inputs u1, . . . , u4 can be delayed by one step when the
block is contained in a loop. This might result in an illusion, that the priority is broken
(the oSW output then shows that the most recently changed signal is the delayed one).
In such a situation the LPBRK block(s) must be used in appropriate positions.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1..u4 Analog input of the block Double (F64)

iSW Active signal or parameter selector Long (I32)

Parameter

delta Threshold for detecting a change ⊙1e-06 Double (F64)

142 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

p1..p4 Parameter to be selected Double (F64)

Output

y The selected signal or parameter Double (F64)

oSW Identi�er of the selected signal or parameter Long (I32)

143

AVG � Moving average �lter

Block Symbol Licence: STANDARD

u y

AVG

Function Description

The AVG block computes a moving average from the last n samples according to the
formula

yk =
1

n
(uk + uk−1 + · · ·+ uk−n+1).

There is a limitation n < N , where N depends on the implementation. If the last n

samples are not yet known, the average is computed from the samples available.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be �ltered Double (F64)

Parameter

n Number of samples for averaging ↓1 ↑10000000 ⊙10 Long (I32)

nmax Allocated size of array ↓10 ↑10000000 ⊙100 Long (I32)

Output

y Filtered output signal Double (F64)

144 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

AVS � Motion control unit

Block Symbol Licence: ADVANCED

START

SET

am

dm

vm

sm

a

v

s

tt

RDY

BSY

AVS

Function Description

The AVS block generates time-optimal trajectory from initial steady position 0 to a �nal
steady position sm while respecting the constraints on the maximal acceleration am,
maximal deceleration dm and maximal velocity vm. When rising edge (off→on) occurs
at the SET input, the block is initialized for current values of the inputs am, dm, vm and
sm. The RDY output is set to offbefore the �rst initialization and during the initialization
phase, otherwise it is set to 1. When rising edge (off→on) occurs at the START input, the
block generates the trajectory at the outputs a, v, s and tt, where the signals correspond
to acceleration, velocity, position and time respectively. The BSY output is set to on while
the trajectory is being generated, otherwise it is off.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

START Starting signal (rising edge) Bool

SET Initialize/compute the trajectory Bool

am Maximal allowed acceleration [m/s2] Double (F64)

dm Maximal allowed deceleration [m/s2] Double (F64)

vm Maximum allowed velocity [m/s] Double (F64)

sm Desired �nal position [m] Double (F64)

Output

a Acceleration [m/s2] Double (F64)

v Velocity [m/s] Double (F64)

s Position [m] Double (F64)

tt Time [s] Double (F64)

RDY Outputs valid (ready �ag) Bool

BSY Busy �ag Bool

145

AVSI � Smooth trajectory interpolation

Block Symbol Licence: ADVANCED

an

vn

sn

SET

R1

a

v

s

RDY

iE

AVSI

Function Description

The functional block AVSI - Acceleration (A), Velocity (V), Distance (S) Interpolation
(I) - is designed for signal interpolation, especially in motion control applications. Its
main purpose is to generate smooth sequences of position (distance), velocity, and ac-
celeration based on discrete input values. This block is inspired by the functionality of
RM_AxisSpline and o�ers similar interpolation methods.

The AVSI block accepts inputs sn (position), vn (velocity), and an (acceleration),
which are generated by an external function (outside this block) with a certain period
de�ned by the RemTs parameter. The values at the block's input are updated on the
rising edge of the SET signal.

Interpolation between individual inputs is carried out with the aim of creating smooth
transitions and ensuring continuous motion control or other applications requiring signal
regulation and its derivatives. The block supports various interpolation methods deter-
mined by the Mode parameter, corresponding to the options in RM_AxisSpline. The
supported methods include:

• 1: linear: Position is interpolated linearly, velocity as the derivative of position,
acceleration is 0 (i.e., velocity is a piecewise constant function with jumps).

• 2: cubic spline: Position is a 3rd order polynomial calculated based on the position
and velocity at the beginning and end of the interval; velocity is the derivative of
position, acceleration is the derivative of velocity.

• 3: quintic spline: Position is a 5th order polynomial calculated based on the
position, velocity, and acceleration at the beginning and end of the interval; velocity
is the derivative of position, acceleration is the derivative of velocity.

• 4: cubic aproximation (B-spline): Position is a 3rd order polynomial calculated
based on two positions before and two positions after the current interval; the
interpolated function may not exactly pass through the given points; velocity is
the derivative of position, acceleration is the derivative of velocity.

• 5: quintic aproximation (B-spline): Position is a 5th order polynomial calcu-
lated based on three positions before and three positions after the current interval;

146 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

the interpolated function may not exactly pass through the given points; velocity
is the derivative of position, acceleration is the derivative of velocity.

• 6: all linear: Position, velocity, and acceleration are independently interpolated
linearly, i.e., velocity does not precisely correspond to the derivative of position,
and acceleration does not precisely correspond to the derivative of velocity.

• 7: all cubic: Both position and velocity are interpolated by a 3rd order polyno-
mial independently, i.e., velocity does not exactly correspond to the derivative of
position.

• 8: reserved for future use.

• 9: reserved for future use.

Due to its operating principle, the AVSI block introduces signal delay, where active
generation of values begins only after two complete RemTs periods from the �rst rising
edge of the SET signal. For B-spline interpolation methods, a larger number of samples
is required to start interpolation.

The AVSI block is primarily intended for motion control applications but can also be
used for other types of signals and their derivatives. Its implementation allows for more
e�cient and smoother transitions between individual state values without the need for
complex external control.

When using it, it is important to correctly set the RemTs period corresponding to the
input value generator and choose the appropriate Mode for the desired type of interpola-
tion.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

an Next (remote) period acceleration [m/s2] Double (F64)

vn Next (remote) period velocity [m/s] Double (F64)

sn Next (remote) period position [m] Double (F64)

SET Accept input on rising edge Bool

R1 Block reset Bool

dm Maximal allowed deceleration in case of error [m/s2] Double (F64)

Parameter

RemTs Remote signal generator period ⊙0.0 Double (F64)

147

Mode Algorithm for interpolation ⊙9 Long (I32)

1 linear
2 cubic spline
3 quintic spline
4 cubic approximation (B-spline)
5 quintic approximation (B-spline)
6 all linear
7 all cubic
8 �
9 �

Output

a Acceleration [m/s2] Double (F64)

v Velocity [m/s] Double (F64)

s Position [m] Double (F64)

RDY Outputs valid (ready �ag) Bool

iE Error code Bool

148 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

BPF � Band-pass �lter

Block Symbol Licence: STANDARD

u
R1
HLD

y

BPF

Function Description

The BPF implements a second order �lter in the form

Fs =
2ξas

a2s2 + 2ξas+ 1
,

where a and ξ are are the block parameters fm and xi respectively. The fm parameter
de�nes the middle of the frequency transmission band and xi is the relative damping
coe�cient.

If ISSF = on, then the state of the �lter is set to the steady value at the block
initialization according to the input signal u.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be �ltered Double (F64)

R1 Block reset Bool

HLD Hold Bool

Parameter

fm Peak frequency [Hz] ⊙1.0 Double (F64)

xi Relative damping coe�cient ⊙0.707 Double (F64)

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

Output

y Filtered output signal Double (F64)

149

CMP � Comparator with hysteresis

Block Symbol Licence: STANDARD

u1

u2
Y

CMP

Function Description

The CMP block compares the inputs u1 and u2 with the hysteresis h as follows:

Y−1 = 0,

Yk = hyst(ek), k = 0, 1, 2, . . .

where

ek = u1k − u2k

and

hyst(ek) =

0 for ek ≤ −h
Yk−1 for ek ∈ (−h, h)
1 for ek ≥ h (ek > h for h = 0)

The indexed variables refer to the values of the corresponding signal in the cycle de�ned
by the index, i.e. Yk−1 denotes the value of output in the previous cycle/step. The value
Y−1 is used only once when the block is initialized (k = 0) and the di�erence of the input
signals ek is within the hysteresis limits.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

Parameter

hys Hysteresis ↓0.0 ⊙0.5 Double (F64)

Output

Y Logical output of the block Bool

150 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

CNDR � Nonlinear conditioner

Block Symbol Licence: STANDARD

u
y
is

CNDR

Function Description

The CNDR block can be used for compensation of complex nonlinearities by a piecewise
linear transformation which is depicted below.

is: 1 2 n-1

u0

SATF=1

SATF=0

SATF=1

SATF=0

n0

u1 u2 un-2 un-1

yn-1

yn-2

y2

y1

y0

It is important to note that in the case of u < u0 or u > un−1 the output depends on
the SATF parameter.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

nmax Allocated size of array ↓4 ⊙10 Long (I32)

SATF Saturation �ag ⊙on Bool

off . . . Signal not limited
on Saturation limits active

up Vector of increasing u-coordinates
⊙[0.0 3.9 3.9 9.0 14.5 20.0]

Double (F64)

151

yp Vector of y-coordinates ⊙[0.0 0.0 15.8 38.4 72.0 115.0] Double (F64)

Output

y Analog output of the block Double (F64)

is Active sector of nonlinearity Long (I32)

152 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

DEL � Delay with initialization

Block Symbol Licence: STANDARD

u
R1
y0

y

RDY

DEL

Function Description

The DEL block implements a delay of the input signal u. The signal is shifted n samples
backwards, i.e.

yk = uk−n.

The corresponding time delay is n · TS , where TS is the block trigger period.
If the last n samples are not yet known, the output is set to

yk = y0,

where y0 is the initialization input signal. This can happen after restarting the control
system or after resetting the block (R1: off→on→off) and it is indicated by the output
RDY = off.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

y0 Initial output value Double (F64)

Parameter

n Delay [samples] ↓0 ↑10000000 ⊙10 Long (I32)

nmax Allocated size of array ↓10 ↑10000000 ⊙100 Long (I32)

Output

y Delayed input signal Double (F64)

RDY Outputs valid (ready �ag) Bool

153

DELM � Time delay

Block Symbol Licence: STANDARD

u y

DELM

Function Description

The DELM block implements a time delay of the input signal. The length of the delay
is given by rounding the del parameter to the nearest integer multiple of the block
execution period. The output signal is y = 0 for the �rst del seconds after initialization.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

del Time delay [s] ⊙1.0 Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙100 Long (I32)

Output

y Delayed input signal Double (F64)

154 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

DER � Derivation, �ltering and prediction from the last n+1
samples

Block Symbol Licence: STANDARD

u
RUN
tp

y
z

RDY

DER

Function Description

The DER block interpolates the last n + 1 samples (n ≤ N − 1, N is implementation
dependent) of the input signal u by a line y = at + b using the least squares method.
The starting point of the time axis is set to the current sampling instant.

In case of RUN = on the outputs y and z are computed from the obtained parameters
a and b of the linear interpolation as follows:

Derivation: y = a
Filtering: z = b, for tp = 0
Prediction: z = atp + b, for tp > 0
Retrodiction: z = atp + b, for tp < 0

In case of RUN = off or n+1 samples of the input signal are not yet available (RDY = off),
the outputs are set to y = 0, z = u.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog output of the block Double (F64)

RUN Enable execution Bool

off . . . Tracking
on Filtering

tp Time instant for prediction/�ltering Double (F64)

Parameter

n Number of samples for interpolation ↓1 ↑10000000 ⊙10 Long (I32)

nmax Allocated size of array ↓10 ↑10000000 ⊙100 Long (I32)

Output

y Estimate of input signal derivative Double (F64)

z Predicted/�ltered input signal Double (F64)

155

RDY Outputs valid (ready �ag) Bool

156 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

EVAR � Moving mean value and standard deviation

Block Symbol Licence: STANDARD

u
mu

si

EVAR

Function Description

The EVAR block estimates the mean value mu (µ) and standard deviation si (σ) from the
last n samples of the input signal u according to the formulas

µk =
1

n

n−1∑
i=0

uk−i

σk =

√√√√1

n

n−1∑
i=0

u2k−i − µ2
k

where k stands for the current sampling instant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

n Number of samples for statistics ↓2 ↑10000000 ⊙100 Long (I32)

nmax Allocated size of array ↓10 ↑10000000 ⊙200 Long (I32)

Output

mu Mean value Double (F64)

si Standard deviation Double (F64)

157

INTE � Controlled integrator

Block Symbol Licence: STANDARD

u
RUN
R1
y0
ti

y

Q

LY

HY

INTE

Function Description

The INTE block implements a controlled integrator with variable integral time constant
ti and two indicators of the output signal level (ymin a ymax). If RUN = on and R1 = off

then

y(t) =
1

Ti

∫ t

0
u(τ)dτ + C,

where C = y0. If RUN = off and R1 = off then the output y is frozen to the last value
before the falling edge at the RUN input signal. If R1 = on then the output y is set to the
initial value y0. The integration uses the trapezoidal method as follows

yk = yk−1 +
TS

2Ti
(uk + uk−1),

where TS is the block execution period. If Ti = 0, the block realize summation by
following equation

yk = yk−1 + uk.

If Ti < 0, the block behaviour is unde�ned.
Consider using the SINT block, whose simpler structure and functionality might be

su�cient for elementary tasks.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

RUN Enable execution Bool

off . . . Integration stopped
on Integration running

R1 Block reset Bool

y0 Initial output value Double (F64)

ti Integral time constant Double (F64)

158 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Parameter

ymin Lower level de�nition ⊙-1.0 Double (F64)

ymax Upper level de�nition ⊙1.0 Double (F64)

SAT Limit output if level limit is reach Bool

Output

y Integrator output Double (F64)

Q Running integration indicator Bool

LY Lower saturation indicator Bool

HY Upper saturation indicator Bool

159

KDER � Derivation and �ltering of the input signal

Block Symbol Licence: ADVANCED

u

y
dy
d2y
d3y
d4y
d5y

KDER

Function Description

The KDER block is a Kalman-type �lter of the norder-th order aimed at estimation of
derivatives of locally polynomial signals corrupted by noise. The order of derivatives
ranges from 0 to norder − 1. The block can be used for derivation of almost arbitrary
input signal u = u0(t) + v(t), assuming that the frequency spectrums of the signal and
noise di�er.

The block is con�gured by only two parameters pbeta and norder. The pbeta pa-
rameter depends on the sampling period TS , frequency properties of the input signal u
and also the noise to signal ratio. An approximate formula pbeta ≈ TSω0 can be used.
The frequency spectrum of the input signal u should be located deep down below the
cuto� frequency ω0. But at the same time, the frequency spectrum of the noise should
be as far away from the cuto� frequency ω0 as possible. The cuto� frequency ω0 and
thus also the pbeta parameter must be lowered for strengthening the noise rejection.

The other parameter nordermust be chosen with respect to the order of the estimated
derivations. In most cases the 2nd or 3rd order �lter is su�cient. Higher orders of the
�lter produce better derivation estimates for non-polynomial signals at the cost of slower
tracking and higher computational cost.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be �ltered Double (F64)

Parameter

norder Order of the derivative �lter ↓2 ↑10 ⊙3 Long (I32)

pbeta Bandwidth of the derivative �lter ↓0.0 ⊙0.1 Double (F64)

Output

y Filtered input signal Double (F64)

dy Estimated 1st order derivative Double (F64)

160 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

d2y Estimated 2nd order derivative Double (F64)

d3y Estimated 3rd order derivative Double (F64)

d4y Estimated 4th order derivative Double (F64)

d5y Estimated 5th order derivative Double (F64)

161

LPF � Low-pass �lter

Block Symbol Licence: STANDARD

u
R1
HLD

y

LPF

Function Description

The LPF block implements a second order �lter in the form

Fs =
1

a2s2 + 2ξas+ 1
,

where

a =

√√
2
√
2ξ4 − 2ξ2 + 1− 2ξ2 + 1

2πfb

and fb and ξ = xi are the block parameters. The fb [Hz] parameter de�nes the �lter
bandwidth and xi is the relative damping coe�cient. Attenuation at frequency fb is
3 dB, at 10 · fb approximately 40 dB. For the correct function of the �lter, fb < 1

10TS

must hold, where TS is the block triggering period. The recommended value is xi = 0.71
for the Butterworth �lter and xi = 0.87 for the Bessel �lter.

If ISSF = on, then the state of the �lter is set to the steady value at the block
initialization according to the input signal u.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be �ltered Double (F64)

R1 Block reset Bool

HLD Hold Bool

Parameter

fb Filter bandwidth [Hz] ⊙1.0 Double (F64)

xi Relative damping coe�cient ⊙0.707 Double (F64)

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

162 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Output

y Filtered output signal Double (F64)

163

MINMAX � Running minimum and maximum

Block Symbol Licence: STANDARD

u

R1

ymin
ymax
RDY

MINMAX

Function Description

The MINMAX function block evaluates minimum and maximum from the last n samples
of the u input signal. The output RDY = off indicates that the bu�er contains less than
n samples. In such a case the minimum and maximum are found among the available
samples.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

Parameter

n Number of samples for analysis ↓1 ↑10000000 ⊙100 Long (I32)

nmax Allocated size of array ↓10 ↑10000000 ⊙200 Long (I32)

Output

ymin Minimal value found Double (F64)

ymax Maximal value found Double (F64)

RDY Outputs valid (ready �ag) Bool

164 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

NSCL � Nonlinear scaling factor

Block Symbol Licence: STANDARD

u y

NSCL

Function Description

The NSCL block compensates common nonlinearities of the real world (e.g. the servo
valve nonlinearity) by using the formula

y = gain
u

ze+ (1− ze) · u
,

where gain and ze are the parameters of the block. The choice of ze within the interval
(0, 1) leads to concave transformation, while ze > 1 gives a convex transformation.

0 0.2 0.4 0.6 0.8 1
0

gain

input u

o
u
tp
u
t
y

ze=1.2

ze=0.8

ze=1.0

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

gain Signal gain ⊙1.0 Double (F64)

ze Shaping parameter ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

165

OSD � One Step Delay

Block Symbol Licence: STANDARD

u y

OSD

Function Description

The OSD block implements a one step delay of the input signal u. The length of the step
delay (in seconds) is given by the task period (see the EXEC function block description
for details).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Any

Parameter

LB Act as loopbreak Bool

Output

y Analog output of the block Any

166 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

RDFT � Running discrete Fourier transform

Block Symbol Licence: ADVANCED

u

HLD

amp
thd

vAmp
vPhi
vRe
vIm
E
iE

RDFT

Function Description

The RDFT function block analyzes the analog input signal using the discrete Fourier
transform with the fundamental frequency freq and optional higher harmonic frequen-
cies. The computations are performed over the last m samples of the input signal u, where
m = nper/freq/TS , i.e. from the time-window of the length equivalent to nper periods
of the fundamental frequency.

If nharm > 0 the number of monitored higher harmonic frequencies is given solely by
this parameter. On the contrary, for nharm = 0 the monitored frequencies are given by
the user-de�ned vector parameter freq2.

For each frequency the amplitude (vAmp output), phase-shift (vPhi output), real/co-
sine part (vRe output) and imaginary/sine part (vIm output). The output signals have
the vector form, therefore the computed values for all the frequencies are contained
within. Use the VTOR function block to disassemble the vector signals. The output thd
indicates the total harmonic distortion, i.e. the part of fundamental and higher harmonic
frequencies (only if nharm ≥ 1).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

HLD Hold Bool

Parameter

freq Fundamental frequency ↓1e-09 ↑1e+09 ⊙1.0 Double (F64)

nper Number of periods to calculate upon ↓1 ↑10000 ⊙10 Long (I32)

nharm Number of monitored harmonic frequencies ↓0 ↑16 ⊙3 Long (I32)

ifrunit Frequency units ⊙1 Long (I32)

1 Hz
2 rad/s

167

iphunit Phase shift units ⊙1 Long (I32)

1 degrees
2 radians

nmax Allocated size of array ↓10 ↑10000000 ⊙8192 Long (I32)

freq2 Vector of user-de�ned monitored frequencies ⊙[2.0 3.0 4.0] Double (F64)

Output

amp Amplitude of the fundamental frequency Double (F64)

thd Total harmonic distortion Double (F64)

vAmp Vector of amplitudes at given frequencies Reference

vPhi Vector of phase-shifts at given frequencies Reference

vRe Vector of real parts at given frequencies Reference

vIm Vector of imaginary parts at given frequencies Reference

E Error indicator Bool

iE Error code Error

168 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

RLIM � Rate limiter

Block Symbol Licence: STANDARD

u y

RLIM

Function Description

The RLIM block copies the input signal u to the output y, but the maximum allowed rate
of change is limited. The limits are given by the time constants tp and tn:

the steepest rise per second: 1/tp
the steepest descent per second: −1/tn

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be �ltered Double (F64)

Parameter

tp Time constant - maximum rise ⊙2.0 Double (F64)

tn Time constant - maximum descent ⊙2.0 Double (F64)

Output

y Filtered output signal Double (F64)

169

S1OF2 � One of two analog signals selector

Block Symbol Licence: ADVANCED

u1
u2
sv
HF1
HF2
R

y
E
E1
E2
iE1
iE2
W

S1OF2

Function Description

The S1OF2 block assesses the validity of two input signals u1 and u2 separately. The
validation method is equal to the method used in the SAI block. If the signal u1 (or u2)
is marked invalid, the output E1 (or E2) is set to on and the error code is sent to the iE1
(or iE2) output. The S1OF2 block also evaluates the di�erence between the two input
signals. The internal �ag D is set to on if the di�erences |u1− u2| in the last nd samples
exceed the given limit, which is given by the following inequation:

|u1− u2| > pdev
vmax− vmin

100
,

where vmin and vmax are the minimal and maximal limits of the inputs u1 and u2 and
pdev is the allowed percentage di�erence with respect to the overall range of the input
signals. The value of the output y depends on the validity of the input signals (�ags E1
and E2) and the internal di�erence �ag D as follows:

(i) If E1 = off and E2 = off and D = off , then the output y depends on the mode

parameter:

y =

u1+u2

2 , for codemode = 1,
min(u1, u2), for mode = 2,
max(u1, u2), for mode = 3.

and the output E is set to off unless set to on earlier.

(ii) If E1 = off and E2 = off and D = on , then y = sv and E = on.

(iii) If E1 = on and E2 = off (E1 = off and E2 = on) , then y = u2 (y = u1) and the
output E is set to off unless set to on earlier.

(iv) If E1 = on and E2 = on , then y = sv and E = on.

The input R resets the inner error �ags Fl�F4 (see the SAI block) and the D �ag. For
the input R set permanently to on, the invalidity indicator E1 (E2) is set to on for only
one cycle period whenever some invalidity condition is ful�lled. On the other hand, for
R = 0, the output E1 (E2) is set to on and remains true until the reset (R: off→on). A

170 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

similar rule holds for the E output. For the input R set permanently to on, the E output
is set to on for only one cycle period whenever a rising edge occurs in the internal D �ag
(D = off → on). On the other hand, for R = 0, the output E is set to on and remains
true until the reset (rising edge R: off→on). The output W is set to on only in the (iii)
or (iv) cases, i.e. at least one input signal is invalid.

The parameter nb speci�es the number of samples after restart during which signal
validity detection for u1 and u2 is suppressed. The parameter nc indicates the number
of samples for testing immutability (see the SAI block, condition F2). The number of
samples for testing variability (see the SAI block, condition F3) is given by the parameter
nr. The maximum expected percentage change in input u1 (u2) from the total range
vmax − vmin over nr samples of input u1 (u2) (see the SAI block) is determined by
prate. The parameter nv represents the number of samples for testing range exceedance
(see the SAI block, condition F4).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

sv Substitute value for an error case Double (F64)

HF1 Hardware error �ag for signal u1 Bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

HF2 Hardware error �ag for signal u2 Bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

R Reset inner error �ags Bool

Parameter

nb Number of samples to skip at startup ⊙10 Long (I32)

nc Number of samples for invariability testing ⊙10 Long (I32)

nbits Number of A/D converter bits ⊙12 Long (I32)

nr Number of samples for variability testing ⊙10 Long (I32)

prate Maximum allowed percentage change ⊙10.0 Double (F64)

nv Number of samples for out-of-range testing ⊙1 Long (I32)

vmin Lower limit for the input signal ⊙-1.0 Double (F64)

vmax Upper limit for the input signal ⊙1.0 Double (F64)

nd Number of samples for deviation testing ⊙5 Long (I32)

pdev Maximum allowed percentage deviation of inputs ⊙10.0 Double (F64)

mode Computation of output when both inputs are valid ⊙1 Long (I32)

1 Average
2 Minimum
3 Maximum

171

Output

y Analog output of the block Double (F64)

E Output signal invalidity indicator Bool

off . . . Signal is valid
on Signal is invalid

E1 Invalidity indicator for input u1 Bool

off . . . Signal is valid
on Signal is invalid

E2 Invalidity indicator for input u2 Bool

off . . . Signal is valid
on Signal is invalid

iE1 Reason of input u1 invalidity Long (I32)

0 Signal valid
1 Signal out of range
2 Signal varies too much
3 Signal varies too much and signal out of range
4 Signal varies too little
5 Signal varies too little and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out

of range
8 Hardware error

iE2 Reason of input u2 invalidity Long (I32)

0 Signal valid
1 Signal out of range
2 Signal varies too much
3 Signal varies too much and signal out of range
4 Signal varies too little
5 Signal varies too little and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out

of range
8 Hardware error

W Warning �ag (invalid input signal) Bool

off . . . Both input signals are valid
on At least one of the input signals is invalid

172 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SAI � Safety analog input

Block Symbol Licence: ADVANCED

u
sv
HWF
R

y
yf
E
iE

SAI

Function Description

The SAI block tests the input signal u and assesses its validity. The input signal u is
considered invalid (the output E = on) in the following cases:

F1: Hardware error. The input signal HWF = on.

F2: The input signal u varies too little. The last nc samples of the input u lies within
the interval of width du,

du =

{
vmax−vmin

2nbits
, for nbits ∈ {8, 9, ..., 16}

0, for nbits /∈ {8, 9, ..., 16}.

where vmin and vmax are the lower and upper limits of the input u, respectively,
and nbits is the number of A/D converter bits. The situation when the input
signal u varies too little is shown in the following picture:

k-nc+1 k

Sufficient changes in the signal u,
F2=0

k-nc+1 k

The signal u varies too little,
F2=1

max - min > du
max - min < du

If the parameter nc is set to nc = 0, the condition F2 is never ful�lled.

F3: The input signal u varies too much. The last nr samples of the input u �ltered by
the SPIKE �lter have a span which is greater than rate,

rate = prate
vmax− vmin

100
,

where prate de�nes the allowed percentage change in the input signal u within the
last nr samples (with respect to the overall range of the input signal u ∈ ⟨vmin, vmax⟩).
The block includes a SPIKE �lter with �xed parameters mingap = vmax−vmin

100 and

173

q = 2 suppressing peaks in the input signal to avoid undesirable ful�lling of this
condition. See the SPIKE block description for more details. The situation when
the input signal u varies too much is shown in the following picture:

k-nr+1 k

Acceptable changes in the signal u,
F3=0

k-nr+1 k

max - min < rate

max - min > rate

The signal u varies too much,
F3=1

If the parameter nr is set to nr = 0, the condition F3 is never ful�lled.

F4: The input signal u is out of range. The last nv samples of the input signal u lie
out of the allowed range ⟨vmin, vmax⟩. If the parameter nv is set to nv = 0, the
condition F4 is never ful�lled.

The signal u is copied to the output y without any modi�cation when it is considered
valid. In the other case, the output y is determined by a substitute value from the sv

input. In such a case the output E is set to on and the output iE provides the error code.
The input R resets the inner error �ags F1�F4. For the input R set permanently to on,
the invalidity indicator E is set to on for only one cycle period whenever some invalidity
condition is ful�lled. On the other hand, for R = off, the output E is set to on and
remains true until the reset (rising edge R: off→on).

The table of error codes iE resulting from the inner error �ags F1�F4:

F1 F2 F3 F4 iE

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 * * * 8

The nb parameter de�nes the number of samples which are not included in the validity
assessment after initialization of the block (restart). Recommended setting is nb ≥ 5 to
allow the SPIKE �lter initial conditions to fade away.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

174 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Input

u Analog input of the block Double (F64)

sv Substitute value for an error case Double (F64)

HWF Hardware error indicator Bool

off . . . The input module of the signal works normally
on Hardware error of the input module occurred

R Reset inner error �ags Bool

Parameter

nb Number of samples to skip at startup ⊙10 Long (I32)

nc Number of samples for invariability testing ⊙10 Long (I32)

nbits Number of A/D converter bits ⊙12 Long (I32)

nr Number of samples for variability testing ⊙10 Long (I32)

prate Maximum allowed percentage change ⊙10.0 Double (F64)

nv Number of samples for out-of-range testing ⊙1 Long (I32)

vmin Lower limit for the input signal ⊙-1.0 Double (F64)

vmax Upper limit for the input signal ⊙1.0 Double (F64)

Output

y Analog output of the block Double (F64)

yf Filtered output signal (SPIKE) Double (F64)

E Output signal invalidity indicator Bool

off . . . Signal is valid
on Signal is invalid

iE Reason of invalidity Long (I32)

0 Signal valid
1 Signal out of range
2 Signal varies too much
3 Signal varies too much and signal out of range
4 Signal varies too little
5 Signal varies too little and signal out of range
6 Signal varies too much and too little
7 Signal varies too much and too little and signal out

of range
8 Hardware error

175

SEL � Selector switch for analog signals

Block Symbol Licence: STANDARD

u1
u2
u3
u4
iSW
SW1
SW2

y

SEL

Function Description

The SEL block is obsolete, replace it by the SELQUAD, SELOCT or SELHEXD block. Note the
di�erence in binary selector signals SWn.

The SEL block selects one of the four input signals u1, u2, u3 and u4 and copies it to
the output signal y. The selection is based on the iSW input or the binary inputs SW1 and
SW2. These two modes are distinguished by the BINF binary �ag. The signal is selected
according to the following table:

iSW SW1 SW2 y

0 off off u1

1 off on u2

2 on off u3

3 on on u4

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u1..u4 Analog input of the block Double (F64)

iSW Active signal selector Long (I32)

SW1 Binary signal selector Bool

SW2 Binary signal selector Bool

Parameter

BINF Enable the binary selectors Bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

Output

y The selected input signal Double (F64)

176 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SELQUAD, SELOCT, SELHEXD � Selector switch for analog signals

Block Symbols Licence: STANDARD

u0
u1
u2
u3
iSW
SW0
SW1

y

SELQUAD

u0
u1
u2
u3
u4
u5
u6
u7
iSW
SW0
SW1
SW2

y

SELOCT

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
iSW
SW0
SW1
SW2
SW3

y

SELHEXD

Function Description

The SELQUAD, SELOCT and SELHEX blocks select one of the input signals and copy it to
the output signal y. Please note that the only di�erence among the blocks is the number
of inputs. The selection of the active signal u0. . . u15 is based on the iSW input or the
binary inputs SW0. . . SW3. These two modes are distinguished by the BINF binary �ag.
The signal is selected according to the following table:

iSW SW0 SW1 SW2 SW3 y

0 off off off off u0

1 on off off off u1

2 off on off off u2

3 on on off off u3

4 off off on off u4

5 on off on off u5

6 off on on off u6

7 on on on off u7

8 off off off on u8

9 on off off on u9

10 off on off on u10

11 on on off on u11

12 off off on on u12

13 on off on on u13

14 off on on on u14

15 on on on on u15

This block propagates the signal quality. More information can be found in the 1.4
section.

177

Input

u0..u15 Analog input of the block Any

iSW Active signal selector Long (I32)

SW0..SW3 Binary signal selector Bool

Parameter

BINF Enable the binary selectors Bool

Output

y The selected input signal Any

178 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SHIFTOCT � Data shift register

Block Symbol Licence: STANDARD

u

RUN

y0
y1
y2
y3
y4
y5
y6
y7

SHIFTOCT

Function Description

The SHIFTOCT block works as a shift register with eight outputs of arbitrary data type.
If the RUN input is active, the following assignment is performed with each algorithm

tick:

yi = yi−1, i = 1..7

y0 = u

Thus the value on each output y0 to y6 is shifted to the following output and the value
on input u is assigned to output y0.

The block works with any data type of signal connected to the input u. Data type
has to be speci�ed by the vtype parameter. Outputs y0 to y7 then have the same data
type.

If you need a triggered shift register, place the EDGE block in front of the RUN input.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Any

RUN Enables outputs shift Bool

179

Parameter

vtype Output data type ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

Output

y0..y7 Analog output of the block Any

180 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SHLD � Sample and hold

Block Symbol Licence: STANDARD

u
SETH
R1

y

SHLD

Function Description

The SHLD block is intended for holding the value of the input signal. It processes the
input signal according to the mode parameter.

In Triggered sampling mode the block sets the output signal y to the value of the
input signal u when rising edge (off→on) occurs at the SETH input. The output is held
constant unless a new rising edge occurs at the SETH input.

If Hold last value mode is selected, the output signal y is set to the last value of the
input signal u before the rising edge at the SETH input occured. It is kept constant as
long as SETH = on. For SETH = off the input signal u is simply copied to the output y.

In Hold current value mode the u input is sampled right when the rising edge
(off→on) occurs at the SETH input. It is kept constant as long as SETH = on. For
SETH = off the input signal u is simply copied to the output y.

The binary input R1 sets the output y to the value y0, it overpowers the SETH input
signal.

See also the PARR block, which can be used for storing a numeric value as well.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

SETH Set and hold the output signal Bool

R1 Block reset Bool

Parameter

y0 Initial output value Double (F64)

mode Sampling mode ⊙3 Long (I32)

1 Triggered sampling
2 Hold last value
3 Hold current value

Output

y Analog output of the block Double (F64)

181

SINT � Simple integrator

Block Symbol Licence: STANDARD

u y

SINT

Function Description

The SINT block implements a discrete integrator described by the following di�erence
equation

yk = yk−1 +
TS

2Ti
(uk + uk−1),

where TS is the block execution period and Ti is the integral time constant. If Ti = 0,
the block realize summation by following equation

yk = yk−1 + uk.

If Ti < 0, the block behaviour is unde�ned.
If yk falls out of the saturation limits ymin and ymax, the output and state of the

block are appropriately modi�ed.
For more complex tasks, consider using the INTE block, which provides extended

functionality.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

ti Integral time constant ⊙1.0 Double (F64)

y0 Initial output value Double (F64)

ymax Upper limit of the output signal ⊙1.0 Double (F64)

ymin Lower limit of the output signal ⊙-1.0 Double (F64)

Output

y Analog output of the block Double (F64)

182 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SPIKE � Spike �lter

Block Symbol Licence: ADVANCED

u y

SPIKE

Function Description

The SPIKE block implements a nonlinear �lter for suppressing isolated peaks (pulses) in
the input signal u. One cycle of the SPIKE �lter performs the following transformation
(u, y) → y:

delta := y - u;

if abs(delta) < gap

then

begin

y := u;

gap := gap/q;

ifgap < mingap then gap:= mingap;

end

else

begin

if delta < 0

then y := y + gap

else y := y - gap;

gap := gap * q;

end

where mingap and q are the block parameters.
The signal passes through the �lter una�ected for su�ciently large mingap parameter,

which de�nes the minimal size of the tolerance window. By lowering this parameter it
is possible to �nd an appropriate value, which leads to suppression of the undesirable
peaks but leaves the input signal intact otherwise. The recommended value is 1 % of
the overall input signal range. The q parameter determines the adaptation speed of the
tolerance window.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be �ltered Double (F64)

183

Parameter

mingap Minimum size of the tolerance window ⊙0.01 Double (F64)

q Tolerance window adaptation speed ↓1.0 ⊙2.0 Double (F64)

Output

y Filtered output signal Double (F64)

184 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

SSW � Simple switch

Block Symbol Licence: STANDARD

u1
u2
SW

y

SSW

Function Description

The SSW block selects one of two input signals u1 and u2 with respect to the binary input
SW. The selected input is copied to the output y. If SW = off (SW = on), then the selected
signal is u1 (u2).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Any

u2 Second analog input of the block Any

SW Signal selector Bool

off . . . The u1 signal is selected
on The u2 signal is selected

Output

y Analog output of the block Any

185

SWR � Selector with ramp

Block Symbol Licence: STANDARD

u1
u2
SW

y

SWR

Function Description

The SWR block selects one of two input signals u1 and u2 with respect to the binary
input SW. The selected input is copied to the output y. If SW = off (SW = on), then
the selected signal is u1 (u2). The output signal is not set immediately to the value of
the selected input signal but tracks the selected input with given rate constraint (i.e. it
follows a ramp). This rate constraint is con�gured independently for each input u1, u2
and is de�ned by time constants t1 and t2. As soon as the output reaches the level of
the selected input signal, the rate limiter is disabled and remains inactive until the next
signal switching.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

SW Signal selector Bool

off . . . The u1 signal is selected
on The u2 signal is selected

Parameter

t1 Rate limiter time constant, u2 �> u1 ⊙1.0 Double (F64)

t2 Rate limiter time constant, u1 �> u2 ⊙1.0 Double (F64)

y0 Initial output value Double (F64)

Output

y Analog output of the block Double (F64)

186 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

VDEL � Variable time delay

Block Symbol Licence: STANDARD

u
d

y

VDEL

Function Description

The VDEL block delays the input signal u by the time de�ned by the input signal d.
More precisely, the delay is given by rounding the input signal d to the nearest integer
multiple of the block execution period (n · TS). A substitute value y0 is used until n
previous samples are available after the block initialization.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

d Time delay [s] Double (F64)

Parameter

y0 Initial output value Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙1000 Long (I32)

Output

y Delayed input signal Double (F64)

187

ZV4IS � Zero vibration input shaper

Block Symbol Licence: ADVANCED

u
y
E

ZV4IS

Function Description

The function block ZV4IS implements a band-stop frequency �lter. The main �eld of
application is in motion control of �exible systems where the low sti�ness of mechanical
construction causes an excitation of residual vibrations which can be observed in form
of mechanical oscillations. Such vibration can cause signi�cant deterioration of quality
of control or even instability of control loops. They often lead to increased wear of
mechanical components. Generally, the �lter can be used in arbitrary application for a
purpose of control of an oscillatory system or in signal processing for selective suppression
of particular frequency.

The input shaping �lter can be used in two di�erent ways. By using an open loop

connection, the input reference signal for an feedback loop coming from human operator
or higher level of control structure is properly shaped in order to attenuate any unwanted
oscillations. The internal dynamics of the �lter does not in�uence a behaviour of the infe-
rior loop. The only condition is correct tuning of feedback compensator C(s), which has
to work in linear mode. Otherwise, the frequency spectrum of the manipulating variable
gets corrupted and unwanted oscillations can still be excited in a plant P (s). The main
disadvantage is passive vibration damping which works only in reference signal path.
In case of any external disturbances acting on the plant, the vibrations may still arise.
The second possible way of use is feedback connection. The input shaper is placed on the
output side of feedback compensator C(s) and modi�es the manipulating variable acting
on the plant. An additional dynamics of the �lter is introduced and the compensator
C(s) needs to be properly tuned.

The algorithm of input shaper can be described in time domain

y(t) = A1u(t− t1) +A2u(t− t2) +A3u(t− t3) +A4u(t− t4)

188 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Thus, the �lter has a structure of sum of weighted time delays of an input signal. The
gains A1..A4 and time delay values t1..t4 depend on a choice of �lter type, natural
frequency and damping of controlled oscillatory mode of the system. The main advantage
of this structure compared to commonly used notch �lters is �nite impulse response
(which is especially important in motion control applications), warranted stability and
monotone step response of the �lter and generally lower dynamic delay introduced into
a signal path.

For correct function of the �lter, natural frequency omega and damping xi of the
oscillatory mode need to be set. The parameter ipar sets a �lter type. For ipar = 1, one
of ten basic �lter types chosen by istype is used. Particular basic �lters di�er in shape
and width of stop band in frequency domain. In case of precise knowledge of natural
frequency and damping, the ZV (Zero Vibration) or ZVD �lters can be used, because
their response to input signal is faster compared to the other �lters. In case of large
uncertainty in system/signal model, robust UEI (Extra Insensitive) or UTHEI �lters
are good choice. Their advantage is wider stopband at the cost of slower response. The
number on the end of the name has the meaning of maximum allowed level of excited
vibrations for the given omega and xi (one, two or �ve percent).

For precise tuning of the �lter, complete parameterization ipar = 2 can be selected.
For this choice, three parameters p_alpha,p_a2 and p_a3 which a�ect the shape of the
�lter frequency response can freely be assigned. These parameters can be used for �nding
of optimal compromise between robustness of the �lter and introduced dynamical delay.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Input frequency ω [rad]

F
ilt

e
r

a
m

p
lit

u
d
e

re
s
p
o
n
s
e

A
(j
ω

)

ω
d
=

p
1
=0.2

p
1
=0.3p

1
=−0.1 p

1
=0.1

p
1
=−0.2

p
1
=−0.3

The asymmetry parameter p_alpha determines relative location of the stopband of
�lter frequency response with respect to chosen natural frequency. Positive values mean
a shift to higher frequency range, negative values to lower frequency range, zero value
leads to symmetrical shape of the characteristic (see the �gure above). The parameter
p_alpha also a�ects the overall �lter length, thus the overall delay introduced into a
signal path. Lower values result in slower �lters and higher delay. Asymmetric �lters can
be used in cases where a lower or higher bound of the uncertainty in natural frequency
parameter is known.

189

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Input frequency ω [rad]

F
ilt

e
r

a
m

p
lit

u
d
e

 r
e

s
p
o

n
s
e

 A
(j
ω

)

p
2
=0.1

p
2
=0.2

p
2
=0.3

p
2
=0.4

p
2
=0.5

ω
d
=

Insensitivity parameter p_a2 determines the width and attenuation level of the �lter
stopband. Higher values result in wider stopband and higher attenuation. For most ap-
plications, the value p_a2 = 0.5 is recommended for highest achievable robustness with
respect to modeling errors.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Input frequency ω [rad]

F
ilt

e
r

a
m

p
lit

u
d
e
 r

e
s
p
o

n
s
e

 A
(j
ω

)

p
2
=0.4

p
2
=0.6

p
2
=0.7

p
2
=0.75

p
2
=0.8

p
3
=p

2

ω
d
=

The additional parameter p_a3 needs to be chosen for symmetrical �lters (p_alpha =
0). A rule for the most of the practical applications is to chose equal values p_a2 =
p_a3 from interval < 0, 0.75 >. Overall �lter length is constant for this choice and only
the shape of �lter stopband is a�ected. Lower values lead to robust shapers with wide
stopband and frequency response shape similar to standard THEI (Two-hump extra
insensitive) �lters. Higher values lead to narrow stopband and synchronous drop of two
stopband peaks. The choice p_a2 = p_a3 = 0.75 results in standard ZVDD �lter with
maximally �at and symmetric stopband shape. The proposed scheme can be used for
systematic tuning of the �lter.

This block propagates the signal quality. More information can be found in the 1.4
section.

190 CHAPTER 5. ANALOG � ANALOG SIGNAL PROCESSING

Input

u Input signal to be �ltered Double (F64)

Parameter

omega Natural frequency ⊙1.0 Double (F64)

xi Relative damping coe�cient Double (F64)

ipar Speci�cation ⊙1 Long (I32)

1 Basic types of IS
2 Complete parametrization

istype Type ⊙2 Long (I32)

1 ZV
2 ZVD
3 ZVDD
4 MISZV
5 UEI1
6 UEI2
7 UEI5
8 UTHEI1
9 UTHEI2
10 UTHEI5

p_alpha Shaper duration/assymetry parameter ⊙0.2 Double (F64)

p_a2 Insensitivity parameter ⊙0.5 Double (F64)

p_a3 Additional parameter (only for p_alpha=0) ⊙0.5 Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙1000 Long (I32)

Output

y Filtered output signal Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

Chapter 6

GEN � Signal generators

Contents

ANLS � Controlled generator of piecewise linear function 192

BINS � Controlled binary sequence generator 194

BIS � Binary sequence generator 196

BISR � Binary sequence generator with reset 198

MP � Manual pulse generator . 200

PRBS � Pseudo-random binary sequence generator 201

SG, SGI � Signal generators . 203

The GEN library is specialized in signal generation. It includes blocks like ANLS for
generating a piecewise linear function of time or binary sequence generators BINS, BIS,
BISR. The library also features MP for manual pulse signal generation, PRBS for pseudo-
random binary sequence generation, and SG for periodic signals generation. This library
provides essential tools for creating and manipulating various signal types.

191

192 CHAPTER 6. GEN � SIGNAL GENERATORS

ANLS � Controlled generator of piecewise linear function

Block Symbol Licence: STANDARD

RUN
y
is

ANLS

Function Description

The ANLS block generates a piecewise linear function of time given by nodes t1,y1;
t2,y2; t3,y3; t4,y4. The initial value of output y is de�ned by the y0 parameter. The
generation of the function starts when a rising edge occurs at the RUN input (and the
internal timer is set to 0). The output y is then given by

y = yi +
yi+1 − yi
ti+1 − ti

(t− ti)

within the time intervals ⟨ti, ti+1⟩, i = 0, . . . , 3, t0 = 0.
To generate a step change in the output signal, it is necessary to to de�ne two nodes

in the same time instant (i.e. ti = ti+1). The generation ends when time t4 is reached or
when time ti is reached and the following node precedes the active one (i.e. ti+1 < ti).
The output holds its �nal value afterwards. But for the RPT parameter set to on, instead
of holding the �nal value, the block returns to its initial state y0, the internal block timer
is set to 0 and the sequence is generated repeatedly. This can be used to generate square
or sawtooth functions. The generation can also be prematurely terminated by the RUN

input signal set to off. In that case the block returns to its initial state y0, the internal
block timer is set to 0 and is = 0 becomes the active time interval.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

RUN Enable execution Bool

Parameter

y0 Initial output value Double (F64)

t1 Node 1 time ⊙1.0 Double (F64)

y1 Node 1 value Double (F64)

t2 Node 2 time ⊙1.0 Double (F64)

y2 Node 2 value ⊙1.0 Double (F64)

t3 Node 3 time ⊙2.0 Double (F64)

y3 Node 3 value ⊙1.0 Double (F64)

193

t4 Node 4 time ⊙2.0 Double (F64)

y4 Node 4 value Double (F64)

RPT Repeating sequence Bool

off . . . Disabled
on Enabled

Output

y Analog output of the block Double (F64)

is Index of the active time interval Long (I32)

194 CHAPTER 6. GEN � SIGNAL GENERATORS

BINS � Controlled binary sequence generator

Block Symbol Licence: STANDARD

START
Y

is

BINS

Function Description

The BINS block generates a binary sequence at the Y output, similarly to the BIS block.
The binary sequence is given by the block parameters.

• The initial value of the output is given by the Y0 parameter.

• Whenever a rising edge (off→on) occurs at the START input (even when a binary
sequence is being generated), the internal timer of the block is set to 0 and started,
the output Y is set to Y0.

• The output value is inverted at time instants t1, t2, . . ., t8 (off→on, on→off).

• For RPT = off, the last switching of the output occurs at time ti, where ti+1 = 0
and the output then holds its value until another rising edge (off→on) occurs at
the START input.

• For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

On the contrary to the BIS block the changes in parameters t1. . . t8 are accepted
only when a rising edge occurs at the START input.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< TS/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

START Starting signal (rising edge) Bool

195

Parameter

Y0 Initial output value Bool

off . . . Disabled/false
on Enabled/true

t1..t8 Switching time [s] ↓0.0 ⊙1.0 Double (F64)

RPT Repeating sequence Bool

off . . . Disabled
on Enabled

Output

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

196 CHAPTER 6. GEN � SIGNAL GENERATORS

BIS � Binary sequence generator

Block Symbol Licence: STANDARD

Y

is

BIS

Function Description

The BIS block generates a binary sequence at the Y output. The sequence is given by
the block parameters.

• The initial value of the output is given by the Y0 parameter.

• The internal timer of the block is set to 0 when the block initializes.

• The internal timer of the block is immediately started when the block initializes.

• The output value is inverted at time instants t1, t2, . . ., t8 (off→on, on→off).

• For RPT = off, the last switching of the output occurs at time ti, where ti+1 = 0
and the output then holds its value inde�nitely.

• For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

All the parameters t1. . . t8 can be changed in runtime and all changes are immedi-
ately accepted.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< TS/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

See also the BINS block, which allows for triggering the sequence by external signal.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

Y0 Initial output value Bool

off . . . Disabled/false
on Enabled/true

t1..t8 Switching time [s] ↓0.0 ⊙1.0 Double (F64)

RPT Repeating sequence Bool

off . . . Disabled
on Enabled

197

Output

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

198 CHAPTER 6. GEN � SIGNAL GENERATORS

BISR � Binary sequence generator with reset

Block Symbol Licence: STANDARD

RUN

R1

Y

is

BISR

Function Description

The BISR block generates a binary sequence at the Y output. The RUN input must be set
to on for the whole duration of the sequence. When RUN is off, the sequence is paused
and so is the internal timer.

The binary sequence is given by the block parameters. The initial value of the output
is given by the Y0 parameter. The output value Y is inverted (off→on, on→off) at time
instants t1, t2, . . ., t8. The ADDT parameter de�nes whether the ti instants are relative
to the �rst rising edge at the RUN input or relative to the last switching of the Y output.

If there is less than 8 edges in the desired binary sequence, set any of the ti parameters
to zero and the remaining ones will be ignored.

Whenever a rising edge occurs at the R1 input, the output Y is set to Y0 and the
internal timer is reset. The R1 input overpowers the RUN input.

For RPT = off, the last switching of the output occurs at time ti, where ti+1 = 0
and the output then holds its value until another rising edge (off→on) occurs at the
START input. For RPT = on, instead of switching the output for the last time, the block
returns to its initial state, the Y output is set to Y0, the internal block timer is set to 0
and started. As a result, the binary sequence is generated repeatedly.

The BISR block is an extended version of the BINS block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

RUN Enable execution Bool

R1 Block reset Bool

Parameter

Y0 Initial output value Bool

off . . . Disabled/false
on Enabled/true

ADDT Additive timing Bool

off . . . Absolute timing (sequence as a whole)
on Additive timing (segment by segment)

199

RPT Repeating sequence Bool

off . . . Disabled
on Enabled

t1..t8 Switching time [s] ↓0.0 ⊙1.0 Double (F64)

Output

Y Logical output of the block Bool

is Index of the active time interval Long (I32)

200 CHAPTER 6. GEN � SIGNAL GENERATORS

MP � Manual pulse generator

Block Symbol Licence: STANDARD

Y

MP

Function Description

The MP block generates a pulse of width pwidth when a rising edge occurs at the BSTATE
parameter (off→on). The algorithm immediately reverts the BSTATE parameter back to
off (BSTATE stands for a shortly pressed button). If repetition is enabled (RPTF = on),
it is possible to extend the pulse by repeated setting the BSTATE parameter to on. When
repetition is disabled, the parameter BSTATE is not taken into account during generation
of a pulse, i.e. the output pulses have always the speci�ed width of pwidth.

The MP block reacts only to rising edge of the BSTATE parameter, therefore it cannot be
used for generating a pulse immediately at the start of the REXYGEN system executive.
Use the BIS block for such a purpose.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

BSTATE Output pulse activation Bool

off . . . No action
on Generate output pulse

pwidth Pulse width [s] (0 = one tick) ⊙1.0 Double (F64)

RPTF Allow pulse extension Bool

off . . . Disabled
on Enabled

Output

Y Logical output of the block Bool

201

PRBS � Pseudo-random binary sequence generator

Block Symbol Licence: STANDARD

START
BRK

y
BSY

PRBS

Function Description

The PRBS block generates a pseudo-random binary sequence. The �gure below displays
how the sequence is generated.

swper

seqt waitt

valhi

val0

vallo

START

The initial and �nal values of the sequence are val0. The sequence starts from this
value when rising edge occurs at the START input (off→on), the output y is immediately
switched to the valhi value. The generator then switches the output to the other limit
value with the period of swper seconds and the probability of switching swprob. After
seqt seconds the output is set back to val0. A waitt-second period follows to allow
the settling of the controlled system response. Only then it is possible to start a new
sequence. It is possible to terminate the sequence prematurely by the BRK = on input
when necessary.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

START Starting signal (rising edge) Bool

BRK Termination signal Bool

Parameter

val0 Initial and �nal value Double (F64)

valhi Upper level of the y output ⊙1.0 Double (F64)

vallo Lower level of the y output ⊙-1.0 Double (F64)

swper Period of random output switching [s] ⊙1.0 Double (F64)

swprob Probability of switching ↓0.0 ↑1.0 ⊙0.2 Double (F64)

202 CHAPTER 6. GEN � SIGNAL GENERATORS

seqt Length of the sequence [s] ⊙10.0 Double (F64)

waitt Settling period [s] ⊙2.0 Double (F64)

Output

y Generated pseudo-random binary sequence Double (F64)

BSY Busy �ag Bool

203

SG, SGI � Signal generators

Block Symbols Licence: STANDARD

y

SG

RUN
SYN

y

SGI

Function Description

The SG and SGI blocks generate periodic functions according to the setting of the isig

parameter, which determines the type of signal: sine wave, square wave (with a duty cycle
of 1), sawtooth signal, random signal (white noise with uniform distribution) or triangle
signal. The amplitude and frequency of the output signal y can be set using the amp and
freq parameters. The frequency can be speci�ed in units of Hz or rad/s, as determined
by the ifrunit parameter. For sine, square, sawtooth and triangle signals (i.e. isig ∈
{1, 2, 3, 5}), a phase shift can be adjusted, which is set by the phase parameter within the
range (0, 2π). The unit of phase shift (radians or degrees) is determined by the iphunit
parameter.

The SGI block allows synchronization of multiple generators using the RUN and SYN

inputs. The RUN parameter must be set to on to enable the generator, the SYN input
synchronizes the generators during the output signal generation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

RUN Enable execution Bool

SYN Synchronization signal Bool

Parameter

isig Generated signal type ⊙1 Long (I32)

1 SINE
2 SQUARE
3 SAWTOOTH
4 RANDOM
5 TRIANGLE

amp Amplitude ⊙1.0 Double (F64)

freq Frequency ⊙1.0 Double (F64)

phase Phase shift Double (F64)

offset Value added to output Double (F64)

204 CHAPTER 6. GEN � SIGNAL GENERATORS

ifrunit Frequency units ⊙1 Long (I32)

1 Hz
2 rad/s

iphunit Phase shift units ⊙1 Long (I32)

1 degrees
2 radians

Output

y Analog output of the block Double (F64)

Chapter 7

REG � Function blocks for control

Contents

ARLY � Advance relay . 207

FIWR � Frequence Identi�cation With Reconstructor 208

FLCU � Fuzzy logic controller unit 213

FRID � Frequency response identi�cation 215

I3PM � Identi�cation of a three parameter model 219

LC � Lead compensator . 221

LLC � Lead-lag compensator . 222

LPI � Loop performance index . 223

MCU � Manual control unit . 225

PIDAT � PID controller with relay autotuner 227

PIDE � PID controller with de�ned static error 230

PIDGS � PID controller with gain scheduling 232

PIDMA � PID controller with moment autotuner 234

PIDMAX � PID controller with extended moment autotuner 241

PIDU � PID controller unit . 248

PIDUI � PID controller unit with variable parameters 252

POUT � Pulse output . 254

PRGM � Setpoint programmer . 255

PSMPC � Pulse-step model predictive controller 257

PWM � Pulse width modulation . 261

RLY � Relay with hysteresis . 263

SAT � Saturation with variable limits 264

SC2FA � State controller for 2nd order system with frequency
autotuner . 266

SCU � Step controller with position feedback 273

SCUV � Step controller unit with velocity input 276

SELU � Controller selector unit . 279

205

206 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SMHCC � Sliding mode heating/cooling controller 281

SMHCCA � Sliding mode heating/cooling controller with autotuner 285

SWU � Switch unit . 292

TSE � Three-state element . 293

The control function blocks form the most extensive sub-library of the RexLib library.
Blocks ranging from simple dynamic compensators to several modi�cations of PID (P,
I, PI, PD a PID) controller and some advanced controllers are included. The blocks for
control schemes switching and conversion of output signals for various types of actua-
tors can be found in this sub-library. The involved controllers include the PIDGS block,
enabling online switching of parameter sets (the so-called gain scheduling), the PIDMA

block with built-in moment autotuner, the PIDAT block with built in relay autotuner,
the FLCU fuzzy controller or the PSMPC predictive controller, etc.

207

ARLY � Advance relay

Block Symbol Licence: STANDARD

u y

ARLY

Function Description

The ARLY block is a modi�cation of the RLY block, which allows lowering the amplitude of
steady state oscillations in relay feedback control loops. The block transforms the input
signal u to the output signal y according to the diagram below.

en

ep
y

ap

an

u

en+tol

ep-tol

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

ep Switch-on value ⊙-1.0 Double (F64)

en Switch-o� value ⊙1.0 Double (F64)

tol Tolerance limit ↓0.0 ⊙0.5 Double (F64)

ap Output when ON ⊙1.0 Double (F64)

an Output when OFF ⊙-1.0 Double (F64)

y0 Initial output value Double (F64)

Output

y Analog output of the block Double (F64)

208 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

FIWR � Frequence Identi�cation With Reconstructor

Block Symbol Licence: ADVANCED

pv

pv1

pv2

pv3

pv4

TUNE

HLD

BRK

mv
TBSY

w
xre
xim

phase
epv
IDE
iIDE
cp
thd

pmpRef
mxData

FIWR

Function Description

The FIWR block performs the identi�cation experiment of the process frequency char-
acteristics. The system is excited by a harmonic signal with a static component ubias,
amplitude uampb, and frequency ω passing through the interval ⟨wb, wf⟩ where wb < wf.
If the adaptive amplitude change is enabled (adaptive_amp = on), then the excitation
signal takes such values that the output amplitude is close to dy_max/2. The frequency
sweep rate is determined by the cp state (unless it's not adaptively adjusted, in which
case cpb exclusively determines it), outlining:

• For logarithmic mode (mode = 1), it signi�es the proportional reduction of the
initial period Tb =

2π
wb

of the excitation sine wave over time Tb. Hence, the equation
is as follows:

cp =
wb

ω(Tb)
=

wb

wbeγTb
= e−γTb .

• For linear mode (mode = 2), it represents the frequency increase per unit of time.

The value of the cp state is usually in the interval ⟨0.7; 1) in logarithmic mode. For
the linear mode, the parameter must be chosen with respect to the speci�ed frequency
range and the desired frequency change. If the adaptive change of the sweeping rate
is enabled (adaptive_cp = on), then the cp state is recalculated depending on the
"incorrect" position of the frequency characteristic point before its convergence at each
scheduled stop of the sweeping (given by the vector StopVal). The current value of
the cp parameter is copied to the output cp, its initial value cpb can be selected. The
minimum and maximum values of cp cp_min and cp_max are taken into account only
in adaptive_cp = on mode; otherwise, the value cpb is copied to the output cp. In the
combined mode (mode = 3), cpb is the sweeping rate in logarithmic segments, and the
linear segments, including the sweeping rates, are de�ned by the matrix WL. This matrix
can be de�ned:

• 1: Explicitly: [wb1 wf1 cp1, wb2 wf2 cp2, ..., wbN wfN cpN], where the matrix
size is [1x3N].

209

• 2: Alternatively: [wb1 wb2 ... wbN ; wf1 wf2 ... wfN ; cp1 cp2 ... cpN], where the
matrix size is [3xN].

wbi is the start of the i-th linear interval, wfi is the end of the i-th linear interval,
and cpi is the frequency increment.

In adaptive mode, the excitation amplitude is also continuously adjusted. The ratio
of the amplitude sweep rate to the frequency sweep rate is determined by the sepa-
rate parameter cp_ratio. The amplitude sweep always proceeds logarithmically, and
the ratio applies to the actual (for mode = 1) or theoretical (for mode = 2) logarithmic
frequency sweep rate cp. It is ideal to sweep the amplitude faster than the frequency
(cp_ratio < 1), ensuring su�ciently rapid adjustment of the excitation amplitude in
case of resonances. The recommended value is cp_ratio ∈ ⟨0.5; 1).

System identi�cation is triggered by setting the input TUNE = on. After rmi seconds
(estimated transient duration), the calculation of the current point of the frequency
characteristic starts. Its real and imaginary parts are repeatedly copied to the outputs xre
and xim, and the phase delay at a given frequency is copied to the output phase. During
the identi�cation process, the sweeping stops whenever the required stopping points are
reached based on the parameter stopBy: stopBy = 1 for phase delay [deg], or stopBy

= 2 for frequency [rad/s]. The stopping time is related to the values of the parameters
q_crit ∈ ⟨0.001; 100⟩ and np. q_crit speci�es the threshold of relative change in the
mean values of estimates across two consecutive windows for resuming the sweeping. The
smaller the parameter q_crit, the more accurately the frequency characteristic point will
be determined, and the sweeping stop time will be longer. For a shorter evaluation window
given by the number of seconds np (usually chosen identically to rmi), the stopping time
will be shorter. It is possible to select the maximum number of evaluation windows cmi,
with a common value being cmi = 10. By input HLD = on it is possible to manually
stop the frequency sweeping; setting HLD = off again causes the sweeping to continue. If
necessary, the identi�cation process can be prematurely terminated by input BRK = on.
In this case, the output mxData holds the last instantaneous values, the output pmpRef
contains all accurately measured points, and the system continues to be excited by the
static component ubias. All other outputs are set to zero.

During the identi�cation, the output TBSY = 1. It is set to 0 when �nished. During
an error-free experiment, the output IDE = off. If the identi�cation ends in an error,
then IDE = on and the output iIDE speci�es the associated error.

The vector StopVal can be inserted:

• 1: Explicitly: [ϕ1, ϕ2, ..., ϕM], where the vector size is [1xM].

• 2: Alternatively: [0, 0, ϕstart, ϕstep, ϕend], where ϕstart is the initial phase, ϕstep is
the step between phases, and ϕend is the �nal phase. The vector size is [1x5].

For both representations, the phase vector (for stopBy = 1) must contain a de-
creasing sequence, and the frequency vector (for stopBy = 2) must contain an
increasing sequence.

210 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

The nmax parameter speci�es the maximum number of elements of the vector StopVal
that can be inserted. At the same time, this is the maximum width of the pmpRef matrix,
thus the maximum number of accurately measured points that can be stored.

The process signal pv is reconstructed using an embedded identical state reconstruc-
tor, which assumes the same frequency at the output as the excitation signal. To �lter
out minor nonlinear e�ects, higher harmonics with multiples f2-f4 can also be recon-
structed. The �rst nonzero multiples are always considered valid. A special case occurs
when the parameter f5 is additionally used; in this case, the multiples are always �xed
(f2=2, f3=3, f4=4, f5=5), regardless of their speci�ed values. For a purely linear sys-
tem, the reconstruction of nonexistent higher harmonics may cause some states of the
reconstructor to diverge; in such a case, f2=0 should be set. The speed of the reconstruc-
tor can be adjusted by observing the reconstructed process variable epv through the
parameter alpha, which speci�es the relative position of the poles of the reconstructor.

In a single experiment, it is possible to simultaneously identify up to 5 signals in the
case of a single-input and multi-output system. The experiment is controlled according
to the main signal pv, and in the adaptive excitation amplitude mode, all maximum
permissible response values de�ned by the array dy_max are monitored. If the length of
the array is insu�cient for nsig selected signals for processing, the last value of the array
is applied to all unde�ned positions. If all signals share the same limitation, only one
value needs to be speci�ed.
Error code iIDE:
101 ... Sampling frequency is too low
102 ... Output saturation during identi�cation
103 ... Exceeded initialized array size
104 ... Process variable out of allowable range

10 ... warning - sampling frequency is too low
11 ... warning - cpb does not comply with set limits
12 ... warning - dithering resumed due to reaching max. time
13 ... warning - unable to save additional precisely measured points

due to exhaustion of initialized memory

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

pv Process variable Double (F64)

TUNE Start the tuning experiment Bool

HLD Hold Bool

BRK Stop the tuning experiment Bool

Parameter

wb Start frequency [rad/s] ↓0.0 ⊙1.0 Double (F64)

211

wf End frequency [rad/s] ↓0.0 ⊙10.0 Double (F64)

cpb Initial sweeping rate ↓0.0 ↑1.0 ⊙0.92 Double (F64)

alpha Relative position of recostructor's poles ↓0.0 ⊙2.0 Double (F64)

mode Frequency sweeping mode ⊙1 Long (I32)

1 Logarithmic
2 Linear
3 Combined

adaptive_cp Adaptive sweep rate �ag ⊙on Bool

adaptive_amp Adaptive amplitude �ag ⊙on Bool

nsig Number of valid input signals ↓1 ↑5 ⊙1 Long (I32)

np Window size for convergence detection [s] ↓0.0 ⊙3.0 Double (F64)

q_crit Convergence threshold [%] ↓0.001 ↑100.0 ⊙5.0 Double (F64)

cp_min Minimal Sweeping Rate ↓0.0 ↑1.0 ⊙0.8 Double (F64)

cp_max Maximal Sweeping Rate ↓0.0 ↑1.0 ⊙0.99 Double (F64)

cp_ratio Sweeping and amplitude change ratio ↓0.0 ↑1.0 ⊙0.8 Double (F64)

uampb Initial amplitude of the exciting signal ↓0.0 ⊙1.0 Double (F64)

uamp_max Maximal amplitude of the exciting signal ↓0.0 ⊙5.0 Double (F64)

ubias Static component of the exciting signal Double (F64)

hilim Maximal allowed value of the exciting signal ⊙10.0 Double (F64)

lolim Minimal allowed value of the exciting signal ⊙-10.0 Double (F64)

cmi Number of windows for convergence detection (per frequency)
↓1 ⊙10

Long (I32)

rmi Reconstructor tunning time [s] ↓0.0 ⊙10.0 Double (F64)

f2..f5 Next estimated harmonic order ↓2 ↑1000 ⊙2 Long (I32)

nmax Allocated size of array ↓10 ↑10000000 ⊙40 Long (I32)

stopBy Stop sweep by ⊙10 Long (I32)

1 Phase [deg]
2 Frequency [rad/s]

StopVal Stopping points ⊙[-30 -90 -150] Double (F64)

WL Linear intervals matrix (combined mode only) ⊙[2.2 Double (F64)

dy_max Maximum allowed response amplitude ⊙[2.2 Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

TBSY Tuner busy �ag Bool

off . . . Identi�cation not running
on Identi�cation in progress

w Actual frequency [rad/s] Double (F64)

xre Real part of frequency response Double (F64)

xim Imaginary part of frequency response Double (F64)

phase Phase shift of frequency response [degrees] Double (F64)

epv Process variable estimation Double (F64)

IDE Error indicator Bool

iIDE Error code Long (I32)

212 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

cp Actual Sweeping Rate Double (F64)

thd Total harmonic distorsion Double (F64)

pmpRef Precisely measured frequency response points (w im re) ⊙[2.2 Double (F64)

mxData Actual estimated frequency response (all signals) ⊙[2.2 Double (F64)

213

FLCU � Fuzzy logic controller unit

Block Symbol Licence: ADVANCED

u

v

y
ir
wr

FLCU

Function Description

The FLCU block implements a simple fuzzy logic controller with two inputs and one
output. Introduction to fuzzy logic problems can be found in [5].

The output is de�ned by trapezoidal membership functions of linguistic terms of the
u and v inputs, impulse membership functions of linguistic terms of the y output and
inference rules in the form

If (u is Ui) AND (v is Vj), then (y is Yk),

where Ui, i = 1, . . . , nu are the linguistic terms of the u input; Vj , j = 1, . . . , nv are the
linguistic terms of the v input and Yk, k = 1, . . . , ny are the linguistic terms of the y

output. Trapezoidal (triangular) membership functions of the u and v inputs are de�ned
by four numbers as depicted below.

1

x
1
x
2

x
3

x
4

u

Not all numbers x1, . . . , x4 are mutually di�erent in triangular functions. The matri-
ces of membership functions of the u and v input are composed of rows [x1, x2, x3, x4].
The dimensions of matrices mfu and mfv are (nu× 4) and (nv× 4) respectively.

The impulse 1st order membership functions of the y output are de�ned by the triplet

yk, ak, bk,

where yk is the value assigned to the linguistic term Yk, k = 1, . . . , ny in the case of
ak = bk = 0. If ak ̸= 0 and bk ̸= 0, then the term Yk is assigned the value of yk+aku+bkv.
The output membership function matrix sty has a dimension of (ny × 3) and contains
the rows [yk, ak, bk], k = 1, . . . , ny.

The set of inference rules is also a matrix whose rows are [il, jl, kl, wl], l = 1, . . . , nr,
where il, jl and kl de�nes a particular linguistic term of the u and v inputs and y output
respectively. The number wl de�nes the weight of the rule in percents wl ∈ {0, 1, . . . , 100}.
It is possible to suppress or emphasize a particular inference rule if necessary.

214 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u First analog input of the block Double (F64)

v Second analog input of the block Double (F64)

Parameter

umax Upper limit of the u input ⊙1.0 Double (F64)

umin Lower limit of the u input ⊙-1.0 Double (F64)

vmax Upper limit of the v input ⊙1.0 Double (F64)

vmin Lower limit of the v input ⊙-1.0 Double (F64)

nmax Allocated size of array ↓4 ↑10000 ⊙10 Long (I32)

mfu Matrix of membership functions - input u
⊙[-1 -1 -1 0; -1 0 0 1; 0 1 1 1]

Double (F64)

mfv Matrix of membership functions - input v
⊙[-1 -1 -1 0; -1 0 0 1; 0 1 1 1]

Double (F64)

sty Matrix of membership functions - output y
⊙[-1 0 0; 0 0 0; 1 0 0]

Double (F64)

rls Matrix of inference rules
⊙[1 2 3 100; 1 1 1 100; 1 0 3 100]

Byte (U8)

Output

y Analog output of the block Double (F64)

ir Dominant rule Long (I32)

wr Degree of truth of the dominant rule Double (F64)

215

FRID � Frequency response identi�cation

Block Symbol Licence: ADVANCED

dv

pv

TUNE

HLD

BRK

mv
SAT

TBSY
w

xres
xims
xrem
ximm
epv
IDE
iIDE
A0
A1
A2
A3
A4
A5

THD
DAV

FRID

Function Description

The FRIDblock is designed for experimental identi�cation of the frequency response of
linear and weakly nonlinear systems. The basic principle of the function is to use an
excitation signal generator in the form of a swept harmonic function with time-varying
frequency, amplitude and DC component. This signal is injected into the input of the
identi�ed system in an open or closed loop setting. Based on the observed output response
of the system , a non-parametric model in the form of frequency transfer points of the
system is computed using an internally implemented state estimator.

Its primary application is for systems with oscillatory dynamics, where accurate iden-
ti�cation of frequency characteristics, including location and shape of resonant modes,
is crucial for optimal design of control algorithms.

The identi�cation procedure is initiated upon detecting a rising edge on the TUNE

input. The procedure alternates between two modes: sweeping and measuring. In the
sweeping mode, the FRID block generates a swept sinusoidal signal on the mv output as
excitation for the system under test in the form:

mv(t) = A(t)sin{
∫ t

0
ω(τ)dτ}+ u0(t),

where A(t) is the current amplitude, ω(t) is the current excitation frequency, and u0(t)
is the DC component. If ADAPT_EN is set to on, the amplitude and DC component are
dynamically adjusted to map the system's response across a spectrum of frequencies. The
amplitude adaptation is especially important for weakly damped resonant systems, for
which the gain may vary considerably in the vicinity of (anti)resonances. Initial values
are given by the uamp parameter for amplitude and ubias for the DC component. The
rate of change in amplitude is given by adapt_rc.

The frequency sweeping mode is determined by the isweep parameter. The rate of
frequency change (sweeping) is given by the cp parameter, which speci�es the relative

216 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

reduction of the initial period Tb =
2π
wb

of the excitation sinusoid over time Tb, thus

cp =
wb

ω(Tb)
=

wb

wbeγTb
= e−γTb .

The cp parameter typically ranges in the interval cp∈ ⟨0.95; 1⟩.
For speci�c ω values, the sweeping is paused, and the block switches to the mea-

surement phase to acquire a point of the frequency response. Depending on the immode
parameter setting, the ω values can be determined manually, by a frequency range, or au-
tomatically (see parameter description below). This process facilitates the identi�cation
of key dynamic properties, including (anti)resonant frequencies.

The core of the FRID block algorithm is based on recursive Kalman �lter discretiza-
tion, which optimizes computational e�ciency while maintaining high accuracy of fre-
quency estimation. The block dynamically adjusts the excitation signal parameters dur-
ing the identi�cation experiment to mitigate the e�ects of nonlinearities and achieve a
reliable representation of the system dynamics by a linear frequency response model.
The amplitude adaptation also serves to keep the output within user-de�ned limits. The
tracking speed of the observed output response can be in�uenced by the parameter obw,
which a�ects the bandwidth of the estimator. A larger value results in faster tracking
and steady state estimation of the frequency response at the cost of greater ampli�cation
of measurement noise.

Below is the schematic representation of the FRID block within a system identi�ca-
tion setup. The diagram illustrates the block's interaction with the signal generator and
the mechanical system being analyzed.

SG
velocity/position

A1
^

A2
^

A3
^

A4
^

A5
^

THD

Â0

A0
^

Online experiment control

Measurement points selection
Frequency sweep control

Amplitude control

Closed loop ID (optional)

O
b
s
e
rv
e
r

force/torque

The FRIDblock provides outputs that contain detailed information about the fre-
quency characteristics of the system under test. Outputs A1 to A5 provide estimates of
the amplitudes of the �rst �ve harmonic components of the Fourier series of the plant out-
put response the actual excitation frequency. These amplitudes are key to understanding
how the system responds to di�erent input signal frequencies and allow identi�cation of
system characteristics such as resonant frequencies. They are also used to detect non-
linearities.

217

The output THD, or total harmonic distortion, is an indication of the degree to which
the system response deviates from the ideal linear response. A low THD value indicates
that the system behaves predominantly linearly with respect to the input signal, while a
high THD value may indicate the presence of nonlinearities such as saturation or back-
lash. In addition to nonlinearities, this also takes into account the e�ect of measurement
noise. The THD value is calculated as the ratio of the RMS (root mean square) ampli-
tudes of the higher harmonic components to the RMS amplitude of the �rst harmonic
component, providing a comprehensive view of the quality and linearity of the system
response.

Utilizing these outputs allows users to better understand system dynamics and tailor
control strategies to achieve optimal performance. More details on the block's operation
can be found in [6].

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

pv Process variable Double (F64)

TUNE Start the tuning experiment Bool

HLD Hold Bool

BRK Stop the tuning experiment Bool

Parameter

ubias Static component of the exciting signal Double (F64)

uamp Amplitude of the exciting signal ⊙1.0 Double (F64)

wb Frequency interval lower limit [rad/s] ⊙1.0 Double (F64)

wf Frequency interval higher limit [rad/s] ⊙10.0 Double (F64)

isweep Frequency sweeping mode ⊙1 Long (I32)

1 Logarithmic
2 Linear
3 Combined

cp Sweeping Rate ⊙0.995 Double (F64)

iavg Number of values for averaging ⊙10 Long (I32)

obw Observer bandwidth ⊙2 Long (I32)

1 LOW
2 NORMAL
3 HIGH

stime Settling period [s] ⊙10.0 Double (F64)

umax Maximum generator amplitude ⊙1.0 Double (F64)

thdmin Minimum demanded THD threshold ⊙0.1 Double (F64)

adapt_rc Maximum rate of amplitude variation ⊙0.001 Double (F64)

pv_max Maximum desired process value ⊙1.0 Double (F64)

pv_sat Maximum allowed process value ⊙2.0 Double (F64)

218 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ADAPT_EN Enable automatic amplitude adaptation ⊙on Bool

immode Measurement mode ⊙1 Long (I32)

1 Manual speci�cation of frequency points
2 Linear series of nmw points in the interval <wb;wf>
3 Logarithmic series of nmw points in the interval

<wb;wf>
4 Automatic detection of important frequencies (N/A)

nwm Number of frequency response point for automatic mode Long (I32)

wm Frequency measurement points for manual meas. mode [array of
rad/s] ⊙[2.0 4.0 6.0 8.0]

Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

SAT Saturation �ag Bool

TBSY Tuner busy �ag Bool

off . . . Identi�cation not running
on Identi�cation in progress

w Frequency response - frequency [rad/s] Double (F64)

xres Frequency response - real part (sweeping) Double (F64)

xims Frequency response - imaginary part (sweeping) Double (F64)

xrem Frequency response - real part (measurement) Double (F64)

ximm Frequency response - imaginary part (measurement) Double (F64)

epv Estimated process value Double (F64)

IDE Error indicator Bool

iIDE Error code Long (I32)

DC Estimated DC value Double (F64)

A1..A5 Estimated n-th harmonics amplitude Double (F64)

THD Total harmonic distortion Double (F64)

DAV Data Valid Bool

219

I3PM � Identi�cation of a three parameter model

Block Symbol Licence: ADVANCED

u

y

u0

y0

RUN

CLR

ips

p1
p2
p3
p4
p5
p6
p7
p8

BSY
RDY
E
iE

I3PM

Function Description

The I3PM block identi�es a three-parameter system model using the method of gener-
alized moments. Unlike the PIDMA block, it is necessary to independently control the
identi�cation experiment. The block provides estimated parameters on the outputs p1-6
in one of the following forms, depending on the value of the ips input:

• 0: First-order model with transport delay given as FFOPDT (s) =
K

τs+1 ·e
−Ds, where

p1 = K, p2 = D, p3 = τ ,

• 1: Input and output moments, where p1 = mu0, p2 = mu1, p3 = mu2, p4 = my0,
p5 = my1, p6 = my2,

• 2: Process moments, where p1 = mp0, p2 = mp1, p3 = mp2,

• 3: Process characteristic numbers, where p1 = κ, p2 = µ, p3 = σ2, p4 = σ. For
more information on characteristic numbers, see the documentation of the PSMPC

block.

Outputs p7 and p8 are reserved for later use.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input of the identi�ed system Double (F64)

y Output of the identi�ed system Double (F64)

u0 Input steady state Double (F64)

y0 Output steady state Double (F64)

RUN Execute identi�cation Bool

CLR Block reset Bool

220 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ips Meaning of the output signals Long (I32)

0 FOPDT model
1 moments of input and output
2 process moments
3 characteristic numbers

Parameter

tident Duration of identi�cation [s] ⊙100.0 Double (F64)

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID
4 P
5 PD
6 PI
7 PID

ispeed Desired closed loop speed ⊙2 Long (I32)

1 Slow closed loop
2 Normal (middle fast) CL
3 Fast closed loop

Output

p1..p8 Identi�ed parameter Double (F64)

BSY Busy �ag Bool

RDY Outputs valid (ready �ag) Bool

E Error indicator Bool

off . . . No error
on An error occurred

iE Error code Long (I32)

1 Premature termination
2 mu0=0
3 mp=0
4 sigma^2<0

221

LC � Lead compensator

Block Symbol Licence: STANDARD

u
R1
HLD

y

LC

Function Description

The LC block is a discrete simulator of derivative element

C(s) =
td · s

td

nd
· s+ 1

,

where td is the derivative constant and nd determines the in�uence of parasite 1st order
�lter. It is recommended to use 2 ≤ nd ≤ 10. If ISSF = on, then the state of the parasite
�lter is set to the steady value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the C(s)
transfer function.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

HLD Hold Bool

Parameter

td Derivative time constant ⊙1.0 Double (F64)

nd Derivative �ltering parameter ⊙10.0 Double (F64)

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

Output

y Analog output of the block Double (F64)

222 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

LLC � Lead-lag compensator

Block Symbol Licence: STANDARD

u
R1
HLD

y

LLC

Function Description

The LLC block is a discrete simulator of integral-derivative element

C(s) =
a · tau · s+ 1

tau · s+ 1
,

where tau is the denominator time constant and the time constant of numerator is an
a-multiple of tau (a ∗ tau). If ISSF = on, then the state of the �lter is set to the steady
value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the
C(s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the LLC block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

HLD Hold Bool

Parameter

tau Time constant ⊙1.0 Double (F64)

a Numerator time constant coe�cient Double (F64)

ISSF Steady state at start-up Bool

off . . . Zero initial state
on Initial steady state

Output

y Analog output of the block Double (F64)

223

LPI � Loop performance index

Block Symbol Licence: ADVANCED

upv

usp

RUN

ypv
amp
Ip
E
iE

LPI

Function Description

The LPI (Loop Performance Index) functional block is designed to evaluate the quality
of feedback control by in�uencing the signal value before it is fed into the controller and
measures the system's response. This block is useful for analyzing and identifying the
behavior of the control loop in real-time.

The process variable pv of the control loop is connected to the upv input and from the
ypv output to the controller. The setpoint sp of the control loop is fed to the usp input.
The block is activated by the RUN signal only in the automatic mode of the controller
when it is desired to perform identi�cation of the control loop.

Upon activation (RUN=1), the LPI block injects a sinusoidal signal into the process
variable with a de�ned amplitude ad and frequency fd, allowing the measurement of the
system's response. The output signal is further processed by a BandPass �lter and Fourier
transform to determine the average signal amplitude. The resulting performance index Ip
is calculated based on the ratio between the set parameters and the measured amplitude,
providing a quantitative evaluation of the control system's disturbance suppression.

The output Ip re�ects how e�ectively the control system suppresses disturbances in
the de�ned frequency band fa. A value of Ip=1 indicates that the system suppresses
disturbances in accordance with expectations; values higher than 1 indicate better per-
formance; lower values indicate poorer control loop settings.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

upv Input process variable Double (F64)

usp Input setpoint variable Double (F64)

RUN Enable execution Bool

Parameter

ms Sensitivity function upper limit ↓1.00001 ↑1000.0 ⊙2.0 Double (F64)

fa Available bandwidth ↓1e-10 ↑1e+10 ⊙10.0 Double (F64)

fd Excitation/measured frequency ↓1e-10 ↑1e+10 ⊙1.0 Double (F64)

224 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ad Excitation amplitude ⊙0.01 Double (F64)

nper Window size (number of periods of fd) ↓1 ⊙4 Long (I32)

ifrunit Frequency units ⊙1 Long (I32)

1 Hz
2 rad/s

xi Filter damping ratio ↓0.001 ↑100.0 ⊙1.0 Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙256 Long (I32)

Output

ypv Output process variable Double (F64)

amp Signal amplitude after �ltering Double (F64)

Ip Control loop performance index Double (F64)

E Error indicator Bool

iE Error code Error

225

MCU � Manual control unit

Block Symbol Licence: STANDARD

tv
UP
DN
rv
LOC

y

MCU

Function Description

The MCU block is suitable for manual setting of the numerical output value y, e.g. a
setpoint. In the local mode (LOC = on) the value is set using the buttons UP and DN.
The rate of increasing/decreasing of the output y from the initial value y0 is determined
by the integration time constant tm and pushing time of the buttons. After elapsing ta

seconds while a button is pushed, the rate is always multiplied by the factor q until
the time tf is elapsed. Optionally, the output y range can be constrained (SATF = on)
by saturation limits lolim and hilim. If none of the buttons is pushed (UP = off and
DN = off), the output y tracks the input value tv. The tracking speed is controlled by
the integration time constant tt.

In the remote mode (LOC = off), the input rv is optionally saturated (SATF = on)
and copied to the output y. The detailed function of the block is depicted in the following
diagram.

tv

UP

DN

rv

LOC

y
1

0

hilim
lolim

SATF

1

0

x0

1
1

s

1

Tm

1

Tt

G�

G+

5

4

3

2

1

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

tv Tracking variable Double (F64)

UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

226 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

rv Remote value Double (F64)

LOC Local or remote mode Bool

Parameter

tt Tracking time constant ⊙1.0 Double (F64)

tm Initial value of integration time constant ⊙100.0 Double (F64)

y0 Initial output value Double (F64)

q Multiplication quotient ⊙5.0 Double (F64)

ta Interval after which the rate is changed [s] ⊙4.0 Double (F64)

tf Interval after which the rate changes no more [s] ⊙8.0 Double (F64)

SATF Saturation �ag Bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal ⊙1.0 Double (F64)

lolim Lower limit of the output signal ⊙-1.0 Double (F64)

Output

y Analog output of the block Double (F64)

227

PIDAT � PID controller with relay autotuner

Block Symbol Licence: AUTOTUNING

dv

sp

pv

tv

hv

MAN

TUNE

TBRK

mv
de

SAT
TBSY
TE
ite
pk
pti
ptd
pnd
pb

PIDAT

Function Description

The PIDAT block has the same control function as the PIDU block. Additionally it is
equipped with the relay autotuning function.

In order to perform the autotuning experiment, it is necessary to drive the system to
approximately steady state (at a suitable working point), choose the type of controller to
be autotuned (PI or PID) and activate the TUNE input by setting it to on. The controlled
process is regulated by special adaptive relay controller in the experiment which follows.
One point of frequency response is estimated from the data measured during the experi-
ment. Based on this information the controller parameters are computed. The amplitude
of the relay controller (the level of system excitation) and its hysteresis is de�ned by
the amp and hys parameters. In case of hys=0 the hysteresis is determined automatically
according to the measurement noise properties on the controlled variable signal. The
signal TBSY is set to on during the tuning experiment. While the tuning experiment is
running, the ite output shows the estimated time to �nish in seconds.

A successful experiment is indicated by TE = off and the controller parameters can
be found on the outputs pk, pti, ptd, pnd and pb. The c weighting factor is assumed
(and recommended) c=0. A failure during the experiment causes TE = on and the output
ite provides further information about the problem. It is recommended to increase the
amplitude amp in the case of error. The controller is equipped with a built-in function
which decreases the amplitude when the deviation of output from the initial steady state
exceeds the maxdev limit. The tuning experiment can be prematurely terminated by
activating the TBRK input.

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative e�ect instead). Setting the integral
time constant to Ti = 0 disables the integral component of the controller (same e�ect
as disabling it with the irtype parameter). For Td = 0, the derivative component of
the controller is disabled. Static gain of the process k0 must be provided in case of
iainf = 3, 4, 5.

It is recommended not to change the parameters n1, mm, ntime, rerrap and aerrph.

228 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

TUNE Start the tuning experiment Bool

TBRK Stop the tuning experiment Bool

Parameter

irtype Controller type (control law) ⊙6 Long (I32)

1 [D]
2 [I]
3 [ID]
4 [P]
5 [PD]
6 PI
7 PID

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

k Controller gain ↓0.0 ⊙1.0 Double (F64)

ti Integral time constant ↓0.0 ⊙4.0 Double (F64)

td Derivative time constant ↓0.0 ⊙1.0 Double (F64)

nd Derivative �ltering parameter ↓0.0 ⊙10.0 Double (F64)

b Setpoint weighting - proportional part ↓0.0 ⊙1.0 Double (F64)

c Setpoint weighting - derivative part ↓0.0 Double (F64)

tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

iainf Type of apriori information ⊙1 Long (I32)

1 No apriori information
2 Astatic process
3 Low order process
4 Static process + slow CLSR
5 Static process
6 Static process + fast CLSR

k0 Static gain ⊙1.0 Double (F64)

n1 Maximum number of half-periods - freq. response point ⊙20 Long (I32)

229

mm Maximum number of half-periods - averaging ⊙4 Long (I32)

amp Relay controller amplitude ⊙0.1 Double (F64)

uhys Relay controller hysteresis Double (F64)

ntime Length of noise estimation period [s] ⊙5.0 Double (F64)

rerrap Termination value - amplitude relative error ⊙0.1 Double (F64)

aerrph Termination value - phase absolute error ⊙10.0 Double (F64)

maxdev Maximal admissible deviation error ⊙1.0 Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy �ag Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occurred during the experiment

ite Error code Long (I32)

1000 . . Signal/noise ratio too low
1001 . . Hysteresis too high
1002 . . Too tight termination rule
1003 . . Phase out of interval

pk Proposed controller gain Double (F64)

pti Proposed integral time constant Double (F64)

ptd Proposed derivative time constant Double (F64)

pnd Proposed derivative component �ltering Double (F64)

pb Proposed weighting factor - proportional component Double (F64)

230 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDE � PID controller with de�ned static error

Block Symbol Licence: ADVANCED

dv
sp
pv
tv
hv
MAN

mv

de

SAT

PIDE

Function Description

The PIDE block is a basis for creating a modi�ed PI(D) controller which di�ers from
the standard PI(D) controller (the PIDU block) by having a �nite static gain (in fact,
the value ε which causes the saturation of the output is entered). In the simplest case
it can work autonomously and provide the standard functionality of the modi�ed PID
controller with two degrees of freedom in the automatic (MAN = off) or manual mode
(MAN = on).

If in automatic mode and if the saturation limits are not active, the controller im-
plements a linear control law given by

U(s) = ±K

[
bW (s)− Y (s) +

1

Tis+ β
E(s) +

Tds
Tds
N + 1

(cW (s)− Y (s))

]
+ Z(s),

where
β =

Kε

1−Kε

and U(s) is the Laplace transform of the manipulated variable mv, W (s) is the Laplace
transform of the setpoint sp, Y (s) is the Laplace transform of the process variable pv,
E(s) is the Laplace transform of the deviation error, Z(s) is the Laplace transform of the
feedforward control variable dv and K, Ti, Td, N , ε (= bp/100), b and c are the controller
parameters. The sign of the right hand side depends on the parameter RACT. The range of
the manipulated variable mv (position controller output) is limited by parameters hilim,
lolim.

By connecting the output mv to the input tv and choosing the tt parameter appro-
priately, we achieve the desired behaviour of the controller when reaching the saturation
values of mv. This eliminates the undesirable integral windup e�ect while ensuring smooth
switching (bumpless transfer) between automatic and manual modes.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. In this mode the inner controller state tracks the signal connected to the tv

input so the successive switching to the automatic mode is bumpless. But the tracking
is not precise for ε > 0.

This block propagates the signal quality. More information can be found in the 1.4
section.

231

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Parameter

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID
4 P
5 PD
6 PI
7 PID

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

k Controller gain ↓0.0 ⊙1.0 Double (F64)

ti Integral time constant ↓0.0 ⊙4.0 Double (F64)

td Derivative time constant ↓0.0 ⊙1.0 Double (F64)

nd Derivative �ltering parameter ↓0.0 ⊙10.0 Double (F64)

b Setpoint weighting - proportional part ↓0.0 ⊙1.0 Double (F64)

c Setpoint weighting - derivative part ↓0.0 Double (F64)

tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

bp Static error coe�cient Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

232 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDGS � PID controller with gain scheduling

Block Symbol Licence: ADVANCED

dv
sp
pv
tv
hv
MAN
IH
ip
vp

mv

dmv

de

SAT

kp

PIDGS

Function Description

The functionality of the PIDGS block is completely equivalent to the PIDU block. The
only di�erence is that the PIDGS block has a at most six sets of basic PID controller
parameters and allow bumpless switching of these sets by the ip (parameter set index)
or vp inputs. In the latter case it is necessary to set GSCF = on and provide an array of
threshold values thsha. The following rules de�ne the active parameter set: the set 0 is
active for vp < thrsha(0), the set 1 for thrsha(0) < vp < thrsha(1) etc. till the set 5
for thrsha(4) < vp. The index of the active parameter set is available at the kp output.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

ip Parameter set index ↓0 ↑5 Long (I32)

vp Switching analog signal Double (F64)

Parameter

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

233

icotype Controller output type ⊙1 Long (I32)

1 Analog
2 PWM
3 SCU
4 SCUV

nmax Allocated size of array ↓4 ↑10000 ⊙10 Long (I32)

GSCF Switch parameters by analog signal vp Bool

off . . . Index-based switching
on Analog signal based switching

hys Hysteresis for controller parameters switching Double (F64)

irtypea Vector of controller types (control laws) ⊙[6 6 6 6 6 6] Byte (U8)

RACTA Vector of reverse action �ags ⊙[0 0 0 0 0 0] Bool

ka Vector of controller gains ⊙[1.0 1.0 1.0 1.0 1.0 1.0] Double (F64)

tia Vector of integral time constants
⊙[4.0 4.0 4.0 4.0 4.0 4.0]

Double (F64)

tda Vector of derivative time constants
⊙[1.0 1.0 1.0 1.0 1.0 1.0]

Double (F64)

nda Vector of derivative �ltering parameters
⊙[10.0 10.0 10.0 10.0 10.0 10.0]

Double (F64)

ba Setpoint weighting factors - proportional part
⊙[1.0 1.0 1.0 1.0 1.0 1.0]

Double (F64)

ca Setpoint weighting factors - derivative part
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

tta Vector of tracking time constants
⊙[1.0 1.0 1.0 1.0 1.0 1.0]

Double (F64)

thrsha Vector of thresholds for switching the parameters
⊙[0.1 0.2 0.3 0.4 0.5 0]

Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

kp Active parameter set index Long (I32)

234 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDMA � PID controller with moment autotuner

Block Symbol Licence: AUTOTUNING

dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv
de

SAT
TBSY
TE
ite

trem
pk
pti
ptd
pnd
pb
pc

PIDMA

Function Description

The PIDMA block has the same control function as the PIDU block. In addition, it is
equipped with an autotuning function using a moment autotuner.

In automatic mode (MAN = off), the PIDMA block executes the PID control law with
two degrees of freedom as follows:

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output) is
limited by parameters hilim, lolim. The parameter dz determines the dead zone in the
integral part of the controller. The integral part of the control law can be switched o�
and �xed on the current value by the integrator hold input IH (IH = on). For the proper
function of the controller, it is necessary to connect the output mv of the controller to
the controller input tv and properly set the tracking time constant tt.

The recommended default value for the PID controller is tt ≈
√
TiTd, and for the PI

controller, it is tt ≈ Ti/2. This ensures a bumpless transfer during switching between
manual and automatic modes and correct anti-windup functionality when the output mv
saturates. Adjusting the parameter tt allows for precise behaviour adjustment during
saturation (e.g., bouncing o� the limits due to noise) and when switching between mul-
tiple controllers (the size of the jump when switching, if there is a deviation error). A
value of 0 sets recommended default values for PI and PID controllers. For controllers
without an integral part, it means disabling the tracking. To enable tracking for P or PD
controllers (e.g., for control around a setpoint), set a positive value for tt higher than the

235

sampling period. Disabling tracking for controllers with an integral part is not possible
due to the risk of windup.

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative e�ect instead). Setting the integral
time constant to Ti = 0 disables the integral component of the controller (same e�ect as
disabling it with the irtype parameter). For Td = 0, the derivative component of the
controller is disabled. The additional outputs dmv, de, and SAT sequentially provide the
controller's velocity output (di�erence of mv), the deviation error, and the saturation �ag
of the controller's output mv.

The PIDMA block can be prepared for connection with other types of control blocks
by using the icotype parameter. The icotype parameter can be set to the following
values with the given meanings:

• 1: Analog - standard block mode,

• 2: PWM - mode suitable for connecting the output mv to the input of pulse-width
modulated regulation PWM,

• 3: SCU - mode for connection with a step controller with position feedback SCU,

• 4: SCUV - mode for connection with a step controller without positional feedback
SCUV.

For the last option, the meanings of the outputs mv, dmv, and SAT are modi�ed in this
case: the output mv equals the sum of the P and D components of the controller, while
the output dmv provides the di�erence of its I component, and the output SAT carries
information for the SCUV block whether the deviation error de in automatic mode is
less than the dead zone dz. Additionally, for connecting the PIDMA and SCUV blocks, it
is recommended to set the setpoint weighting factor for the derivative component c to
zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDMA block is quite clear from the following
diagram:

236 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+�1

+�1c

K+�1b

7

6

5

4

3

2

1

The block PIDMA extends the control function of the standard PID controller by the
built in autotuning feature. Before start of the autotuner the operator have to reach the
steady state of the process at a suitable working point (in manual or automatic mode) and
specify the required type of the controller ittype (PI or PID) and other tuning parameters
(iainf, DGC, tdg, tn, amp, dy and ispeed). The identi�cation experiment is started by the
rising edge off→on on the input TUNE (input TBRK �nishes the experiment). In this mode
(TBSY = on), �rst of all the noise and possible drift gradient (DGC = on) are estimated
during the user speci�ed time (tdg+ tn) and then the rectangle pulse is applied to the
input of the process and the �rst three process moments are identi�ed from the pulse
response. The amplitude of the pulse is set by the parameter amp. The pulse is �nished
when the process variable pv deviates from the steady value more than the dy threshold
de�nes. The threshold is an absolute di�erence, therefore it is always a positive value.
The duration of the tuning experiment depends on the dynamic behavior of the process.
The remaining time to the end of the tuning is provided by the output trem.

If the experiment ends successfully (TE = off), then depending on the input ips

appears on the outputs:

• 0: Designed parameters pk, pti, ptd, pnd, pb, pc.

• 1: process moments: static gain (pk), resident time constant (pti), measure of the
system response length (ptd).

• 2: Three-parameter �rst-order plus dead-time model: static gain (pk), dead-time
(pti), time constant (ptd). See the FOPDT block.

• 3: Three-parameter second-order plus dead-time model with double time constant:
static gain (pk), dead-time (pti), time constant (ptd). See the SOPDT block.

• 4: Estimated boundaries for manual �ne-tuning of the PID controller (irtype = 7)
gain k: upper boundary khi (pk), lower boundary klo (pti).

237

Other values of the ips input are reserved for custom speci�c purposes. For (TE = on)
the output ite speci�es the experiment error more closely. The function of the autotuner
is illustrated in the following picture.

mv0+amp

mv0

pv0+dy

sp

pv0

TBSY

phase 0 1 2 3 4

0 t1 t2 t3 t4 t5

During the experiment, the output ite indicates the autotuner phases. In the phase of
estimation of the response decay rate (ite = -4) the tuning experiment may be �nished
manually before its regular end. In this case the controller parameters are designed but
the potential warning is indicated by setting the output ite=100.

Remark: The rising edge off→on at TUNE input during the phases -2, -3 and -4

causes the �nishing of the current phase and transition to the next one (or �nishing the
experiment in the phase -4).

At the end of the experiment (TBSY on→off), the function of the controller depends
on the current controller mode. If the TAFF = on the designed controller parameters are
immediately accepted.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

238 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

TUNE Start the tuning experiment Bool

TBRK Stop the tuning experiment Bool

TAFF Tuning a�rmation Bool

off . . . Parameters are only computed
on Parameters are set into the control law

ips Meaning of the output signals Long (I32)

0 PID parameters
1 process moments
2 FOPDT model
3 SOPDT model
4 boundaries for manual tuning of controller gain

Parameter

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID
4 P
5 PD
6 PI
7 PID

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

k Controller gain ↓0.0 ⊙1.0 Double (F64)

ti Integral time constant ↓0.0 ⊙4.0 Double (F64)

td Derivative time constant ↓0.0 ⊙1.0 Double (F64)

nd Derivative �ltering parameter ↓0.0 ⊙10.0 Double (F64)

b Setpoint weighting - proportional part ↓0.0 ↑2.0 ⊙1.0 Double (F64)

c Setpoint weighting - derivative part ↓0.0 ↑2.0 Double (F64)

tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog
2 PWM
3 SCU
4 SCUV

ittype Controller type to be designed ⊙6 Long (I32)

6 PI
7 PID

239

iainf Type of apriori information ⊙1 Long (I32)

1 Static process
2 Astatic process

DGC Drift gradient compensation ⊙on Bool

off . . . Disabled
on Enabled

tdg Drift gradient estimation time [s] ⊙60.0 Double (F64)

tn Length of noise estimation period [s] ⊙5.0 Double (F64)

amp Tuning pulse amplitude ⊙0.5 Double (F64)

dy Tuning pulse get down threshold ↓0.0 ⊙0.1 Double (F64)

ispeed Desired closed loop speed ⊙2 Long (I32)

1 Slow closed loop
2 Normal (middle fast) CL
3 Fast closed loop

ipid PID controller form ⊙1 Long (I32)

1 Parallel form
2 Series form

Output

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy �ag Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occurred during the experiment

240 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

ite Error code Long (I32)

0 No error or waiting for steady state
1 Too small pulse getdown threshold
2 Too large pulse amplitude
3 Steady state condition violation
4 Too small pulse amplitude
5 Peak search procedure failure
6 Output saturation occurred during experiment
7 Selected controller type not supported
8 Process not monotonous
9 Extrapolation failure
10 Unexpected values of moments (fatal)
11 Abnormal manual termination of tuning
12 Wrong direction of manipulated variable
13 Invalid format of sParams input string
100 . . . Manual termination of tuning (warning)
-1 Drift gradient and noise estimation phase
-2 Pulse generation phase
-3 Searching the peak of system response
-4 Estimation of the system response decay rate

trem Estimated time to �nish the tuning experiment [s] Double (F64)

pk Proposed controller gain Double (F64)

pti Proposed integral time constant Double (F64)

ptd Proposed derivative time constant Double (F64)

pnd Proposed derivative component �ltering Double (F64)

pb Proposed weighting factor - proportional component Double (F64)

pc Proposed weighting factor - derivative component Double (F64)

241

PIDMAX � PID controller with extended moment autotuner

Block Symbol Licence: AUTOTUNING

dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv
de

SAT
TBSY
TE
ite

trem
pk
pti
ptd
pnd
pb
pc

PIDMAX

Function Description

The PIDMAX (PIDMA eXtended) function block is a new, extended version of the PIDMA
block.

In automatic mode (MAN = off), the PIDMAX block executes the PID control law with
two degrees of freedom as follows:

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output) is
limited by parameters hilim, lolim. The parameter dz determines the dead zone in the
integral part of the controller. The integral part of the control law can be switched o�
and �xed on the current value by the integrator hold input IH (IH = on). For the proper
function of the controller, it is necessary to connect the output mv of the controller to
the controller input tv and properly set the tracking time constant tt.

The recommended default value for the PID controller is tt ≈
√
TiTd, and for the PI

controller, it is tt ≈ Ti/2. This ensures a bumpless transfer during switching between
manual and automatic modes and correct anti-windup functionality when the output mv
saturates. Adjusting the parameter tt allows for precise behaviour adjustment during
saturation (e.g., bouncing o� the limits due to noise) and when switching between mul-
tiple controllers (the size of the jump when switching, if there is a deviation error). A
value of 0 sets recommended default values for PI and PID controllers. For controllers
without an integral part, it means disabling the tracking. To enable tracking for P or PD
controllers (e.g., for control around a setpoint), set a positive value for tt higher than the

242 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

sampling period. Disabling tracking for controllers with an integral part is not possible
due to the risk of windup.

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative e�ect instead). Setting the integral
time constant to Ti = 0 disables the integral component of the controller (same e�ect as
disabling it with the irtype parameter). For Td = 0, the derivative component of the
controller is disabled. The additional outputs dmv, de, and SAT sequentially provide the
controller's velocity output (di�erence of mv), the deviation error, and the saturation �ag
of the controller's output mv.

The PIDMAX block can be prepared for connection with other types of control blocks
by using the icotype parameter. The icotype parameter can be set to the following
values with the given meanings:

• 1: Analog - standard block mode,

• 2: PWM - mode suitable for connecting the output mv to the input of pulse-width
modulated regulation PWM,

• 3: SCU - mode for connection with a step controller with position feedback SCU,

• 4: SCUV - mode for connection with a step controller without positional feedback
SCUV.

For the last option, the meanings of the outputs mv, dmv, and SAT are modi�ed in this
case: the output mv equals the sum of the P and D components of the controller, while
the output dmv provides the di�erence of its I component, and the output SAT carries
information for the SCUV block whether the deviation error de in automatic mode is less
than the dead zone dz. Additionally, for connecting the PIDMAX and SCUV blocks, it is
recommended to set the setpoint weighting factor for the derivative component c to zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless satu-
rated. The overall control function of the PIDMAX block is quite clear from the following
diagram:

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+�1

+�1c

K+�1b

7

6

5

4

3

2

1

243

The block PIDMAX extends the control function of the standard PID controller by
the built in autotuning feature. Before start of the autotuner the operator have to reach
the steady state of the process at a suitable working point (in manual or automatic
mode) and specify the required type of the controller ittype (PI or PID) and other
tuning parameters (iainf, DGC, tdg, tn, amp, dy, ispeed and iobj). The identi�cation
experiment is started by the rising edge off→on on the input TUNE (input TBRK �nishes
the experiment). In this mode (TBSY = on), �rst of all the noise and possible drift
gradient (DGC = on) are estimated during the user speci�ed time (tdg+tn) and then the
rectangle pulse is applied to the input of the process and the �rst three process moments
are identi�ed from the pulse response. The amplitude of the pulse is set by the parameter
amp. The pulse is �nished when the process variable pv deviates from the steady value
more than the dy threshold de�nes. The threshold is an absolute di�erence, therefore it is
always a positive value. The duration of the tuning experiment depends on the dynamic
behavior of the process. The remaining time to the end of the tuning is provided by the
output trem.

If the experiment ends successfully (TE = off), then depending on the input ips

appears on the outputs:

• 0: Designed parameters pk, pti, ptd, pnd, pb, pc.

• 1: process moments: static gain (pk), resident time constant (pti), measure of the
system response length (ptd).

• 2: Three-parameter �rst-order plus dead-time model: static gain (pk), dead-time
(pti), time constant (ptd). See the FOPDT block.

• 3: Three-parameter second-order plus dead-time model with double time constant:
static gain (pk), dead-time (pti), time constant (ptd). See the SOPDT block.

• 4: Estimated boundaries for manual �ne-tuning of the PID controller (irtype = 7)
gain k: upper boundary khi (pk), lower boundary klo (pti).

Other values of the ips input are reserved for custom speci�c purposes. For (TE = on)
the output ite speci�es the experiment error more closely. The function of the autotuner
is illustrated in the following picture.

244 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

mv0+amp

mv0

pv0+dy

sp

pv0

TBSY

phase 0 1 2 3 4

0 t1 t2 t3 t4 t5

During the experiment, the output ite indicates the autotuner phases. In the phase of
estimation of the response decay rate (ite = -4) the tuning experiment may be �nished
manually before its regular end. In this case the controller parameters are designed but
the potential warning is indicated by setting the output ite=100.

Remark: The rising edge off→on at TUNE input during the phases -2, -3 and -4

causes the �nishing of the current phase and transition to the next one (or �nishing the
experiment in the phase -4).

At the end of the experiment (TBSY on→off), the function of the controller depends
on the current controller mode. If the TAFF = on the designed controller parameters are
immediately accepted.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

TUNE Start the tuning experiment Bool

TBRK Stop the tuning experiment Bool

245

TAFF Tuning a�rmation Bool

off . . . Parameters are only computed
on Parameters are set into the control law

ips Meaning of the output signals Long (I32)

0 PID parameters
1 process moments
2 FOPDT model
3 SOPDT model
4 boundaries for manual tuning of controller gain

Parameter

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID
4 P
5 PD
6 PI
7 PID

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

k Controller gain ↓0.0 ⊙1.0 Double (F64)

ti Integral time constant ↓0.0 ⊙4.0 Double (F64)

td Derivative time constant ↓0.0 ⊙1.0 Double (F64)

nd Derivative �ltering parameter ↓0.0 ⊙10.0 Double (F64)

b Setpoint weighting - proportional part ↓0.0 ↑2.0 ⊙1.0 Double (F64)

c Setpoint weighting - derivative part ↓0.0 ↑2.0 Double (F64)

tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog
2 PWM
3 SCU
4 SCUV

ittype Controller type to be designed ⊙6 Long (I32)

6 PI
7 PID

iainf Type of apriori information ⊙1 Long (I32)

1 Static process
2 Astatic process

DGC Drift gradient compensation ⊙on Bool

off . . . Disabled
on Enabled

246 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

tdg Drift gradient estimation time [s] ⊙60.0 Double (F64)

tn Length of noise estimation period [s] ⊙5.0 Double (F64)

amp Tuning pulse amplitude ⊙0.5 Double (F64)

dy Tuning pulse get down threshold ↓0.0 ⊙0.1 Double (F64)

ispeed Desired closed loop speed ⊙2 Long (I32)

1 Slow closed loop
2 Normal (middle fast) CL
3 Fast closed loop

ipid PID controller form ⊙1 Long (I32)

1 Parallel form
2 Series form

iobj Objective of tuning ⊙3 Long (I32)

0 Equivalent to PIDMA
1 Setpoint tracking (servo)
2 Servo & Regulator
3 Disturbance rejection (regulator)

Output

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy �ag Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occurred during the experiment

247

ite Error code Long (I32)

0 No error or waiting for steady state
1 Too small pulse getdown threshold
2 Too large pulse amplitude
3 Steady state condition violation
4 Too small pulse amplitude
5 Peak search procedure failure
6 Output saturation occurred during experiment
7 Selected controller type not supported
8 Process not monotonous
9 Extrapolation failure
10 Unexpected values of moments (fatal)
11 Abnormal manual termination of tuning
12 Wrong direction of manipulated variable
13 Invalid format of sParams input string
100 . . . Manual termination of tuning (warning)
-1 Drift gradient and noise estimation phase
-2 Pulse generation phase
-3 Searching the peak of system response
-4 Estimation of the system response decay rate

trem Estimated time to �nish the tuning experiment [s] Double (F64)

pk Proposed controller gain Double (F64)

pti Proposed integral time constant Double (F64)

ptd Proposed derivative time constant Double (F64)

pnd Proposed derivative component �ltering Double (F64)

pb Proposed weighting factor - proportional component Double (F64)

pc Proposed weighting factor - derivative component Double (F64)

248 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDU � PID controller unit

Block Symbol Licence: STANDARD

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU

Function Description

The PIDU block serves as a foundational component for constructing a complete PID
controller (P, I, PI, PD, PID, PI+D). In its simplest form, it can operate independently as
a standard PID controller with two degrees of freedom, accommodating both automatic
(MAN = off) and manual modes (MAN = on).

In automatic mode (MAN = off), the PIDU block executes the PID control law with
two degrees of freedom as follows:

U(s) = ±K

{
bW (s)− Y (s) +

1

Tis
[W (s)− Y (s)] +

Tds
Td
N s+ 1

[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y (s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, Ti, Td, N , b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output) is
limited by parameters hilim, lolim. The parameter dz determines the dead zone in the
integral part of the controller. The integral part of the control law can be switched o�
and �xed on the current value by the integrator hold input IH (IH = on). For the proper
function of the controller, it is necessary to connect the output mv of the controller to
the controller input tv and properly set the tracking time constant tt.

The recommended default value for the PID controller is tt ≈
√
TiTd, and for the PI

controller, it is tt ≈ Ti/2. This ensures a bumpless transfer during switching between
manual and automatic modes and correct anti-windup functionality when the output mv
saturates. Adjusting the parameter tt allows for precise behaviour adjustment during
saturation (e.g., bouncing o� the limits due to noise) and when switching between mul-
tiple controllers (the size of the jump when switching, if there is a deviation error). A
value of 0 sets recommended default values for PI and PID controllers. For controllers
withou an integral part, it means disabling the tracking. To enable tracking for P or PD
controllers (e.g., for control around a setpoint), set a positive value for tt higher than the
sampling period. Disabling tracking for controllers with an integral part is not possible
due to the risk of windup.

249

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative e�ect instead). Setting the integral
time constant to Ti = 0 disables the integral component of the controller (same e�ect as
disabling it with the irtype parameter). For Td = 0, the derivative component of the
controller is disabled. The additional outputs dmv, de, and SAT sequentially provide the
controller's velocity output (di�erence of mv), the deviation error, and the saturation �ag
of the controller's output mv.

The PIDU block can be prepared for connection with other types of control blocks by
using the icotype parameter. The icotype parameter can be set to the following values
with the given meanings:

1 Analog - standard block mode,

2 PWM - mode suitable for connecting the output mv to the input of pulse-width
modulated regulation PWM,

3 SCU - mode for connection with a step controller with position feedback SCU,

4 SCUV - mode for connection with a step controller without positional feedback
SCUV.

For the last option, the meanings of the outputs mv, dmv, and SAT are modi�ed in this
case: the output mv equals the sum of the P and D components of the controller, while
the output dmv provides the di�erence of its I component, and the output SAT carries
information for the SCUV block whether the deviation error de in automatic mode is
less than the dead zone dz. Additionally, for connecting the PIDU and SCUV blocks, it
is recommended to set the setpoint weighting factor for the derivative component c to
zero.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDU block is quite clear from the following
diagram:

RACT

RACT

RACT

AUT

MAN

dv

sp

pv

tv

hv

MAN

mv

de

SAT

dmv

IH

0

0

icotype=SCUV

0

1

1

0

1
0

0

1

0

1

4

3

2

1

1

Tt

1

s

K

Ti

KTd.s

Td/N.s+1

NOT
AND

OR

diff

+�1

+�1c

K+�1b

7

6

5

4

3

2

1

250 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

Parameter

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID
4 P
5 PD
6 PI
7 PID

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

k Controller gain ↓0.0 ⊙1.0 Double (F64)

ti Integral time constant ↓0.0 ⊙4.0 Double (F64)

td Derivative time constant ↓0.0 ⊙1.0 Double (F64)

nd Derivative �ltering parameter ↓0.0 ⊙10.0 Double (F64)

b Setpoint weighting - proportional part ↓0.0 ↑2.0 ⊙1.0 Double (F64)

c Setpoint weighting - derivative part ↓0.0 ↑2.0 Double (F64)

tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog
2 PWM
3 SCU
4 SCUV

251

Output

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

252 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

PIDUI � PID controller unit with variable parameters

Block Symbol Licence: ADVANCED

dv
sp
pv
tv
hv
MAN
IH
k
ti
td
nd
b
c

mv

dmv

de

SAT

PIDUI

Function Description

The functionality of the PIDUI block is completely equivalent to the PIDU block. The only
di�erence is that the PID control algorithm parameters are de�ned by the input signals
and therefore they can depend on the outputs of other blocks. This allows creation of
special adaptive PID controllers.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

IH Integrator hold Bool

off . . . Integration enabled
on Integration disabled

k Controller gain Double (F64)

ti Integral time constant Double (F64)

td Derivative time constant Double (F64)

nd Derivative �ltering parameter Double (F64)

b Setpoint weighting - proportional part Double (F64)

c Setpoint weighting - derivative part Double (F64)

253

Parameter

irtype Controller type (control law) ⊙6 Long (I32)

1 D
2 I
3 ID
4 P
5 PD
6 PI
7 PID

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

tt Tracking time constant ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

dz Dead zone Double (F64)

icotype Controller output type ⊙1 Long (I32)

1 Analog
2 PWM
3 SCU
4 SCUV

Output

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

254 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

POUT � Pulse output

Block Symbol Licence: STANDARD

U Y

POUT

Function Description

The POUT block shapes the input pulses U in such a way, that the output pulse Y has a
duration of at least dtime seconds and the idle period between two successive output
pulses is at least btime seconds. The input pulse occurring sooner than the period of
btime seconds since the last falling edge of the output signal elapses has no e�ect on the
output signal Y.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U Logical input of the block Bool

Parameter

dtime Minimum width of the output pulse [s] ⊙1.0 Double (F64)

btime Minimum delay between output pulses [s] ⊙1.0 Double (F64)

Output

Y Logical output of the block Bool

255

PRGM � Setpoint programmer

Block Symbol Licence: STANDARD

RUN
DEF
spv
HLD
CON
ind
trt
RPT

sp
isc
tsc
tt
rt

CNF
E

PRGM

Function Description

The PRGM block generates functions of time (programs) composed of n linear parts
de�ned by (n + 1)-dimensional vectors of time (tm = [t0, . . . , tn]) and output values
(y = [y0, . . . , yn]). The generated time-course is continuous piecewise linear, see �gure
below. This block is most commonly used as a setpoint generator for a controller. The
program generation starts when RUN = on. In the case of RUN = off the programmer is
set back to the initial state. The input DEF = on sets the output sp to the value spv.
It follows a ramp to the nearest future node of the time function when DEF = off. The
internal time of the generator is not a�ected by this input. The input HLD = on freezes
the output sp and the internal time, thus also the outputs tsc, tt and rt. The program
follows from freezing point as planned when HLD = off unless the input CON = on at the
moment when the signal HLD on→off. In that case the program follows a ramp to reach
the node with index ind in time trt. The node index ind must be equal to or higher
than the index of current sector isc (at the moment when HLD on→off). If RPT = on,
the program is generated repeatedly.

isc 1 2 n

t1

y0

y
1

y2 yn-1

yn

t0 t2 tn-1 tn
tsc

tt rt

current

instant

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

RUN Enable execution Bool

DEF Initialize sp to the value of spv Bool

256 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

spv Initializing constant Double (F64)

HLD Output and timer freezing Bool

CON Continue from de�ned node Bool

ind Index of the node to continue from Long (I32)

trt Time to reach the de�ned node Double (F64)

RPT Repeating sequence Bool

Parameter

nmax Allocated size of array ↓4 ↑10000000 ⊙10 Long (I32)

tmunits Time units ⊙1 Long (I32)

1 seconds
2 minutes
3 hours

tm Vector of ascending node times ⊙[0 1 2] Double (F64)

y Vector of node values ⊙[0 1 0] Double (F64)

Output

sp Setpoint variable Double (F64)

isc Current function sector Long (I32)

tsc Time elapsed since the start of current sector Double (F64)

tt Total elapsed time Double (F64)

rt Remaining time Double (F64)

CNF Con�gured curve is being followed Bool

E Error �ag, nodes not ascending Bool

257

PSMPC � Pulse-step model predictive controller

Block Symbol Licence: ADVANCED

sp

pv

tv

hv

MAN

mv
dmv
de

SAT
pve
iE

PSMPC

Function Description

The PSMPC (Pulse Step Model Predictive Control) functional block is designed for the
implementation of high-quality controllers for di�cult-to-control linear time-invariant
systems with actuator constraints (e.g., systems with transport delay or non-minimum
phase). It is especially advantageous in cases where a very rapid transition from one
controlled variable value to another without overshoot is required. However, the PSMPC

regulator can generally be used wherever standard PID regulators are commonly deployed
and high regulation quality is demanded.

0 Ts 2Ts 3Ts 4Ts N Ts
time

y
(t

)

g(1)

g(3)

g(2)

g(4) g(N)

h(1)

h(2)

h(3)

h(4)

The PSMPC block is a predictive controller with explicitly de�ned constraints on the
amplitude of manipulated variable. For prediction purposes, a model in the form of a
discrete step response g(j), j = 1, . . . , N is used. The �gure above illustrates how this
sequence can be obtained from a continuous step response. Note that N must be chosen
large enough so that the step response is described up to the steady state (N · TS > t95,
where TS is the sampling period of the controller, and t95 is the time to settle to 95 %
of the �nal value).

258 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

For stable, linear and t-invariant systems with a monotonous step response, it is
alternatively possible to use a moment set model [7] and describe the system with only
three characteristic numbers κ, µ and σ2, which can be determined from a simple pulse
experiment. The controlled system can be approximated by �rst order plus dead-time
system

FFOPDT (s) =
K

τs+ 1
· e−Ds, κ = K, µ = τ +D, σ2 = τ2 (7.1)

or second order plus dead-time system

FSOPDT (s) =
K

(τs+ 1)2
· e−Ds, κ = K, µ = 2τ +D, σ2 = 2τ2 (7.2)

with the same characteristic numbers. The type of approximation is selected by the
imtype parameter.

To lower the computational burden of the open-loop optimization, the family of
admissible control sequences contains only sequences in the so-called pulse-step shape
depicted below:

N
c

n
2

n
1

u
�

u
+

u
�

n
1

n
2

N
c

u
�

u
+

u
�

p
0
=1

p
0
=0

Note that each of these sequences is uniquely de�ned by only four numbers n1, n2 ∈
{0, . . . , NC}, p0 and u∞ ∈ ⟨u−, u+⟩, where NC ∈ {0, 1, . . .} is the control horizon and
u−, u+ stand for the given lower and upper limit of the manipulated variable. The on-line
optimization (with respect to p0, n1, n2 and u∞) minimizes the criterion

I =

N2∑
i=N1

ê(k + i|k)2 + λ

NC∑
i=0

∆û(k + i |k)2 → min, (7.3)

where ê(k + i|k) is the predicted control error at time k over the coincidence interval
i ∈ {N1, N2}, ∆û(k + i|k) are the di�erences of the control signal over the interval i ∈
{0, NC} and λ penalizes the changes in the control signal. The algorithm used for solving
the optimization task (7.3) combines brute force and the least squares method. The value
u∞ is determined using the least squares method for all admissible combinations of p0,
n1 and n2 and the optimal control sequence is selected afterwards. The selected sequence
in the pulse-step shape is optimal in the open-loop sense. To convert from open-loop to
closed-loop control strategy, only the �rst element of the computed control sequence is
applied and the whole optimization procedure is repeated in the next sampling instant.

The parameters of the predictive controller, in addition to the model of the controlled
system and its input constraints, include the control horizon NC , the prediction horizon

259

N1, N2, and the coe�cient λ. Only the last-mentioned parameter, λ, is intended for man-
ual �ne-tuning of the control quality during routine commissioning. In the case of using
the system model in the form of a transfer function (7.1) or (7.2), the parameters N1,
N2 are automatically selected based on the characteristic numbers µ, σ2. The controller
can then be e�ectively tuned "manually" by adjusting the characteristic numbers of the
process κ, µ, σ2.

Warning

It is necessary to set the sr array su�ciently large to avoid Matlab/Simulink crash
when using the PSMPC block for simulation purposes. Especially when using FOPDT
or SOPDT model, the sr array size must be greater than the length of the internally
computed discrete step response.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Parameter

nc Control horizon length ⊙5 Long (I32)

np1 Start of coincidence interval ⊙1 Long (I32)

np2 End of coincidence interval ⊙10 Long (I32)

lambda Control signal penalization coe�cient ⊙0.05 Double (F64)

umax Upper limit of the controller output ⊙1.0 Double (F64)

umin Lower limit of the controller output ⊙-1.0 Double (F64)

imtype Controlled process model type ⊙3 Long (I32)

1 FOPDT model
2 SOPDT model
3 Discrete step response

kappa Static gain ⊙1.0 Double (F64)

mu Resident time constant ⊙20.0 Double (F64)

sigma Measure of the system response length ⊙10.0 Double (F64)

nmax Allocated size of array ↓10 ↑10000 ⊙32 Long (I32)

sr Discrete step response sequence
⊙[0 0.2642 0.5940 0.8009 0.9084 0.9596 0.9826 0.9927 0.9970 0.9988 0.9995]

Double (F64)

260 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Output

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

pve Process variable estimation Double (F64)

iE Error code Long (I32)

0 No error
1 Incorrect FOPDT model
2 Incorrect SOPDT model
3 Invalid step response sequence

261

PWM � Pulse width modulation

Block Symbol Licence: STANDARD

u
UP

DN

PWM

Function Description

The PWM block performs pulse-width modulation of the input signal from the range from
-1 to +1. Using this block, it is possible to implement a proportional control action even
with actuators having a single (e.g., heating on/o�) or dual (e.g., heating on/o� and
cooling on/o�) binary inputs. The width L of the output pulse is determined by the
relationship:

L = pertm ∗ |u| ,

where pertm is the modulation period. If u > 0 (u < 0), the pulse is generated at
the output UP (DN). However, for practical reasons, the duration of the generated pulse
is further adjusted according to the speci�ed block parameters. The asymmetry factor
asyfac de�nes the ratio between the width of the negative pulse DN and the width of
the positive pulse UP. The modi�ed widths are calculated according to the equations:

if u > 0 then L(UP) :=

{
L for asyfac ≤ 1.0
L/asyfac for asyfac > 1.0

if u < 0 then L(DN) :=

{
L ∗ asyfac for asyfac ≤ 1.0
L for asyfac > 1.0

which, for any value of asyfac>0, ensure that the maximum width of the generated
pulses equals pertm. Moreover, if the calculated pulse width is less than dtime, then the
resulting width is set to zero. If the calculated pulse width di�ers from pertm by less
than btime, then the resulting width is set to pertm. If a positive pulse UP is followed
by a negative pulse DN or vice versa, then the later pulse is, if necessary, shifted so that
the distance between these two pulses is at least offtime. If SYNCH = on, then a change
in the input u causes an immediate recalculation of the output pulse width, assuming
the synchronization condition between the beginning of the modulation period and the
moment of change in the input u is not met.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

262 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Parameter

pertm Modulation period length [s] ⊙10.0 Double (F64)

dtime Minimum width of the output pulse [s] ⊙0.1 Double (F64)

btime Minimum delay between output pulses [s] ⊙0.1 Double (F64)

offtime Minimum delay when altering direction [s] ⊙1.0 Double (F64)

asyfac Asymmetry factor ⊙1.0 Double (F64)

SYNCH Synchronization �ag Bool

off . . . Synchronization disabled
on Synchronization enabled

Output

UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

263

RLY � Relay with hysteresis

Block Symbol Licence: STANDARD

u y

RLY

Function Description

The RLY block transforms the input signal u to the output signal y according to the
�gure below.

ep

en

y

ap

an

u

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

ep Switch-on value ⊙1.0 Double (F64)

en Switch-o� value ⊙-1.0 Double (F64)

ap Output when ON ⊙1.0 Double (F64)

an Output when OFF ⊙-1.0 Double (F64)

y0 Initial output value Double (F64)

Output

y Analog output of the block Double (F64)

264 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SAT � Saturation with variable limits

Block Symbol Licence: STANDARD

u
hi
lo

y
HL
LL

SAT

Function Description

The SAT block copies the input u to the output y if the input signal satis�es lolim ≤ u

and u ≤ hilim, where lolim and hilim are state variables of the block. If u < lolim

(u > hilim), then y = lolim (y = hilim). The upper and lower limits are either
constants (HLD = on) de�ned by parameters hilim0 and lolim0 respectively or input-
driven variables (HLD = off, hi and lo inputs). The maximal rate at which the active
limits may vary is given by time constants tp (positive slope) and tn (negative slope).
These rates are active even if the saturation limits are changed manually (HLD = on)
using the hilim0 and lolim0 parameters. To allow immediate changes of the saturation
limits, set tp = 0 and tn = 0. The HL and LL outputs indicate the upper and lower
saturation respectively.

If necessary, the hilim0 and lolim0 parameters are used as initial values for the
input-driven saturation limits.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

hi Upper limit of the output signal Double (F64)

lo Lower limit of the output signal Double (F64)

Parameter

tp Rate limiter for positive limit changes ⊙1.0 Double (F64)

tn Rate limiter for negative limit changes ⊙1.0 Double (F64)

hilim0 Upper limit of the output (valid when HLD=1) ⊙1.0 Double (F64)

lolim0 Lower limit of the output (valid when HLD=1) ⊙-1.0 Double (F64)

HLD Fixed saturation limits ⊙on Bool

off . . . Variable saturation limits
on Fixed saturation limits

Output

y Analog output of the block Double (F64)

265

HL Upper limit saturation indicator Bool

LL Lower limit saturation indicator Bool

266 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SC2FA � State controller for 2nd order system with frequency
autotuner

Block Symbol Licence: AUTOTUNING

dv
sp
pv
tv
hv
MAN
ID
TUNE
HLD
BRK
SETC
ips
MFR

mv
de

SAT
TBSY

w
xre
xim
epv
IDE
iIDE
p1
p2
p3
p4
p5
p6

SC2FA

Function Description

The SC2FA block implements a state controller for 2nd order system (7.4) with frequency
autotuner. It is well suited especially for control (active damping) of lightly damped
systems (ξ < 0.1). But it can be used as an autotuning controller for arbitrary system
which can be described with su�cient precision by the transfer function

F (s) =
b1s+ b0

s2 + 2ξΩs+Ω2
, (7.4)

where Ω>0 is the natural (undamped) frequency, ξ, 0<ξ<1, is the damping coe�cient
and b1, b0 are arbitrary real numbers. The block has two operating modes: "Identi�cation
and design mode" and "Controller mode".

Identi�cation and design mode

The "Identi�cation and design mode" is activated by the binary input ID = on. Two
points of frequency response with given phase delay are measured during the identi�ca-
tion experiment. Based on these two points a model of the controlled system is built. The
experiment itself is initiated by the rising edge off→on of the TUNE input. A harmonic
signal with amplitude uamp, frequency ω and bias ubias then appears at the output
mv. The frequency runs through the interval ⟨wb, wf⟩, it increases gradually. The current
frequency is copied to the output w. The rate at which the frequency changes (sweeping)
is determined by the cp parameter, which de�nes the relative shrinking of the initial
period Tb =

2π
wb

of the exciting sine wave in time Tb, thus

cp =
wb

ω(Tb)
=

wb

wbeγTb
= e−γTb .

The cp parameter usually lies within the interval cp ∈ ⟨0,95; 1). The lower the damping
coe�cient ξ of the controlled system is, the closer to one the cp parameter must be.

267

At the start of the identi�cation, the exciting signal has a frequency ω = wb. After
stime has elapsed, the calculation of the estimate of the current frequency characteristic
point begins. Its real and imaginary parts are continuously copied in order to the outputs
xre and xim. If the block parameter MANF is set to 0, then the frequency sweep stops twice
for stime at the moments when points with phase delays ph1 and ph2 are �rst reached.
The preset values for parameters ph1 and ph2 are respectively −60◦ and −120◦, and they
can be changed to any values in the interval (−360◦, 0◦), where ph1 > ph2. After stime
seconds of stopping at phase ph1, or ph2, the average of the last iavg measured points is
calculated (thus obtaining an estimate of the respective frequency characteristic point)
for the subsequent calculation of the parametric model in the form (7.4). If MANF = on,
it is possible to manually "sample" two points of the frequency characteristic using the
input HLD. The input HLD = on stops the frequency sweep, and resetting HLD = off

resumes it. Other functions are identical.
It is possible to terminate the identi�cation experiment prematurely in case of neces-

sity by the input BRK = on. If the two points of frequency response are already identi�ed
at that moment, the controller parameters are designed in a standard way. Otherwise
the controller design cannot be performed and the identi�cation error is indicated by the
output signal IDE = on.

During the actual "identi�cation and design" process:

• the output TBSY is set to 1. After completion, it is reset to 0.

• If the controller design is error-free, the output IDE = off and the output iIDE

indicates the individual phases of the identi�cation experiment:

� Approaching the �rst point is iIDE = −1,

� stopping at the �rst point iIDE = 1,

� approaching the second point is iIDE = −2,

� stopping at the second point iIDE = 2, and

� the �nal phase after stopping at the second point is iIDE = −3.

• If the identi�cation ends with an error, then IDE = on and the number on the
output iIDE speci�es the corresponding error. See the description of the iIDE

parameter below.

The computed state controller parameters are taken over by the control algorithm
as soon as the SETC input is set to 1 (i.e. immediately if SETC is constantly set to on).
The identi�ed model and controller parameters can be obtained from the p1, p2, . . . , p6
outputs after setting the ips input to the appropriate value. For individual ips values,
the parameters have the following meanings:

• 0: Two points of frequency response

� p1 . . . frequency of the 1st measured point in rad/s

� p2 . . . real part of the 1st point

268 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

� p3 . . . imaginary part of the 1st point

� p4 . . . frequency of the 2nd measured point in rad/s

� p5 . . . real part of the 2nd point

� p6 . . . imaginary part of the 2nd point

• 1: Second order model in the form (7.5)

� p1 . . . b1 parameter

� p2 . . . b0 parameter

� p3 . . . a1 parameter

� p4 . . . a0 parameter

• 2: Second order model in the form (7.6)

� p1 . . .K0 parameter

� p2 . . . τ parameter

� p3 . . .Ω parameter in rad/s

� p4 . . . ξ parameter

� p5 . . .Ω parameter in Hz

� p6 . . . resonance frequency in Hz

• 3: State feedback parameters

� p1 . . . f1 parameter

� p2 . . . f2 parameter

� p3 . . . f3 parameter

� p4 . . . f4 parameter

� p5 . . . f5 parameter

After a successful identi�cation it is possible to generate the frequency response of the
controlled system model, which is initiated by a rising edge at the MFR input. The fre-
quency response can be read from the w, xre and xim outputs, which allows easy con-
frontation of the model and the measured data.

Controller

The "Controller mode" (binary input ID = off) has manual (MAN = on) and automatic
(MAN = off) submodes. After a cold start of the block with the input ID = off it is
assumed that the block parameters mb0, mb1, ma0 and ma1 re�ect formerly identi�ed
coe�cients b0, b1, a0 and a1 of the controlled system transfer function and the state
controller design is performed automatically. Moreover if the controller is in the automatic
mode and SETC = on, then the control law uses the parameters from the very beginning.
In this way the identi�cation phase can be skipped when starting the block repeatedly.

269

x1=sinwt

x2=coswt

z1=b sin(wt+fi)

z1=b cos(wt+fi)

wb,wf,cp

w xre xim

ID=1

ID=0

hv

MAN=1

MAN=0

uco

uamp ubias
hilim
lolim

p1 p2 p3 p4 p5 p6

mv pv=y

y^=epv
y

y^ eps

controller

design

estimate

b0,b1,a0,a1

estimate

F(jw)

RCN_SIN

b1.s+b0

s +a1.s+a02

PROCESS

GEN_SIN

Demux

Demux
em

em

The diagram above is a simpli�ed inner structure of the frequency autotuning part
of the controller. The diagram below shows the state feedback, observer and integrator
anti-wind-up. The diagram does not show the fact, that the controller design block
automatically adjusts the observer and state feedback parameters f1, f2, . . . , f5 after
identi�cation experiment (and SETC = on).

-de

v1^

v2^

v3

dv

tv=mv

uco

v4

v5

mv

pv

sp

disturb.

model

observer

1

tt

1
s

f5

f4

f3

f2

f1

em

em

The controlled system is assumed in the form of (7.4). Another forms of this transfer
function are

F (s) =
(b1s+ b0)

s2 + a1s+ a0
(7.5)

and

F (s) =
K0Ω

2(τs+ 1)

s2 + 2ξΩs+Ω2
. (7.6)

The coe�cients of these transfer functions can be found at the outputs p1,. . . ,p6 after the
identi�cation experiment (TBSY = off). The output signals meaning is switched when a
change occurs at the ips input.

This block propagates the signal quality. More information can be found in the 1.4
section.

270 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Input

dv Feedforward control variable Double (F64)

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

tv Tracking variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

ID Identi�cation or controller operating mode Bool

off . . . Controller mode
on Identi�cation and design mode

TUNE Start the tuning experiment Bool

HLD Stop frequency sweeping Bool

BRK Termination signal Bool

SETC Accept and set the controller parameters Bool

off . . . Parameters are only computed
on Parameters are accepted as soon as computed
off->on One-shot con�rmation of the computed parameters

ips Meaning of the output signals Long (I32)

0 Two points of frequency response
1 Second order model (general)
2 Second order model (frequency)
3 State feedback parameters

MFR Model frequency response generation Bool

Parameter

ubias Static component of the exciting signal Double (F64)

uamp Amplitude of the exciting signal ⊙1.0 Double (F64)

wb Frequency interval lower limit [rad/s] ⊙1.0 Double (F64)

wf Frequency interval upper limit [rad/s] ⊙10.0 Double (F64)

isweep Frequency sweeping mode ⊙1 Long (I32)

1 Logarithmic
2 Linear
3 Combined

cp Sweeping rate ↓0.5 ↑1.0 ⊙0.995 Double (F64)

iavg Number of values for averaging ⊙10 Long (I32)

alpha Relative positioning of the observer poles (ident.) ⊙2.0 Double (F64)

xi Observer damping coe�cient (ident.) ⊙0.707 Double (F64)

MANF Manual frequency response points selection Bool

off . . . Disabled
on Enabled

ph1 Phase delay of the 1st point [degrees] ⊙-60.0 Double (F64)

271

ph2 Phase delay of the 2nd point [degrees] ⊙-120.0 Double (F64)

stime Settling period [s] ⊙10.0 Double (F64)

ralpha Relative positioning of the observer poles ⊙4.0 Double (F64)

rxi Observer damping coe�cient ⊙0.707 Double (F64)

acl1 Relative positioning of the 1st CL poles couple ⊙1.0 Double (F64)

xicl1 Damping of the 1st closed-loop poles couple ⊙0.707 Double (F64)

INTGF Integrator �ag ⊙on Bool

off . . . State-space model without integrator
on Integrator included in the state-space model

apcl Relative position of the real pole ⊙1.0 Double (F64)

DISF Disturbance �ag Bool

off . . . State space model without disturbance model
on Disturbance model is included in the state space

model

dom Disturbance model natural frequency [rad/s] ⊙1.0 Double (F64)

dxi Disturbance model damping coe�cient Double (F64)

acl2 Relative positioning of the 2nd CL poles couple ⊙2.0 Double (F64)

xicl2 Damping of the 2nd closed-loop poles couple ⊙0.707 Double (F64)

tt Tracking time constant ⊙1.0 Double (F64)

hilim Upper limit of the controller output ⊙1.0 Double (F64)

lolim Lower limit of the controller output ⊙-1.0 Double (F64)

mb1p Controlled system transfer function coe�cient b1 Double (F64)

mb0p Controlled system transfer function coe�cient b0 ⊙1.0 Double (F64)

ma1p Controlled system transfer function coe�cient a1 ⊙0.2 Double (F64)

ma0p Controlled system transfer function coe�cient a0 ⊙1.0 Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

TBSY Tuner busy �ag Bool

off . . . Identi�cation not running
on Identi�cation in progress

w Frequency response point estimate - frequency [rad/s] Double (F64)

xre Frequency response point estimate - real part Double (F64)

xim Frequency response point estimate - imaginary part Double (F64)

epv Reconstructed pv signal Double (F64)

IDE Identi�cation error indicator Bool

off . . . Identi�cation successful
on Identi�cation error occurred

272 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

iIDE Error code Long (I32)

101 . . . Sampling period too low
102 . . . Error identifying frequency response point(s)
103 . . . Output saturation occurred during experiment
104 . . . Invalid process model

p1..p6 Results of identi�cation and design phase Double (F64)

273

SCU � Step controller with position feedback

Block Symbol Licence: STANDARD

sp
pv
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

de

SCU

Function Description

The SCU block implements the secondary (inner) position controller of the step controller
loop. PIDU function block or some of the derived function blocks (PIDMA, etc.) is assumed
as the primary controller.

The SCU block processes the control deviation sp− pv by a three state element with
parameters (thresholds) thron and throff (see the TSE block, use parameters ep =
thron, epoff = throff, en = -thron and enoff = -throff). The trun parameter
speci�es the time it takes for the motor position to change by one unit. The parameter
RACT determines whether the UP or DN pulse is generated for positive or negative value
of the controller deviation. Two pulse outputs of the three state element are further
shaped so that minimum pulse duration dtime and minimum pulse break time btime

are guaranteed at the block UP and DN outputs. If signals from high and low limit switches
of the valve are available, they should be connected to the HS and LS inputs.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment/decrement request by the mdv input. In this case the request must be con�rmed
by a rising edge (off→on) in the DVC input signal.

The control function of the SCU block is quite clear from the following diagram.

sp

pv

MUP

MDN

mdv

HS

LS

UP

de

DN

DVC

MAN

0

1

0

1

0

1

0

1

3

2

1

PWM

OR

AND
NOT

AND
NOT

AND
NOT

AND
NOT

9

8

7

6

5

4

3

2

1

274 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

The complete structure of the three-state step controller is depicted in the following
�gure.

Position Feedback Signal

Process ValueSetpoint

MAN/AUT
Valve Drive

Optional Connections

sp
pv
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

de

SCU

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU

UP

DN

y

HS

LS

MVD
Motorized
Valve Drive

u y

MDL
Process

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sp Setpoint (output of the primary controller) Double (F64)

pv Controlled variable (valve position) Double (F64)

HS Upper end switch Bool

LS Lower end switch Bool

MUP Manual UP signal Bool

MDN Manual DN signal Bool

mdv Manual di�erential value Double (F64)

DVC Di�erential value change command Bool

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Parameter

thron Switch-on value ↓0.0 ⊙0.02 Double (F64)

throff Switch-o� value ↓0.0 ⊙0.01 Double (F64)

dtime Minimum width of the output pulse [s] ↓0.0 ⊙0.1 Double (F64)

btime Minimum delay between output pulses [s] ↓0.0 ⊙0.1 Double (F64)

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

trun Motor time constant ↓0.0 ⊙10.0 Double (F64)

275

Output

UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

de Deviation error Double (F64)

276 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SCUV � Step controller unit with velocity input

Block Symbol Licence: STANDARD

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV

Function Description

The block SCUV substitutes the secondary position controller SCU in the step controller
loop when the position signal is not available. The primary controller PIDU (or some of
the derived function blocks) is connected with the block SCUV using the block inputs mv,
dmv and SAT.

If the primary controller uses PI or PID control law (CWOI = off), then all three
inputs mv, dmv and SAT of the block SCUV are sequentially processed by the special
integration algorithm and by the three state element with parameters thron and throff

(see the TSE block, use parameters ep = thron, epoff = throff, en = -thron and
enoff = -throff). Pulse outputs of the three state element are further shaped in such
a way that the minimum pulse duration time dtime and minimum pulse break time
btime are guaranteed at the block outputs UP and DN. The parameter RACT determines
the direction of motor moving. Note, the velocity output of the primary controller is
reconstructed from input signals mv and dmv. Moreover, if the deviation error of the
primary controller with icotype = 4 (working in automatic mode) is less than its dead
zone (SAT = on), then the output of the corresponding internal integrator is set to zero.

The position pos of the valve is estimated by an integrator with the time constant
trun. If signals from high and low limit switches of the valve are available, they should
be connected to the inputs HS and LS.

If the primary controller uses P or PD control law (CWOI = on), then the deviation
error of the primary controller can be eliminated by the bias ub manually. In this case,
the control algorithm is slightly modi�ed, the position of the motor pos is used and the
proper settings of thron, throff and the tracking time constant tt are necessary for the
suppressing of up/down pulses in the steady state.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment/decrement request by the mdv input. In this case the request must be con�rmed
by a rising edge (off→on) in the DVC input signal.

277

The overall control function of the SCUV block is obvious from the following diagram:

mv

dmv

MUP

MDN

MAN

HS

LS

UP

pos

DN

1

0

0

ub

CWOI

0

CWOI

�1

mdv

DVC

MR

0

MR

01

0

10

1

SAT

1

0

1

0

1

1

1 0

1

0
1

0

0

0

4

3

2

1

1

trun

1

tt

PWM

OR

OR

AND
NOT

AND
NOT

AND

s

1

s

1

diff

11

10

9

8

7

6

5

4

3

2

1

The complete structures of the three-state controllers are depicted in the following
�gures:

Process ValueSetpoint

Valve Drive
MAN/AUT

Optional Connections

Primary controller with integration: I, PI, PID

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV
(CWOI=0)

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
(icotype=4)

UP

DN

y

HS

LS

MVD
Motorized
Valve Drive

u y

MDL
Process

Process ValueSetpoint

Valve Drive
MAN/AUT

Optional Connections

Manual Bias

Primary controller without integration: P, PD

mv
dmv
ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

UP

DN

pos

MR

SCUV
(CWOI=1)

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
(icotype=4)

UP

DN

y

HS

LS

MVD
Motorized
Valve Drive

u y

MDL
Process

This block propagates the signal quality. More information can be found in the 1.4
section.

278 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Input

mv Manipulated variable (controller output) Double (F64)

dmv Controller velocity output (di�erence) Double (F64)

ub Bias (only for P or PD primary controller) Double (F64)

SAT Internal integrator reset Bool

HS Upper end switch Bool

LS Lower end switch Bool

MUP Manual UP signal Bool

MDN Manual DN signal Bool

mdv Manual di�erential value Double (F64)

DVC Di�erential value change command Bool

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Parameter

thron Switch-on value ↓0.0 ⊙0.02 Double (F64)

throff Switch-o� value ↓0.0 ⊙0.01 Double (F64)

dtime Minimum width of the output pulse [s] ↓0.0 ⊙0.1 Double (F64)

btime Minimum delay between output pulses [s] ↓0.0 ⊙0.1 Double (F64)

RACT Reverse action �ag Bool

off . . . Higher mv -> higher pv
on Higher mv -> lower pv

trun Motor time constant ↓0.0 ⊙10.0 Double (F64)

CWOI Controller without integration �ag Bool

off . . . Controller with integrator (I, PI, PID)
on Controller without integrator (P, PD)

tt Tracking time constant ↓0.0 ⊙1.0 Double (F64)

Output

UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

pos Position output of motor simulator Double (F64)

MR Request to move the motor Bool

off . . . Motor idle (UP=o� and DN=o�)
on Request to move (UP=on or DN=on)

279

SELU � Controller selector unit

Block Symbol Licence: STANDARD

u1
u2
u3
u4
iSW
SW1
SW2

y

U1

U2

U3

U4

SELU

Function Description

The SELU block is tailored for selecting the active controller in selector control. It chooses
one of the input signals u1, u2, u3, u4 and copies it to the output y. For BINF = off the
active signal is selected by the iSW input. In the case of BINF = on the selection is based
on the binary inputs SW1 and SW2 according to the following table:

iSW SW1 SW2 y U1 U2 U3 U4

0 off off u1 off on on on

1 off on u2 on off on on

2 on off u3 on on off on

3 on on u4 on on on off

This table also explains the meaning of the binary outputs U1, U2, U3 and U4, which
are used by the inactive controllers in selector control for tracking purposes (via the SWU
blocks).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1..u4 Analog input of the block Double (F64)

iSW Active signal selector Long (I32)

SW1 Binary signal selector Bool

SW2 Binary signal selector Bool

Parameter

BINF Enable the binary selectors Bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

280 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Output

y The selected input signal Double (F64)

U1..U4 Binary output signal for selector control Bool

281

SMHCC � Sliding mode heating/cooling controller

Block Symbol Licence: ADVANCED

sp

pv

hv

MAN

mv
mve
de

SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv

SMHCC

Function Description

The sliding mode heating/cooling controller SMHCC is a novel high quality control al-
gorithm intended for temperature control of heating-cooling (possibly asymmetrical)
processes with ON-OFF heaters and/or ON-OFF coolers. The plastic extruder is a typ-
ical example of such process. However, it can also be applied to many similar cases, for
example in thermal systems where a conventional thermostat is employed. To provide
the proper control function the block SMHCC must be combined with the block PWM (Pulse
Width Modulation) as depicted in the following �gure.

setpoint

process_temperature

hand_value

MAN_AUT_switch

heater_contactor

cooler_contactor
u
UP

DN

PWM

sp

pv

hv

MAN

mv
mve
de

SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv

SMHCC

It is important to note that the block SMHCC works with several time periods. The
�rst period TS is the sampling time of the process temperature, and this period is
equal to the period with which the block SMHCC itself is executed. The second period
TC = ipwmcTS is the control period with which the block SMHCC generates manipulated
variable. This period TC is also equal to the cycle time of PWM block. At every instant
when the manipulated variable mv is changed by SMHCC the PWM algorithm recalculates
the width of the output pulse and starts a new PWM cycle. The time resolution TR of the
PWM block is third time period involved with. This period is equal to the period with which
the block PWM is run and generally may be di�erent from TS . To achieve the high quality
of control it is recommended to choose TS as minimal as possible (ipwmc as maximal as
possible), the ratio TC/TS as maximal as possible but TC should be su�ciently small
with respect to the process dynamics. An example of reasonable values for an extruder
temperature control is as follows:

TS = 0.1, ipwmc = 100, TC = 10s, TR = 0.01s.

The control law of the block SMHCC in automatic mode (MAN = off) is based on the dis-
crete dynamic sliding mode control technique and special 3rd order �lters for estimation

282 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

of the �rst and second derivatives of the control error.
The �rst control stage, after a setpoint change or upset, is the reaching phase when

the dynamic sliding variable

sk
△
= ëk + 2ξΩėk +Ω2ek

is forced to zero. In the above de�nition of the sliding variable, ek, ėk, ëk denote the
�ltered deviation error (pv−sp) and its �rst and second derivatives in the control period
k, respectively, and ξ, Ω are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and vice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sk = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s
△
= ë+ 2ξΩė+Ω2e

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order di�erential equation

s
△
= ë+ 2ξΩė+Ω2e = 0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters ξ and Ω. For stable behavior, it must hold ξ > 0 and
Ω > 0. A typical optimal value of ξ ranges in the interval [0.1, 8] and ξ about 6 is often
a satisfactory value. The optimal value of Ω strongly depends on the controlled process.
The slower processes the lower optimal Ω. The recommended value of Ω for start of
tuning is π/(5TC).

The manipulated variable mv usually ranges in the interval [−1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p

and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is signi�cant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude u0_p (u0_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set u0_p = hilim_p and u0_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of sk alternately changes its value. In such a case the controller output isv alternates
the values 1 and −1. The rate of adaptation of the heating (cooling) amplitude is given
by the time constant taup (taum). Both of these time constants have to be su�ciently
high to provide the proper function of adaptation but the �ne tuning is not necessary.
Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sk < 0.0) then mv = t_ukp else mv = −t_ukm .

283

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary �ne tuning is required then it may be tried
to �nd the better value for the bandwidth parameter beta of derivative �lter, otherwise
the default value 0.1 is preferred.

In the manual mode (MAN = on) the controller input hv is (after limitation to the
range [−hilim_m, hilim_p]) copied to the manipulated variable mv. The controller output
mve provides the equivalent amplitude-modulated value of the manipulated variable mv

for informative purposes. The output mve is obtained by the �rst order �lter with the
time constant tauf applied to mv.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

Parameter

ipwmc PWM cycle (in sampling periods of the block) ⊙100 Long (I32)

xi Relative damping of sliding zero dynamics ⊙1.0 Double (F64)

om Natural frequency of sliding zero dynamics ⊙0.01 Double (F64)

taup Time constant for adaptation - heating [s] ⊙700.0 Double (F64)

taum Time constant for adaptation - cooling [s] ⊙400.0 Double (F64)

beta Bandwidth parameter of the derivative �lter ⊙0.01 Double (F64)

hilim_p Upper limit of the heating action amplitude ⊙1.0 Double (F64)

hilim_m Upper limit of the cooling action amplitude ⊙1.0 Double (F64)

u0_p Initial amplitude - heating action ⊙1.0 Double (F64)

u0_m Initial amplitude - cooling action ⊙1.0 Double (F64)

sp_dif Setpoint di�erence threshold ⊙10.0 Double (F64)

tauf Equivalent manipulated variable �lter time constant ⊙400.0 Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

mve Equivalent manipulated variable Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

284 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

isv Number of sliding variable steps Long (I32)

t_ukp Current amplitude of heating Double (F64)

t_ukm Current amplitude of cooling Double (F64)

t_sk Discrete dynamic sliding variable Double (F64)

t_pv Filtered process variable Double (F64)

t_dpv Filtered �rst derivative of process variable Double (F64)

t_d2pv Filtered second derivative of process variable Double (F64)

285

SMHCCA � Sliding mode heating/cooling controller with auto-
tuner

Block Symbol Licence: AUTOTUNING

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve
de

SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv
TBSY
TE
ite
p1
p2
p3
p4
p5
p6

SMHCCA

Function Description

The functional block SMHCCA (Sliding Mode Heating/Cooling Controller with Autotuner)
is a high-quality control algorithm with a built-in autotuner for automatic tuning of the
controller parameters. The controller is an easily adjustable controller for quality control
of thermal systems with two-state (ON-OFF) heating and two-state (ON-OFF) cooling.
A classic example of such systems is the plastic extruder. However, it can of course also
be deployed on other systems where conventional thermostats are commonly used so far.
To ensure proper function, the SMHCCA block must be supplemented by the PWM block
(Pulse Width Modulation), as is evident from the following �gure.

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve
de
SAT
isv

t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv
TBSY
TE
ite
p1
p2
p3
p4
p5
p6

SMHCCA

u
UP

DN

PWM

[cooler_contactor]

[heater_contactor]
[setpoint]

[process_temperature]

[hand_value]

[MAN_AUT_switch]

[tuning_mode]

[start_of_tuning]

[tuning_break]

[affirmation_of_parameters]

[selection_of_parameter_set]

Operating Principles

It's important to realize that the SMHCCA block operates with several time periods. The
�rst period TS is the sampling period of the measured temperature and is also equal to
the period with which the SMHCCA controller block is executed. The second period TC =
ipwmcTS is the control period with which the SMHCCA block generates the manipulated
variable. This period TC is identical to the cycle period of the PWM block. At every instant

286 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

when the manipulated variable mv of the SMHCCA block changes, the PWM block algorithm
recalculates the pulse width and starts a new PWM cycle. The third period that needs
to be set is the triggering period TR of the PWM block. Generally, TR may be di�erent
from TS . To achieve the best control quality, it is recommended to set the period TS to
the minimum possible value (ipwmc to the maximum possible value), the ratio TC/TS

maximum, but TC should be su�ciently small with respect to the process dynamics. For
applications in the plastics industry, the following values are recommended:

TS = 0.1, ipwmc = 50, TC = 5s, TR = 0.1s.

Note, however, that for a faster controlled system, the sampling periods TS , TC , and
TR must be shortened! More precisely, the three minimum time constants of the process
are important for selecting these time periods (all real thermal processes have at least
three time constants). For example, the sampling period TS = 0.1 is su�ciently short for
such processes that have at least three time constants, the minimal of them is greater
than 10s and the maximal is greater than 100s. For the proper function of the controller,
it is necessary that these time parameters are suitably chosen by the user according
to the current dynamics of the process! If SMHCCA is implemented on a processor with
�oating-point arithmetic, then the accurate setting of the sampling periods TS , TC , TR

and the parameter beta is critical for the correct function of the controller. Also, some
other parameters with the clear meaning described below have to be chosen manually.
All the remaining parameters (xi, om, taup, taum, tauf) can be set automatically by the
built-in autotuner.

Automatic Tuning Mode

The autotuner uses two methods for this purpose:

• The �rst one is intended for situations where the process asymmetry is not too
large (approximately, this means that the gain ratio of heating/cooling or cool-
ing/heating is less than 5).

• The second method provides tuning support for strongly asymmetric processes
and is not yet implemented (So far, this method has been developed and tested in
Simulink only).

Despite the fact that the �rst method of tuning is based only on the heating mode,
the resulting parameters are usually satisfactory for both heating and cooling modes due
to the strong robustness of sliding mode control. The tuning procedure is very quick and
can be completed during the normal rise time of the process temperature from a cold
state to the setpoint usually without any delay or degradation of control performance.
Thus, the tuning procedure can be included in every start-up from a cold state to a
working point speci�ed by a su�ciently high temperature.

Now, the implemented procedure will be described in detail:

• The tuning procedure begins in tuning mode or in manual mode. If the tuning
mode (TMODE = on) is selected, the manipulated variable mv is automatically set to

287

zero, and the output TBSY is set to on to indicate the tuning phase of the controller.
The cold state of the process is preserved until a rising edge off→on is indicated
at the TUNE input.

• After some time (dependent on beta), when the noise amplitude is estimated,
heating is turned on with the amplitude given by the ut_p parameter. The process
temperature pv and its two derivatives (outputs t_pv, t_dpv, t_d2pv) are observed
to obtain the optimal controller parameters.

• If the tuning procedure ends without errors, then TBSY is set to off, and the
controller begins to operate in manual or automatic mode according to the MAN

input. If MAN = off and the con�rmation input TAFF is set to on, then the controller
begins to operate in automatic mode with the new set of parameters provided by
tuning (if TAFF = off, then the new parameters are only displayed on the outputs
p1..p6).

• If an error occurs during tuning, then the tuning procedure stops immediately or
stops after the condition pv>sp is met, the output TE is set to on, and ite indicates
the type of error. Also in this case, the controller begins to operate in the mode
determined by the MAN input. If MAN = off, then it operates in automatic mode
with the original parameters before tuning!

• Tuning errors are usually caused by either inappropriate setting of the beta pa-
rameter or too low a value of sp. The suitable value of beta ranges in the interval
(0.001,0.1). If drift and noise in pv are large, a small beta value must be chosen,
especially for the tuning phase. The default value (beta=0.01) should work well
for extruder applications. The correct value gives properly �ltered signal of the
second derivative of the process temperature t_d2pv. This well-�ltered signal (cor-
responding to the low value of beta) is mainly necessary for proper tuning. For
control, the parameter beta can sometimes be slightly increased.

• The tuning procedure can also be started from manual mode (MAN = off) with any
constant value of the hv input. However, a steady state must be ensured in this
case. Again, tuning is initiated by an upward edge at the TUNE input, and after
tuning stops, the controller continues in manual mode. In both cases, the resulting
parameters appear on the outputs p1,...,p6.

For individual ips values, the parameters p1,...,p6 have the following meanings:

• 0: Controller parameters

� p1 . . . recommended control period TC

� p2 . . . xi

� p3 . . . om

� p4 . . . taup

� p5 . . . taum

288 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

� p6 . . . tauf

• 1: Auxiliary parameters

� p1 . . . htp2 � time of the peak in the second derivative of pv

� p2 . . . hpeak2 � peak value in the second derivative of pv

� p3 . . . d2 � peak to peak amplitude of t_d2pv

� p4 . . . tgain

289

Automatic mode

The control law of the SMHCCA block in automatic mode (MAN=off) is based on the
discrete dynamic sliding mode control technique and employs a special third-order �lter
for estimating the �rst and second derivatives of the control error.

After a setpoint change or upset, the controller enters the �rst phase, the reaching

phase, where the discrete sliding variable

sk
△
= ëk + 2ξΩėk +Ω2ek

is forced to zero. In this de�nition, ek, ėk, ëk denote the �ltered deviation error (pv−sp),
its �rst and second derivatives at time k, respectively. The parameters ξ and Ω are
described below. In the second phase, the quasi sliding mode, the variable sk is kept near
zero value through appropriate control actions, alternating between heating and cooling
modes. The amplitudes for heating and cooling are adapted to approximately achieve
sk = 0. Consequently, the hypothetical continuous sliding variable

s
△
= ë+ 2ξΩė+Ω2e

remains approximately zero at all times. In other words, the control deviation e is de-
scribed by a second-order di�erential equation

s
△
= ë+ 2ξΩė+Ω2e = 0.

This implies that the evolution of e can be in�uenced by choosing the parameters ξ
and Ω. Note that for stable behavior, it is required that ξ > 0 and Ω > 0. The typical
optimal value of ξ lies in the range [0.1, 8]. The optimal value of Ω is strongly dependent
on the controlled process; slower processes have a lower optimal Ω, and faster ones have
a higher. The recommended value of Ω for the start of tuning parameters is π/(5TC).

The manipulated variable mv typically ranges from [−1, 1]. A positive value corre-
sponds to heating, a negative to cooling, e.g., mv = 1 means full heating. The limits on
mv can be set by the parameters hilim_p and hilim_m. This limitation may be neces-
sary when there is a signi�cant asymmetry between heating and cooling. For example,
if cooling is much more aggressive than heating in the working zone, it is appropriate
to set hilim_p = 1 and hilim_m < 1. If such limitation is only to be applied in some
time interval after a change of setpoint (during the transient response), the initial val-
ues of the heating (cooling) action amplitude u0_p and u0_m should be set such that
u0_p ≤ hilim_p and u0_m ≤ hilim_m.

The amplitudes of heating and cooling variables t_ukp and t_ukm, respectively, are
automatically adapted by a special algorithm to achieve a quasi-sliding mode, where
the signs of sk alternate at each step. In this case, the controller output isv switches
between 1 and −1. The rate of adaptation of heating and cooling amplitudes is given by
the time constants taup and taum. Both of these time constants must be su�ciently large
to ensure the proper functioning of adaptation, but �ne-tuning is not essential for the

290 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

�nal quality of regulation. For completeness, mv is determined based on the amplitudes
t_ukp and t_ukm according to the following expression:

if (sk < 0.0) then mv = t_ukp else mv = −t_ukm.

It is also worth mentioning that achieving quasi-sliding mode occurs very rarely because
controlled processes contain transport delays and are subject to disturbances. A suitable
indicator of the quality of sliding is again the output isv. For �ne-tuning, it may be
possible in exceptional cases to use the beta parameter de�ning the bandwidth of the
derivative �lter. In most cases, however, the preset value beta = 0.1 su�ces. In manual
mode (MAN = on), the controller input hv is copied (after possible limitation by saturation
limits [−hilim_m, hilim_p]) to the output mv.

Manual mode

In the manual mode (MAN = on) the controller input hv is (after limitation to the range
[−hilim_m, hilim_p]) copied to the manipulated variable mv. The controller output mve
provides the equivalent amplitude-modulated value of the manipulated variable mv for
informative purposes. The output mve is obtained by the �rst order �lter with the time
constant tauf applied to mv.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sp Setpoint variable Double (F64)

pv Process variable Double (F64)

hv Manual value Double (F64)

MAN Manual or automatic mode Bool

off . . . Automatic mode
on Manual mode

TMODE Tuning mode Bool

TUNE Start the tuning experiment Bool

TBRK Stop the tuning experiment Bool

TAFF Tuning a�rmation Bool

off . . . Parameters are only computed
on Parameters are set into the control law

ips Meaning of the output signals Long (I32)

0 Controller parameters
1 Auxiliary parameters

Parameter

ipwmc PWM cycle (in sampling periods of the block) ⊙100 Long (I32)

xi Relative damping of sliding zero dynamics ↓0.5 ↑8.0 ⊙1.0 Double (F64)

om Natural frequency of sliding zero dynamics ↓0.0 ⊙0.01 Double (F64)

291

taup Time constant for adaptation - heating [s] ⊙700.0 Double (F64)

taum Time constant for adaptation - cooling [s] ⊙400.0 Double (F64)

beta Bandwidth parameter of the derivative �lter ⊙0.01 Double (F64)

hilim_p Upper limit of the heating action amplitude ↓0.0 ↑1.0 ⊙1.0 Double (F64)

hilim_m Upper limit of the cooling action amplitude ↓0.0 ↑1.0 ⊙1.0 Double (F64)

u0_p Initial amplitude - heating action ⊙1.0 Double (F64)

u0_m Initial amplitude - cooling action ⊙1.0 Double (F64)

sp_dif Setpoint di�erence threshold ⊙10.0 Double (F64)

tauf Equivalent manipulated variable �lter time constant ⊙400.0 Double (F64)

itm Tuning method ⊙1 Long (I32)

1 Restricted to symmetrical processes
2 Asymmetrical processes (not implemented yet)

ut_p Amplitude of heating for tuning experiment ↓0.0 ↑1.0 ⊙1.0 Double (F64)

ut_m Amplitude of cooling for tuning experiment ↓0.0 ↑1.0 ⊙1.0 Double (F64)

Output

mv Manipulated variable (controller output) Double (F64)

mve Equivalent manipulated variable Double (F64)

de Deviation error Double (F64)

SAT Saturation �ag Bool

off . . . The controller implements a linear control law
on The controller output is saturated

isv Number of sliding variable steps Long (I32)

t_ukp Current amplitude of heating Double (F64)

t_ukm Current amplitude of cooling Double (F64)

t_sk Discrete dynamic sliding variable Double (F64)

t_pv Filtered process variable Double (F64)

t_dpv Filtered �rst derivative of process variable Double (F64)

t_d2pv Filtered second derivative of process variable Double (F64)

TBSY Tuner busy �ag Bool

TE Tuning error Bool

off . . . Autotuning successful
on An error occurred during the experiment

ite Error code Long (I32)

0 No error
1 Too noisy pv, check the temperature input
2 Incorrect parameter ut_p
3 Setpoint too low
4 Sampling frequency too low or 2nd derivative of pv

too noisy
5 Premature termination of the tuning procedure

p1..p6 Results of identi�cation and design phase Double (F64)

292 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

SWU � Switch unit

Block Symbol Licence: STANDARD

uc
uo
OR1
OR2
OR3
OR4

y

SWU

Function Description

The SWU block is used to select the appropriate signal which should be tracked by the
inactive PIDU and MCU units in complex control structures. The input signal uc is copied
to the output y when all the binary inputs OR1, . . . , OR4 are off, otherwise the output
y takes over the uo input signal.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

uc Signal valid for all ORi=0 Double (F64)

uo Signal valid for any ORi=1 Double (F64)

OR1..OR4 Logical output of the block Bool

Output

y Analog output of the block Double (F64)

293

TSE � Three-state element

Block Symbol Licence: STANDARD

u
UP

DN

TSE

Function Description

The TSE block transforms the analog input u to a three-state signal ("up", "idle" and
"down") according to the diagram below.

epoff ep

DN

UP

enoffen

u

1

1

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

ep UP switch on value ⊙1.0 Double (F64)

en DN switch on value ⊙-1.0 Double (F64)

epoff UP switch o� value ⊙0.5 Double (F64)

enoff DN switch o� value ⊙-0.5 Double (F64)

Output

UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

294 CHAPTER 7. REG � FUNCTION BLOCKS FOR CONTROL

Chapter 8

LOGIC � Logic control

Contents

AND � Logical product of two signals 296

ANDQUAD, ANDOCT, ANDHEXD � Multi-input logical product 297

ATMT � Finite-state automaton . 298

BDOCT, BDHEXD � Bitwise demultiplexers 300

BITOP � Bitwise operation . 301

BMOCT, BMHEXD � Bitwise multiplexers 302

COUNT � Controlled counter . 303

EATMT � Extended �nite-state automaton 305

EDGE � Falling/rising edge detection in a binary signal 308

EQ � Equivalence two signals . 309

INTSM � Integer number bit shift and mask 310

ISSW � Simple switch for integer signals 311

ITOI � Transformation of integer and binary numbers 312

NOT � Boolean complementation . 313

OR � Logical sum of two signals . 314

ORQUAD, OROCT, ORHEXD � Multi-input logical sum 315

RS � Reset-set �ip-�op circuit . 316

SR � Set-reset �ip-�op circuit . 317

TIMER � Multipurpose timer . 318

The LOGIC library encompasses a range of blocks for executing logical and sequen-
tial operations. It includes basic Boolean blocks like AND, OR, NOT for fundamental logical
operations, and advanced blocks like ATMT for �nite state machines. Blocks like COUNT

and TIMER extend functionality to bidirectional pulse counting and time-based opera-
tions. Additional elements like BITOP, BMOCT, and BDOCT o�er bitwise operations and
multiplexing/demultiplexing capabilities, enhancing the library's versatility in handling
combinational and sequential logic control.

295

296 CHAPTER 8. LOGIC � LOGIC CONTROL

AND � Logical product of two signals

Block Symbol Licence: STANDARD

U1

U2

Y

NY

AND

Function Description

The AND block computes the logical product of two input signals Y = U1∧U2. If you need
to work with more input signals, use the ANDQUAD, ANDOCT or ANDHEXD block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U1 First logical input of the block Bool

U2 Second logical input of the block Bool

Output

Y Output signal, logical product Bool

NY Boolean complementation of Y Bool

297

ANDQUAD, ANDOCT, ANDHEXD � Multi-input logical product

Block Symbols Licence: STANDARD

U1

U2

U3

U4

Y

NY

ANDQUAD

U1

U2

U3

U4

U5

U6

U7

U8

Y

NY

ANDOCT

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14

U15

U16

Y

NY

ANDHEXD

Function Description

The ANDQUAD, ANDOCT and ANDHEXD blocks compute the logical product of up to sixteen
input signals U1, U2, . . . , U16. The signals listed in the nl parameter are negated prior
to computing the logical product.

For an empty nl parameter a simple logical product Y = U1∧U2∧U3∧U4∧U5∧U6∧
U7 ∧ U8 is computed. For e.g. nl=1,3..5, the logical function is Y = ¬U1 ∧ U2 ∧ ¬U3 ∧
¬U4 ∧ ¬U5 ∧ U6 ∧ . . . U16.

If you have less than 4/8/16 signals, use the nl parameter to handle the unconnected
inputs. If you have only two input signals, consider using the AND block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U1..U16 Logical input of the block Bool

Parameter

nl List of signals to negate Long (I32)

Output

Y Output signal, logical product Bool

NY Boolean complementation of Y Bool

298 CHAPTER 8. LOGIC � LOGIC CONTROL

ATMT � Finite-state automaton

Block Symbol Licence: STANDARD

R1
ns0
SET
HLD
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
ksa

tstep
TOUT

ATMT

Function Description

The ATMT block implements a �nite state machine with at most 16 states and 16 transition
rules.

The current state of the machine i, i = 0, 1, . . . , 15 is indicated by the binary outputs
Q0, Q1, . . . , Q15. If the state i is active, the corresponding output is set to Qi=on. The
current state is also indicated by the ksa output (ksa ∈ {0, 1, . . . , 15}).

The transition conditions Ck, k = 0, 1, . . . , 15 are activated by the binary inputs C0,
C1, . . . , C15. If Ck = on the k-th transition condition is ful�lled. The transition cannot
happen when Ck = off.

The automat function is de�ned by the following table of transitions:

S1 C1 FS1
S2 C2 FS2

. . .
Sn Cn FSn

Each row of this table represents one transition rule. For example the �rst row

S1 C1 FS1

has the meaning

If (S1 is the current state AND transition condition C1 is ful�lled),
then proceed to the following state FS1.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The

299

R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the Ci input signals and the tstep

timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits TOi for individual states are de�ned
by the touts array. There is no time limit for the given state when TOi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REXYGEN system include also the SFCEditor program.
You can create SFC schemes graphically using this tool. Run this editor from REXYGEN

Studio by clicking the Con�gure button in the parameter dialog of the ATMT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

R1 Block reset Bool

ns0 Target state forced by the SET input Long (I32)

SET Forced transition to state ns0 Bool

HLD Hold Bool

C0..C15 Transition condition Bool

Parameter

morestps Allow multiple transitions in one cycle Bool

off . . . Disabled
on Enabled

sfcname Name of special editor data �le String

STT State transition table ⊙[0 0 1; 1 1 2; 2 2 3; 3 3 0] Byte (U8)

touts Vector of timeouts
⊙[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

Double (F64)

Output

Q0..Q15 Active state indicator Bool

ksa Integer code of the active state Long (I32)

tstep Time elapsed since the last state transition Double (F64)

TOUT Timeout �ag Bool

300 CHAPTER 8. LOGIC � LOGIC CONTROL

BDOCT, BDHEXD � Bitwise demultiplexers

Block Symbols Licence: STANDARD

iu

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

BDOCT

iu

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

Y15

BDHEXD

Function Description

Both BDOCT and BDHEXD are bitwise demultiplexers for easy decomposition of the input
signal to individual bits. The only di�erence is the number of outputs, the BDOCT block
has 8 Boolean outputs while the BDHEXD block o�ers 16-bit decomposition. The output
signals Yi correspond with the individual bits of the input signal iu shifter by shift bits
to the right. The Y0 output is the least signi�cant bit.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

iu Input signal to be decomposed Long (I32)

Parameter

shift Bit shift of the input signal ↓0 ↑31 Long (I32)

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

Output

Y0..Y15 Individual bit of the input signal Bool

301

BITOP � Bitwise operation

Block Symbol Licence: STANDARD

i1

i2
n

BITOP

Function Description

The BITOP block performs bitwise operation i1 ◦ i2 on the signals i1 and i2, resulting
in an integer output n. The type of operation is selected by the iop parameter described
below. In case of logical negation or 2's complements the input i2 is ignored (i.e. the
operation is unary).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block Long (I32)

i2 Second integer input of the block Long (I32)

Parameter

iop Bitwise operation ⊙1 Long (I32)

1 Bit NOT
2 Bit OR
3 Bit AND
4 Bit XOR
5 Shift Left
6 Shift Right
7 2's Complement - Byte
8 2's Complement - Word
9 2's Complement - Long

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

Output

n Result of the bitwise operation Long (I32)

302 CHAPTER 8. LOGIC � LOGIC CONTROL

BMOCT, BMHEXD � Bitwise multiplexers

Block Symbols Licence: STANDARD

U0
U1
U2
U3
U4
U5
U6
U7

iy

BMOCT

U0
U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15

iy

BMHEXD

Function Description

Both BMOCT and BMHEXD are bitwise multiplexers for easy composition of the output
signal from individual bits. The only di�erence is the number of inputs, the BMOCT block
has 8 Boolean inputs while the BMHEXD block o�ers 16-bit composition. If the parameter
shift = 0, the individual bits of the output signal iy are directly formed by the input
signals Ui. The U0 output is the least signi�cant bit.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U0..U15 Individual bit of the output signal Bool

Parameter

shift Bit shift of the output signal ↓0 ↑31 Long (I32)

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

Output

iy Composed output signal Long (I32)

303

COUNT � Controlled counter

Block Symbol Licence: STANDARD

R1

n0

SETH

UP

DN

HLD

nmax

cnt

SGN

Q

E

COUNT

Function Description

The COUNT block is designed for bidirectional pulse counting � more precisely, counting
rising edges of the UP and DN input signals. When a rising edge occurs at the UP (DN)
input, the cnt output is incremented (decremented) by 1. Simultaneous occurrence of
rising edges at both inputs is indicated by the error output E set to on. The R1 input
resets the counter to 0 and no addition or subtraction is performed unless the R1 input
returns to off again. It is also possible to set the output cnt to the value n0 by the SETH
input. Again, no addition or subtraction is performed unless the SETH input returns to off
again. The R1 input has higher priority than the SETH input. The input HLD = on prevents
both incrementing and decrementing. When the counter reaches the value cnt ≥ nmax,
the Q output is set to on.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

R1 Block reset Bool

n0 Value to set the counter to Long (I32)

SETH Set the counter value Bool

UP Incrementing input signal Bool

DN Decrementing input signal Bool

HLD Counter freeze Bool

off . . . Counter is running
on Counter is locked

nmax Counter target value Long (I32)

Output

cnt Total number of pulses Long (I32)

SGN Sign of the cnt output Bool

off . . . Less or equal to zero
on Positive value

304 CHAPTER 8. LOGIC � LOGIC CONTROL

Q Counter state Bool

off . . . Target value not reached
on Target value reached

E Error indicator Bool

off . . . No error
on An error occurred

305

EATMT � Extended �nite-state automaton

Block Symbol Licence: ADVANCED

R1
ns0
SET
HLD
c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15

q0
q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13
q14
q15
ksa

tstep
TOUT

EATMT

Function Description

The EATMT block implements a �nite automat with at most 256 states and 256 transition
rules, thus it extends the possibilities of the ATMT block.

The current state of the automat i, i = 0, 1, . . . , 255 is indicated by individual bits
of the integer outputs q0, q1, . . . , q15. Only a single bit with index iMOD 16 of the
q(iDIV 16) output is set to 1. The remaining bits of that output and the other outputs
are zero. The bits are numbered from zero, least signi�cant bit �rst. Note that the
DIV and MOD operators denote integer division and remainder after integer division
respectively. The current state is also indicated by the ksa ∈ {0, 1, . . . , 255} output.

The transition conditions Ck, k = 0, 1, . . . , 255) are activated by individual bits of the
inputs c0, c1, . . . , c15. The k-th transition condition is ful�lled when the (kMOD 16)-th
bit of the input c(kDIV 16) is equal to 1. The transition cannot happen otherwise.

The BMHEXD or BMOCT bitwise multiplexers can be used for composition of the input
signals c0, c1, . . . , c15 from individual Boolean signals. Similarly the output signals q0,
q1, . . . , q15 can be decomposed using the BDHEXD or BDOCT bitwise demultiplexers.

The automat function is de�ned by the following table of transitions:

S1 C1 FS1
S2 C2 FS2

. . .
Sn Cn FSn

Each row of this table represents one transition rule. For example the �rst row

S1 C1 FS1

has the meaning

306 CHAPTER 8. LOGIC � LOGIC CONTROL

If (S1 is the current state AND transition condition C1 is ful�lled),
then proceed to the following state FS1.

The above described meaning of the table row holds for C1 < 1000. Negation of the
(C1− 1000)-th transition condition is assumed for C1 ≥ 1000.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state S0. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The
R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the ci input signals and the tstep

timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits TOi for individual states are de�ned
by the touts array. There is no time limit for the given state when TOi is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of REXYGEN include also the SFCEditor program. You can
create SFC schemes graphically using this tool. Run this editor from REXYGEN Studio

by clicking the Con�gure button in the parameter dialog of the EATMT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

R1 Block reset Bool

ns0 Target state forced by the SET input Long (I32)

SET Forced transition to state ns0 Bool

HLD Hold Bool

c0..c15 Transition condition Long (I32)

Parameter

morestps Allow multiple transitions in one cycle Bool

off . . . Disabled
on Enabled

sfcname Name of special editor data �le String

STT State transition table ⊙[0 0 1; 1 1 2; 2 2 3; 3 3 0] Short (I16)

touts Vector of timeouts
⊙[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

Double (F64)

307

Output

q0..q15 Active state indicator Long (I32)

ksa Integer code of the active state Long (I32)

tstep Time elapsed since the last state transition Double (F64)

TOUT Timeout �ag Bool

308 CHAPTER 8. LOGIC � LOGIC CONTROL

EDGE � Falling/rising edge detection in a binary signal

Block Symbol Licence: STANDARD

U Y

EDGE

Function Description

The EDGE block detects rising (off→on), falling (on→off), or both edges on the input
signal U, depending on the value of the iedge parameter. In case the desired edge (change
in input signal) is found, the output Y is set to on for one step. As long as the value
of the input signal remains unchanged, the output Y equals off. The output Y will also
remain zero if the iedge parameter is set to detect a rising (falling) edge and a falling
(rising) edge occurs in the signal.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U Logical input of the block Bool

Parameter

iedge Type of edges to detect ⊙1 Long (I32)

1 Rising edge
2 Falling edge
3 Both edges

Output

Y Logical output of the block Bool

309

EQ � Equivalence two signals

Block Symbol Licence: STANDARD

u1

u2

Y

NY

EQ

Function Description

The block compares two input signals and Y=on is set if both signals have the same value.
Both signals must be either of a numeric type or strings. A conversion between numeric
types is performed: for example 2.0 (double) and 2 (long) are evaluated as equivalent.
Comparison of matrices or other complex types is not supported.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u1 Block input signal Any

u2 Block input signal Any

Output

Y Logical output of the block Bool

NY Boolean complementation of Y Bool

310 CHAPTER 8. LOGIC � LOGIC CONTROL

INTSM � Integer number bit shift and mask

Block Symbol Licence: STANDARD

i n

INTSM

Function Description

The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is �lled with
zeros.

Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a

given position in integer register which was read from some external system.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i Integer value to shift and mask ↓-9.22337E+18 ↑9.22337E+18 Large (I64)

Parameter

shift Bit shift (negative=left, positive=right) ↓-63 ↑63 Long (I32)

mask Bit mask (applied after bit shift)
↓0 ↑4294970000 ⊙4294967295

Large (I64)

vtype Numeric type ⊙4 Long (I32)

2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
10 Large (I64)

Output

n Resulting integer value Large (I64)

311

ISSW � Simple switch for integer signals

Block Symbol Licence: STANDARD

i1

i2

SW

n

ISSW

Function Description

The ISSW block is a simple switch for integer input signals i1 and i2 whose decision
variable is the binary input SW. If SW is off, then the output n is equal to the i1 signal.
If SW is on, then the output n is equal to the i2 signal.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

i1 First integer input of the block Long (I32)

i2 Second integer input of the block Long (I32)

SW Signal selector Bool

off . . . The i1 signal is selected
on The i2 signal is selected

Output

n Integer output of the block Long (I32)

312 CHAPTER 8. LOGIC � LOGIC CONTROL

ITOI � Transformation of integer and binary numbers

Block Symbol Licence: STANDARD

k

U0

U1

U2

U3

nk

Y0

Y1

Y2

Y3

ITOI

Function Description

The ITOI block transforms the input number k, or the binary number (U3 U2 U1 U0)2,
from the set {0, 1, 2, . . . , 15} to the output number nk and its binary representation
(Y3 Y2 Y1 Y0)2 from the same set. The transformation is described by the following table

k 0 1 2 . . . 15

nk n0 n1 n2 . . . n15

where n0, . . . , n15 are given by the mapping table target vector fktab. If BINF = off,
then the integer input k is active, while for BINF = on the input is de�ned by the binary
inputs (U3 U2 U1 U0)2.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

k Integer input of the block Long (I32)

U0..U3 Binary input (mask) Bool

Parameter

BINF Enable the binary selectors ⊙on Bool

off . . . Disabled (analog selector)
on Enabled (binary selectors)

fktab Mapping table
⊙[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

Byte (U8)

Output

nk Integer output of the block Long (I32)

Y0..Y3 Binary output (mask) Bool

313

NOT � Boolean complementation

Block Symbol Licence: STANDARD

U Y

NOT

Function Description

The NOT block negates the input signal Y = ¬U.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U Logical input of the block Bool

Output

Y Logical output of the block Bool

314 CHAPTER 8. LOGIC � LOGIC CONTROL

OR � Logical sum of two signals

Block Symbol Licence: STANDARD

U1

U2

Y

NY

OR

Function Description

The OR block computes the logical sum of two input signals Y = U1 ∨ U2. If you need to
work with more input signals, use the ORQUAD, OROCT or ORHEXD block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U1 First logical input of the block Bool

U2 Second logical input of the block Bool

Output

Y Output signal, logical sum Bool

NY Boolean complementation of Y Bool

315

ORQUAD, OROCT, ORHEXD � Multi-input logical sum

Block Symbols Licence: STANDARD

U1

U2

U3

U4

Y

NY

ORQUAD

U1

U2

U3

U4

U5

U6

U7

U8

Y

NY

OROCT

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12

U13

U14

U15

U16

Y

NY

ORHEXD

Function Description

The ORQUAD, OROCT and ORHEXD blocks compute the logical sum of up to sixteen input
signals U1, U2, . . . , U16. The signals listed in the nl parameter are negated prior to
computing the logical sum.

For an empty nl parameter a simple logical sum Y = U1 ∨ U2 ∨ U3 ∨ U4 ∨ U5 ∨ U6 ∨
U7 ∨ . . . ∨ U16 is computed. For e.g. nl=1,3..5, the logical function is Y = ¬U1 ∨ U2 ∨
¬U3 ∨ ¬U4 ∨ ¬U5 ∨ U6 ∨ . . . ∨ U16.

If you have only two input signals, consider using the OR block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U1..U16 Logical input of the block Bool

Parameter

nl List of signals to negate Long (I32)

Output

Y Output signal, logical sum Bool

NY Boolean complementation of Y Bool

316 CHAPTER 8. LOGIC � LOGIC CONTROL

RS � Reset-set �ip-�op circuit

Block Symbol Licence: STANDARD

S

R1

Q

NQ

RS

Function Description

The RS block is a �ip-�op circuit, which sets its output permanently to on as soon as
the input signal S is equal to on. The other input signal R1 resets the Q output to off

even if the S input is on. The NQ output is simply the negation of the signal Q.
The block function is evident from the inner block structure depicted below.

2

NQ

1

Q

U1

U2

Y

NY

OR

U Y

NOT

U1

U2

Y

NY

AND2

R1

1

S

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

S Flip-�op set Bool

R1 Priority �ip-�op reset Bool

Output

Q Flip-�op circuit state Bool

NQ Boolean complementation of Q Bool

317

SR � Set-reset �ip-�op circuit

Block Symbol Licence: STANDARD

S1

R

Q

NQ

SR

Function Description

The SR block is a �ip-�op circuit, which sets its output permanently to on as soon as
the input signal S1 is on. The other input signal R resets the Q output to off, but only
if the S1 input is off. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

2

NQ

1

QU1

U2

Y

NY

OR
U Y

NOT

U1

U2

Y

NY

AND

2

R

1

S1

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

S1 Priority �ip-�op set Bool

R Flip-�op reset Bool

Output

Q Flip-�op circuit state Bool

NQ Boolean complementation of Q Bool

318 CHAPTER 8. LOGIC � LOGIC CONTROL

TIMER � Multipurpose timer

Block Symbol Licence: STANDARD

U

HLD

R1

Q

et

rt

TIMER

Function Description

The TIMER block either generates an output pulse of the given width pt (in seconds)
or �lters narrow pulses in the U input signal whose width is less than pt seconds. The
operation mode is determined by the mode parameter. Supported modes are:

• 1: Pulse: An output pulse of the length pt is generated upon rising edge at the U
input. All input pulses during the generation of the output pulse are ignored.

• 2: Delayed ON: The input signal U is copied to the Q output, but the start of the
pulse is delayed by pt seconds. Any pulse shorter than pt is does not pass through
the block.

• 3: Delayed OFF: The input signal U is copied to the Q output, but the end of the
pulse is delayed by pt seconds. If the break between two pulses is shorter than pt,
the output remains on for the whole time.

• 4: Delayed change: The Q output is set to the value of the U input no sooner
than the input remains unchanged for pt seconds.

The graph illustrates the behaviour of the block in individual modes for pt = 3:

0 2 3 4 5 7 9 10 11 13 14 15

mode 4

mode 3

mode 2

mode 1

U

time [s]

The timer can be paused by the HLD input. The R1 input resets the timer. The reset
signal overpowers the U input, similarly to the RS block.

This block propagates the signal quality. More information can be found in the 1.4
section.

319

Input

U Trigger of the timer Bool

HLD Timer hold Bool

R1 Timer reset Bool

Parameter

mode Timer mode ⊙1 Long (I32)

1 Pulse generator
2 Delayed ON
3 Delayed OFF
4 Delayed change

pt Timer interval [s] ⊙1.0 Double (F64)

Output

Q Timer output Bool

et Elapsed time [s] Double (F64)

rt Remaining time [s] Double (F64)

320 CHAPTER 8. LOGIC � LOGIC CONTROL

Chapter 9

TIME � Blocks for handling time

Contents

DATE � Current date . 322

DATETIME � Get, set and convert time 323

TC � Timer control and status . 326

TIME � Current time . 328

TS � Current timestamp . 329

TS2NS � Timestamp di�erence in nanoseconds 331

WSCH � Week scheduler . 332

The TIME library is specialized for time-based operations and scheduling in REXY-

GEN system. It includes blocks like DATE, TIME and DATETIME for handling date and
datetime, providing essential tools for working with temporal data. The library features
TC for itnernal timer control. Additionally, WSCH is used for scheduling, enabling e�cient
management of time-dependent tasks. This library is particularly valuable for systems
requiring precise time management and scheduling capabilities.

321

322 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

DATE � Current date

Block Symbol Licence: STANDARD

year
month
day
dow

DATE

Function Description

The outputs of the DATE function block correspond with the actual date of the operating
system. Use the DATETIME block for advanced operations with date and time. The �rst
day of the week is Sunday (numbered as 1).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

Output

year Year Long (I32)

month Month Long (I32)

day Day Long (I32)

dow Day of week Long (I32)

323

DATETIME � Get, set and convert time

Block Symbol Licence: STANDARD

uyear

umonth

uday

uhour

umin

usec

unsec

SET

GET

yyear
ymonth
yday
yhour
ymin
ysec
ynsec
ydow
ywoy
tday
tsec
tnsec
dsec

DATETIME

Function Description

The DATETIME block is intended for advanced date/time operations in the REXYGEN

system.
It allows synchronization of the operating system clock and the clock of the REXYGEN

system. When the executive of the REXYGEN system is initialized, both clocks are the
same. But during long-term operation the clocks may loose synchronization (e.g. due to
daylight saving time). If re-synchronization is required, the rising edge (off→on) at the
SET input adjusts the clock of the REXYGEN system according to the block inputs and
parameters.

It is highly recommended not to adjust the REXYGEN system time when the con-
trolled machine/process is in operation. Unexpected behavior might occur.

If date/time reading or conversion is required, the rising edge (off→on) at the GET

input triggers the action and the block outputs are updated. The outputs starting with
't' denote the total number of respective units since January 1st, 2000 UTC.

Both reading and adjusting clock can be repeated periodically if set by getper and
setper parameters.

If the di�erence of the two clocks is below the tolerance limit settol, the clock of
the REXYGEN system is not adjusted at once, a gradual synchronization is used instead.
In such a case, the timing of the REXYGEN system executive is negligibly altered and
the clocks synchronization is achieved after some time. Afterwards the timing of the
REXYGEN executive is reverted back to normal.

For simple date/time reading use the DATE and TIME function blocks.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uyear Input for setting year Long (I32)

umonth Input for setting month Long (I32)

uday Input for setting day Long (I32)

324 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

uhour Input for setting hours Long (I32)

umin Input for setting minutes Long (I32)

usec Input for setting seconds Long (I32)

unsec Input for setting nanoseconds ↓-9.22E+18 ↑9.22E+18 Large (I64)

SET Trigger for setting time Bool

GET Trigger for getting time Bool

Parameter

isetmode Source for setting time ⊙1 Long (I32)

1 OS clock
2 Block inputs
3 The unsec input
4 The usec input
5 The unsec input - relative
6 The usec input - set HW clock only

igetmode Source for getting time ⊙6 Long (I32)

1 OS clock
2 Block inputs
3 The unsec input
4 The usec input
5 The uday input
6 REXYGEN clock
7 HW clock

settol Tolerance for setting the REXYGEN clock [s] ⊙1.0 Double (F64)

setper Period for setting time [s] (0=not periodic) Double (F64)

getper Period for getting time [s] (0=not periodic) ⊙0.001 Double (F64)

FDOW First day of week is Sunday Bool

off . . . Week starts on Monday
on Week starts on Sunday

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

Output

yyear Year Long (I32)

ymonth Month Long (I32)

yday Day Long (I32)

yhour Hours Long (I32)

ymin Minutes Long (I32)

ysec Seconds Long (I32)

ynsec Nanoseconds Long (I32)

ydow Day of week Long (I32)

ywoy Week of year Long (I32)

tday Total number of days Long (I32)

325

tsec Total number of seconds Long (I32)

tnsec Total number of nanoseconds Large (I64)

dsec Number of seconds since midnight Long (I32)

326 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

TC � Timer control and status

Block Symbol Licence: STANDARD

OsPer
TsPer
OsAdj
TsAdj

per
over
ticks
SIM

TC

Function Description

The TC function block controls the internal timer of REXYGEN. It is possible to modify
the actual basic tick period (e.g. the value set in the tick parameter of the EXEC block)
or logical tick period (e.g. the time added to the timestamp of each tick if timer =

CORETIMER is selected). By default, the logical and physical period is the same and is the
EXEC:tick parameter. The discretization period of the blocks in the control algorithm
is not a�ected by the TC block.

The actual period can be changed in two ways: set the desired value to the OsPer

input or set OsAdj for one tick. OsAdj will temporarily increase or decrease the actual
period until the total shift set on the OsAdj input is realized. How much the period
increases is controlled by the OsMax parameter.

Example: Let's expect the tick period to be 0.1s and OsMax=0.2, so let's set OsAdj=1.0
to temporarily increase the real period to 0.12s (e.g. 20% de�ned in the OsMax parameter)
until a total shift of 1s is realized, e.g. for 50 ticks.

Logical period control is the same using inputs/parameter TsPer, TsAdj, TsMax.
Note 1: The unconnected input or the input with a value of 0 is ignored.
Note 2: The actual period adjustment is not supported on Windows targets.
Note 3: The primary reason for this block is to synchronize with another controller in
time-critical application, so the period should only be changed by a few percent. For
simulation and debugging purposes, it is possible to change the period signi�cantly to
speed up a slow process (or slow down a fast process). This should be done with caution,
as the synchronization with other controllers will not work and all calculations must be
done in the shortened period. Also, in this case, warnings about missing ticks, incorrect
period, etc. will appear in the log. For these purposes, it is better to use the simulation
mode.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

OsPer Physical tick period [s] Double (F64)

TsPer Logical (timestamp) tick period [s] Double (F64)

OsAdj Physical tick shift [s] Double (F64)

TsAdj Logical (timestamp) tick shift [s] Double (F64)

327

Parameter

OsMax Maximal relative quantum for physical adjustment
↓0.0 ↑1.0 ⊙0.1

Double (F64)

TsMax Maximal relative quantum for logical adjustment
↓0.0 ↑1.0 ⊙0.1

Double (F64)

Output

per Last real physical tick period [s] Double (F64)

over Number of lose periods in last tick Long (I32)

ticks Number of ticks since start Large (I64)

SIM Timer in simulation mode Double (F64)

328 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

TIME � Current time

Block Symbol Licence: STANDARD

hour

min

sec

TIME

Function Description

The outputs of the TIME function block correspond with the actual time of the operating
system. Use the DATETIME block for advanced operations with date and time.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

Output

hour Hours Long (I32)

min Minutes Long (I32)

sec Seconds Long (I32)

329

TS � Current timestamp

Block Symbol Licence: STANDARD

stub ts

TS

Function Description

The TS block generates a time stamp on the output ts from a source speci�ed by the
source parameter. The stub input is used only to ensure the correct execution order of
the block in the program.

The source parameter can be used to switch between several di�erent time sources:

1: CORETIMER - is the primary time stamp used in the REXYGEN system, ex-
pressing the number of nanoseconds since January 1, 2000.

2: CORETIMER (precise) - operates similarly to CORETIMER, but the time stamp
is updated at the moment the block is executed, using a di�erent source, usually
RTC or PFC.

3: RTC (UTC) - returns the time stamp in Coordinated Universal Time format.

4: RTC (localtime) - returns the time stamp in local time format (considering time
zones).

5: PFC - is based on the QueryPerformanceCounter function on Windows systems
and returns the system time stamp with a resolution of 1 ns.

6: TSC - is the fastest time stamp source, using the RDTSC instruction on x86 proces-
sors and the CNTVCT_EL0 instruction on ARM64 processors. On other platforms,
the TSC time stamp is identical to the PFC time stamp.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

stub Dummy input for block ordering Any

330 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

Parameter

source Source of the time stamp ⊙1 Word (U16)

1 CORETIMER
2 CORETIMER (precise)
3 RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC

Output

ts Time stamp Large (I64)

331

TS2NS � Timestamp di�erence in nanoseconds

Block Symbol Licence: STANDARD

start

end

ns

freq

TS2NS

Function Description

The TS2NS block generates on the output ns the time di�erence between the time stamps
on the start and end inputs (e.g., from the TS blocks). When calculating the di�erence,
all TS and TS2NS blocks must have the same source in the source parameter, otherwise
the result is nonsensical. The block provides the frequency of the time stamp on the
freq output. The di�erence between the time stamps is in nanoseconds (ns). For more
information on time stamp sources, see the TS block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

start Start time stamp ↓-9.22E+18 ↑9.22E+18 Large (I64)

end End time stamp ↓-9.22E+18 ↑9.22E+18 Large (I64)

Parameter

source Source of the time stamp ⊙1 Word (U16)

1 CORETIMER
2 CORETIMER (precise)
3 RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC

Output

ns Interval in nanoseconds Large (I64)

freq Frequency of the time stamp Large (I64)

332 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

WSCH � Week scheduler

Block Symbol Licence: STANDARD

SET

val

fsch

iy
y

isch
trem
ynext

WSCH

Function Description

The WSCH function block is a weekly scheduler for e.g. heating (day, night, eco), ventilation
(high, low, o�), lighting, irrigation etc. Its outputs can be used for switching individual
appliances on/o� or adjusting the intensity or power of the connected devices.

During regular weekly schedule the outputs iy and y re�ect the values from the wst
table. This table contains triplets day-hour-value. E.g. the notation [2 6.5 21.5] states
that on Tuesday, at 6:30 in the morning (24-hour format), the output y will be set to 21.5.
The output iy will be set to 22 (rounding to nearest integer). The individual triplets are
separated by semicolons.

The days in a week are numbered from 1 (Monday) to 7 (Sunday). Higher values
can be used for special daily schedules, which can be forced using the fsch input or the
specdays table. The active daily program is indicated by the isch output.

Alternatively it is possible to temporarily force a speci�c output value using the val
input and a rising edge at the SET input (off→on). When a rising edge occurs at the
SET input, the val input is copied to the y output and the isch output is set to 0. The
forced value remains set until:

• the next interval as de�ned by the wst table, or

• another rising edge occurs at the SET input, or

• a di�erent daily schedule is forced using the fsch input.

The list of special days (specdays) can be used for forcing a special daily schedule
at given dates. E.g. you can force a Sunday daily schedule on holidays, Christmas, New
Year, etc. The date is entered in the YYYYMMDD format. The notation [20160328 7] thus
means that on March 28th, 2016, the Sunday daily schedule should be used. Individual
pairs are separated by semicolons.

The trem and ynext outputs can be used for triggering speci�c actions in advance,
before the y and iy are changed.

The iy output is meant for direct connection to function blocks with Boolean inputs
(the conversion from type long to type bool is done automatically).

The nmax parameter de�nes memory allocation for the wst and specdays arrays.
For nmax = 100 the wst list can contain up to 100 triplets day-hour-value. In typical
applications there is no need to modify the nmax parameter.

333

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

SET Trigger for setting output Bool

val Value to set the output to Double (F64)

fsch Forced schedule (0=normal operation) Long (I32)

0 Standard weekly schedule
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 Sunday
8 and above Additional daily program as de�ned by the wst

table

Parameter

tz Timezone ⊙1 Long (I32)

1 Local time
2 UTC

nmax Allocated size of arrays ↓10 ↑1000000 ⊙100 Long (I32)

imode Reserved for internal use Long (I32)

user Reserved for special editor String

wst Weekly schedule table (day-hour-value)
⊙[1 0.01 18.0; 2 6.0 22.0; 2 18.0 18.0; 3 6.0 22.0; 3 18.0 18.0; 4 6.0 22.0; 4 18.0 18.0; 5 6.0 22.0; 5 18.0 18.0; 6 6.0 22.0; 6 18.0 18.0; 1 0.01 18.0]

Double (F64)

specdays List of special days (date-daily program)
⊙[20150406 1; 20151224 1; 20151225 1; 20151226 1; 20160101 1; 20160328 1; 20170417 1; 20180402 1; 20190422 1; 20200413 1]

Long (I32)

Output

iy Integer output value Long (I32)

y Output value Double (F64)

isch Daily schedule identi�er Long (I32)

trem Time remaining in the current section [s] Double (F64)

ynext Output in the next section Double (F64)

334 CHAPTER 9. TIME � BLOCKS FOR HANDLING TIME

Chapter 10

ARC � Data archiving

Contents

ACD � Archive compression using Delta criterion 338

ACLEAR � Forced archive purge . 340

AFLUSH � Forced archive �ushing . 341

ALB, ALBI � Alarms for Boolean value 342

ALM, ALMI � Alarm store value . 344

ALN, ALNI � Alarms for numerical value 345

ARS � Archive store value . 348

TRND � Real-time trend recording 350

TRNDV � Real-time trend recording (for vector signals) 353

The RexCore executive of the REXYGEN system consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.). One
of these subsystems is the archiving subsystem. The archiving subsystem takes care of
recording the history of the control algorithm.

The function blocks can be divided into groups by their use:

• Blocks for generating alarms and events � ALB, ALBI, ALM, ALMI, ALN, ALNI, ARS.

• Blocks for recording trends � ACD, TRND, TRNDV.

• Blocks for handling archives � AFLUSH, ACLEAR.

Functionality of the archiving subsystem

The archive in the REXYGEN system stores the history of events, alarms and trends
of selected signals. There can be up to 15 archives in each target device. The types or
archives are listed below:

RAM memory archive � Suitable for short-term data storage. The data access rate
is very high but the data is lost on reboot.

335

336 CHAPTER 10. ARC � DATA ARCHIVING

Archive in a backed-up memory � Similar to the RAM archive but the data is not
lost on restart. Data can be accessed fast but the capacity is usually quite limited
(depends on the target platform).

Disk archive � The disk archives are �les in a proprietary binary format. The �les are
easily transferrable among individual platforms and the main advantage is the size,
which is limited only by the capacity of the storage medium. On the other hand,
the drawback is the relatively slow data access.

Not all hardware platforms support all types of archives. The individual types which are
supported by the platform can be displayed in REXYGEN Studio in the Diagnostics tree
view panel after clicking on the name of the target device (IP address). The supported
types are listed in the lower left part of the Target tab.

General archive properties

The archiving and trending blocks have several common properties which are listed
below.

Archive list

The list of archives is speci�ed in the blocks by the arc parameter in the form e.g.
1,3..5,8. Details about the archive numbering are in the ARC block. Third-party pro-
grams (Simulink, OPC clients, etc.) work with the whole number which is a bit mask �
for the example above it is 157, in binary form 10011101.

Event identi�cation code

The event identi�cation code in the archive id must be unique in the entire target
device with the REXYGEN control system (i.e. in all archive blocks). If id = 0, no alarm
is generated. For id = -1, the alarm is identi�ed by its name (i.e. the block name must
be the same as the Name column in the alarm de�nition table).

Types of events and alarms

Events and alarms are di�erentiated in the REXYGEN system by the lvl parameter. If
1 ≤ lvl ≤ 127, it is an alarm where the start, end and acknowledgment are stored in the
archive. The range 128 ≤ lvl ≤ 255 is reserved for events where only the time instant
of the event is stored in the archive.

Each user can set the individual levels according to their own discretion. Below is an
illustration of the setting in the System log, where the numbers in the units and tens
positions have the following meanings:

• x1: Operating system messages

• x2: Kernel messages

• x3: Diagnostic messages

• x4: Block messages

337

• x5: Archive messages

• x6: I/O driver messages

• 1x: I/O driver write messages

• 2x: I/O driver read messages

• 3x: Verbose messages

• 4x: Information messages

• 5x: Warning messages

• 6x: Error messages

338 CHAPTER 10. ARC � DATA ARCHIVING

ACD � Archive compression using Delta criterion

Block Symbol Licence: STANDARD

u
delta

y
E

ACD

Function Description

The ACD (Archive Compression using Delta criterion) block is meant for storing com-
pressed analog signals to archives using archive events.

The main idea is to store the input signal u only when it changes signi�cantly. The
interval between two samples is in the range ⟨tmin,tmax⟩ seconds (rounded to the nearest
multiple of the sampling period). A constant input signal is stored every tmax seconds
while rapidly changing signal is stored every tmin seconds. When the execution of the
block is started, the �rst input value is stored. This value will be referred to as u0 in the
latter. The rules for storing the following samples are given by the delta and TR input
signals.

The list of archives for storing is speci�ed by the arc parameter, e.g. 1,3..5,8. The
event will be stored in all speci�ed archives. Each archiving block must have a unique
event identi�cation code in the archive given by the id parameter. For more information
about these parameters see the introduction of chapter 10.

For TR = off the condition |u−u0| > delta is checked. If it holds and the last stored
sample occurred more than tmin seconds ago, the value of input u is stored and u0=u
is set. If the condition is ful�lled sooner than tmin seconds after the last stored value,
the error output E is set to 1 and the �rst value following the tmin interval is stored. At
that time the output E is set back to 0 and the whole procedure is repeated.

For TR=onthe input signal values are compared to a signal with compensated trend.
The condition for storing the signal is the same as in the previous case.

The following �gure shows the archiving process for both cases: a) TR=off, b) TR=on.
The stored samples are marked by the symbol ×.

TS 2TS (k-1)TS kTS0 time

u

u
0

u -
0

delta

u +
0

delta

a)

TS 2TS (k-1)TS kTS0 time

u

u
0

u -
0

delta

u +
0

delta

b)

This block does not propagate the signal quality. More information can be found in the
1.4 section.

339

Input

u Signal to compress and store Double (F64)

delta Threshold for storing the signal ↓0.0 ↑1e+10 Double (F64)

Parameter

acls Archive class (data type) ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

arc List of archives to write the events to Word (U16)

id Unique archive item ID ⊙1 Word (U16)

tmin The shortest interval between two samples [s]
↓0.001 ↑1000000.0 ⊙1.0

Double (F64)

tmax The longest interval between two samples [s]
↓1.0 ↑1000000.0 ⊙1000.0

Double (F64)

TR Trend evaluation ⊙on Bool

off . . . Disabled
on Enabled

Desc Event description string ⊙Value Description String

Output

y The last value stored in the archive Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

340 CHAPTER 10. ARC � DATA ARCHIVING

ACLEAR � Forced archive purge

Block Symbol Licence: STANDARD

CLEAR

ACLEAR

Function Description

The ACLEAR block is meant for clearing the content of an archive when a rising edge
off→on appears on the CLEAR input. The list of archives to be cleared is speci�ed by
the arc parameter, e.g. 1,3..5,8. For more information see Chapter 10.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

CLEAR Archive purge on rising edge Bool

Parameter

arc List of archives to write the events to Word (U16)

341

AFLUSH � Forced archive �ushing

Block Symbol Licence: STANDARD

FLUSH

AFLUSH

Function Description

The AFLUSH block is intended for immediate storing of archive data to permanent mem-
ory (hard drive, �ash disk, etc.). It is useful when power loss can be anticipated, e.g.
emergency shutdown of the system following some failure. It forces the archive subsys-
tem to write all archive data to avoid data loss. The write operation is initiated by a
rising edge (off→on) at the FLUSH input regardless of the period parameter of the ARC
block. The list of archives is speci�ed in the arc, e.g. 1,3..5,8. For more information
see Chapter 10.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

FLUSH Force archive �ushing Bool

Parameter

arc List of archives to write the events to Word (U16)

342 CHAPTER 10. ARC � DATA ARCHIVING

ALB, ALBI � Alarms for Boolean value

Block Symbols Licence: STANDARD

U iac

ALB

U

men

tout

iACK

iac

HA

LA

NACK

ALBI

Function Description

The blocks ALB and ALBI generate alarms or events upon changes in the logical input
signal U. The output iac indicates the current alarm (event) code. The parameter (or
input) men selects whether to indicate a rising edge (off→on), which corresponds to an
upper alarm (HA), a falling edge (on→off), which corresponds to a lower alarm (LA),
or both edges of the input signal.

The ALBI block is an extension of the ALB block. The blocks di�er only in that the
inputs of the ALBI block: men, tout, iACK are parameters of the ALB block. The ALB does
have HA, LA and NACK outputs.

Events and alarms are distinguished in the REXYGEN system using the lvl param-
eter. The list of archives for writing is speci�ed by the arc parameter in the form e.g.
1,3..5,8. Each archiving block must have a unique event identi�cation code in the
archive given by the id parameter. For more information about these parameters see the
introduction of Chapter 10. Positive values of the iac output codes can be added, e.g. the
value 514 means that the upper alarm is unacknowledged. However, not all combinations
make sense.

Note 1: The input (parameter) iACK is automatically reset to 0 after processing by
the block. The alarm is assumed to be acknowledged by the operator from the visualiza-
tion so that it is not necessary to write 0 with another query. It is a similar principle to
the BSTATE parameter in the MP block.

Note 2: Formatting commands (values attached to the alarm, multilingual text) can
be inserted into the Desc parameter. Their detailed description is in the ALARMS block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

U Logical input of the block Bool

men Enable alarms (mask) Long (I32)

0 All alarms disabled
1 Low-alarm enabled
2 High-alarm enabled
3 All alarms enabled

tout Alarm activation delay time [s] ↓0.0 Double (F64)

343

iACK Alarm acknowledge (mask) Byte (U8)

1 Low-alarm (LA) acknowledge
2 High-alarm (HA) acknowledge
3 Both alarms acknowledge

Parameter

arc List of archives to write the events to Word (U16)

id Unique archive item ID ⊙1 Word (U16)

lvl Alarm level ↓1 ⊙1 Byte (U8)

group Group to which the alarm belongs ↓0 ↑9.22337E+18 Large (I64)

Desc Alarm description string ⊙Alarm Description String

Output

iac Current alarm code Long (I32)

0 Signal within limits
1 Low-alarm active (LA)
2 High-alarm active (HA)
256 . . . Low-alarm (LA) not acknowledged (NACK)
512 . . . High-alarm (HA) not acknowledged (NACK)

HA High-alarm indicator Bool

LA Low-alarm indicator Bool

NACK Not-acknowledged-alarm indicator Bool

344 CHAPTER 10. ARC � DATA ARCHIVING

ALM, ALMI � Alarm store value

Block Symbols Licence: STANDARD

U iE

ALM

U

ACK

av1

av2

av3

av4

av5

av6

av7

av8

iE

ALMI

Function Description

The ALM and ALMI blocks are used for generating alarms. An alarm is activated when
the input U changes to on. Each alarm must be de�ned using the ALARMS block and is
uniquely identi�ed by the id parameter (see 10). Active alarms (i.e., with U=on) can
be displayed in the AlarmsTable visualization component. Records of the alarm state
change and its acknowledgment are stored in the archive if allowed in the ALARMS block
con�guration. An alarm can be acknowledged by activating the ACK=onparameter.

Note: The system allows displaying the acknowledgment status, acknowledging an
active alarm, and can display this status in both the HMI and the archive. However, the
REXYGEN system does not operate further on the acknowledgment and no functionality
depends on it. Decisions about acknowledging alarms depend on the �lter settings in the
visualization and on the speci�c system design.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

U Logical input of the block Bool

ACK Alarm acknowledge (mask) Bool

av1..av8 Alarm associated value ↓1.79769e+308 ⊙-1.79769e+308 Double (F64)

Parameter

id Unique archive item ID ↓-1 ↑65535 ⊙-1 Long (I32)

Output

iE Error code Error

345

ALN, ALNI � Alarms for numerical value

Block Symbols Licence: STANDARD

u iac

ALN

u
men
hys
hh
h
l
ll
tout
iACK

iac

E

HHA

HA

LA

LLA

NACK

ALNI

Function Description

Blocks ALN and ALNI are intended for generating two-level alarms or events when the
numerical value of input u exceeds (undershoots) one of the alarm limits. iac output
indicates alarm (event) status. The men parameter (or input) speci�es which of the
boundaries are monitored. You can choose between the following limits:

• LA - low-alarm

• HA - high-alarm

• LLA - second low-alarm

• HHA - second high-alarm

and their combinations.
The ALNI block is an extension of the ALN block. The blocks di�er only in that most

of the inputs of the ALNI block are parameters of the ALN block. The ALN block does not
have the HHA, HA, LA, LLA and NACK outputs.

Individual limit values can be set by the parameters (inputs) l, h, ll and hh. The hys
value determines the alarm hysteresis. The outputs HHA, HA, LA, LLA and NACK indicate
whether the alarm is active/unacknowledged.

Events and alarms are distinguished in the REXYGEN system using the lvl param-
eter. The list of archives for writing is speci�ed by the arc parameter, e.g. 1,3..5,8.
The event identi�cation code in the archive id must be unique in the entire target device
with the REXYGEN control system. For more information about these parameters see the
introduction of Chapter 10. Positive values of the iac output codes can be added, e.g. the
value 514 means that the upper alarm is unacknowledged. However, not all combinations
make sense.

Note 1: The input (parameter) iACK is set back to 0 immediately by the block
algorithm. The functionality is similar to the parameter BSTATE of the block MP.

Note2: The parameter Desc can include formatting characters (multilingual texts,
associated variables). Formatting rules are described in the ALARMS block.

346 CHAPTER 10. ARC � DATA ARCHIVING

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Analog input of the block Double (F64)

men Enable alarms (mask) ⊙15 Long (I32)

0 All alarms disabled
1 Low-alarm (LA) enabled
2 High-alarm (HA) enabled
3 LA and HA enabled
4 Second low-alarm (LLA) enabled
5 LA and LLA enabled
6 HA and LLA enabled
7 LA, HA and LLA enabled
8 Second high-alarm (HHA) enabled
9 LA and HHA enabled
10 HA and HHA enabled
11 LA, HA and HHA enabled
12 LLA and HHA enabled
13 LA, LLA and HHA enabled
14 HA, LLA and HHA enabled
15 All alarms enabled

hys Alarm hysteresis ↓1e-10 ↑1e+10 Double (F64)

hh The second high-alarm limit Double (F64)

h High-alarm limit Double (F64)

l Low-alarm limit Double (F64)

ll The second low-alarm limit Double (F64)

tout Alarm activation delay time [s] ↓0.0 Double (F64)

iACK Alarm acknowledge (mask) Byte (U8)

1 Low-alarm (LA) acknowledge
2 High-alarm (HA) acknowledge
4 Second low-alarm acknowledge (LLA)
8 Second high-alarm acknowledge (HHA)

Parameter

acls Alarm class (data type) ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

arc List of archives to write the events to Word (U16)

347

id Unique archive item ID ⊙1 Word (U16)

lvl1 Level of low and high alarms ↓1 ⊙1 Byte (U8)

lvl2 Level of the second low and high alarms ↓1 ⊙10 Byte (U8)

group Group to which the alarm belongs ↓0 ↑9.22337E+18 Large (I64)

Desc Alarm description string ⊙Alarm Description String

Output

iac Current alarm code Long (I32)

0 Signal within limits
1 Low-alarm active (LA)
2 High-alarm active (HA)
4 Second low-alarm active (LLA)
8 Second high-alarm (HHA) active
256 . . . Low-alarm (LA) not acknowledged (NACK)
512 . . . High-alarm (HA) not acknowledged (NACK)
1024 . . Second low-alarm (LLA) not acknowledged (NACK)
2048 . . Second high-alarm (HHA) not acknowledged

(NACK)
-1 Invalid alarm limits

E Error indicator Bool

off . . . No error
on An error occurred

HHA The second high-alarm indicator Bool

HA High-alarm indicator Bool

LA Low-alarm indicator Bool

LLA The second low-alarm indicator Bool

NACK Not-acknowledged-alarm indicator Bool

348 CHAPTER 10. ARC � DATA ARCHIVING

ARS � Archive store value

Block Symbol Licence: STANDARD

u

RUN
iE

ARS

Function Description

If RUN = on, the ARS block records the value from the input u into the archive. The data
type of the input value is speci�ed by the type parameter, and the same data type is
used for storage in the archive. The subtype parameter allows you to specify the type
of alarm, as recorded by the alarm blocks ALB, ALBI, ALN, and ALNI:

• 0: Low-alarm (LA): for a logical value, it indicates the falling edge (on→off),
for a numeric value, it is the lower alarm

• 1: High-alarm (HA): for a logical value, it indicates the rising edge (off→on),
for a numeric value, it is the upper alarm

• 2: Second low-alarm (LLA): it is the second lower alarm

• 3: Second high-alarm (HHA): it is the second upper alarm

The parameter is not used for arrays. The meaning of the other parameters is the same
as for other blocks for writing to the archive.

If type = Reference, an array (column vector or matrix) is expected. If it is a
matrix, each of its columns is saved as a separate �le in the archive (i.e., in one tick task
with this block, as many entries as the matrix of columns will stand out in the archive).

Note 1: In the case of arrays, the archive subsystem is limited to 255 values in one
item. At the same time, there is a limit of 512 bytes of data in one item, so for the Short
type, at most 128 values are saved, for the Long type at most 64 values, and for the
Double type at most 32 values. If the input array is longer, the block saves the speci�ed
number of values from the beginning of the array and does not report any errors.

Note 2: In the case of a string, the archive subsystem is limited to 65535 bytes
(characters in UTF8 encoding may be less). If the input text is longer, the block saves
the �rst 65635 bytes from the beginning of the array and does not report any errors.
Some reading functions may have a small bu�er, and such a long text cannot be read,
so it is recommended not to exceed 4080 bytes (characters if only characters from the
English keyboard are used).

Note 3: The id parameter usually serves to link the item in the archive to the source
block/signal (and alarm in some cases). Therefore, its uniqueness is checked across the
entire con�guration. The ARS block is considered a low-level block that writes an event
to the archive without further context and checks. Therefore, the uniqueness of the id

349

parameter is not checked here. For example, if numeric or text items start appearing in
the archive for a binary alarm, they are almost certainly generated by some ARS block
(or an analogous function in the script of the REXLANG block).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Signal to store into archive Any

RUN Enable execution Bool

Parameter

type Data type of the input signal ⊙12 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference

arc List of archives to write the events to Word (U16)

id Unique archive item ID ⊙1 Word (U16)

lvl Alarm level ⊙1 Word (U16)

subtype Type of the alarm Byte (U8)

0 Low-alarm (LA)
1 High-alarm (HA)
2 Second low-alarm (LLA)
3 Second high-alarm (HHA)

Output

iE Error code Error

350 CHAPTER 10. ARC � DATA ARCHIVING

TRND � Real-time trend recording

Block Symbol Licence: STANDARD

u1
u2
u3
u4
RUN
R1

y1

y2

y3

y4

iE

TRND

Function Description

The TRND block is designed for storing of up to 4 input signals (u1 to u4) in cyclic
bu�ers in the memory of the target device. The main advantage of the TRND block is
the synchronization with the real-time executive, which allows trending of even very
fast signals (i.e. with very high sampling frequency). In contrary to asynchronous data
storing in the higher level operator machine (host), there are no lost or multiply stored
samples. For clarity, individual trends can be assigned speci�c names, and signal names
and attributes can be con�gured, as well as their view settings. These adjustments can
be made in the editor by clicking the Con�gure button. All changes are then saved in
the title, signals, and view parameters.

The actual number of stored signals is determined by the parameter n. In case the
trend bu�ers of length l samples get full, the oldest samples are overwritten. Data can
be stored once in pfac executions of the block (decimation), i.e. with the period pfac·Ts,
where Ts is the period of the block execution [s]. The stored data can be further processed
according to the values of the parameters ptype1 to ptype4. The other decimation factor
afac can be used for storing data in archives. The period of storing is then given by
afac · pfac · Ts. Each value is stored with a time stamp. The source of the time stamp
can be set by the timesrc parameter (see the TS block for more information).

The list of archives for storing is speci�ed by the arc parameter, e.g. 1,3..5,8. The
event will be stored in all speci�ed archives. Each archiving block must have a unique
event identi�cation code in the archive given by the id parameter. For more information
about these parameters see the introduction of Chapter 10.

The type of trend bu�ers can be speci�ed in order to conserve memory of the target
device. The memory requirements of the trend bu�ers are de�ned by the formula s ·n ·l,
where s is the size of the corresponding variable in bytes. The default type Double

consumes 8 bytes per sample, thus for storing n = 4 trends of this type and length
l = 1000, 8 · 4 · 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 24 of this reference guide.

It can happen that the processed input value exceeds the representable limits when
using di�erent type of bu�er than Double. In such a case the highest (lowest) repre-

351

sentable number of the corresponding type is stored in the bu�er and an error is binary
encoded to the iE output according to the following table (the unused bits are omitted):

Error Range under�ow Range over�ow
Input u4 u3 u2 u1 u4 u3 u2 u1

Bit number 11 10 9 8 3 2 1 0
Bit weight 2048 1024 512 256 8 4 2 1

In case of simultaneous errors the resulting error code is given by the sum of the weights
of individual errors. Note that under�ow and over�ow cannot happen simultaneously on
a single input.

It is possible to read, display and export the stored data by the REXYGEN Studio

in the Watch mode. After double-clicking on the corresponding TRND block, a new card
with the pre�x Trend will open.

WARNING: set any of the parameters arc, afac, id to 0/empty disable writing
data into archive. The data are available in diagnostic tools only in this case.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u1..u4 Analog input of the block Double (F64)

RUN Enable execution Bool

R1 Block reset Bool

Parameter

n Number of signals (trend bu�ers) ↓1 ↑4 ⊙4 Long (I32)

l Number of samples per trend bu�er ↓0 ↑268435000 ⊙1000 Long (I32)

btype Type of all trend bu�ers ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

ptype1..ptype4 Data processing ⊙1 Long (I32)

1 Store
2 Minimum
3 Maximum
4 Sum
5 Average
6 Standard deviation
7 Variance

352 CHAPTER 10. ARC � DATA ARCHIVING

pfac Processing factor ↓1 ↑1000000 ⊙1 Long (I32)

afac Archiving factor ↓0 ↑1000000 Long (I32)

arc List of archives to write the events to Word (U16)

id Unique archive item ID ⊙1 Word (U16)

title Trend title string ⊙Trend Title String

timesrc Source of timestamps ⊙1 Long (I32)

1 CORETIMER
2 CORETIMER (precise)
3 RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC

signals Signal names and attributes in CSV format String

view Saved view con�guration String

Output

y1..y4 Analog output of the block Double (F64)

iE Error code (bitwise multiplexed) Long (I32)

353

TRNDV � Real-time trend recording (for vector signals)

Block Symbol Licence: STANDARD

uVec

HLD

R1

iE

TRNDV

Function Description

The TRNDV block is very similar to the TRND block. However, it allows storing more than 4
signals. The signals are passed to the uVec input in the form of a vector. The number of
processed signals is then determined by the n parameter. In contrast to the TRND block,
it is necessary to set the HLD input to onto stop the execution of the block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uVec Vector signal to record Reference

HLD Hold Bool

R1 Block reset Bool

Parameter

n Number of signals (trend bu�ers) ↓1 ↑64 ⊙8 Long (I32)

l Number of samples per trend bu�er ↓2 ↑268435000 ⊙1000 Long (I32)

btype Type of all trend bu�ers ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

pfac Processing factor ↓1 ↑1000000 ⊙1 Long (I32)

afac Archiving factor ↓0 ↑1000000 Long (I32)

arc List of archives to write the events to Word (U16)

id Unique archive item ID ⊙1 Word (U16)

title Trend title string ⊙Trend Title String

354 CHAPTER 10. ARC � DATA ARCHIVING

timesrc Source of timestamps ⊙1 Long (I32)

1 CORETIMER
2 CORETIMER (precise)
3 RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC

signals Signal names and attributes in CSV format String

view Saved view con�guration String

Output

iE Error code Error

i REXYGEN error code

Chapter 11

STRING � Blocks for string

operations

Contents

CNS � String constant . 356

CONCAT � Concat string by pattern 357

FIND � Find substring . 358

ITOS � Integer number to string conversion 359

LEN � String length . 360

MID � Substring extraction . 361

PJROCT � Parse JSON string (real output) 362

PJSEXOCT � Parse JSON string (string output) 364

PJSOCT � Parse JSON string (string output) 366

REGEXP � Regular expression parser 368

REPLACE � Replace substring . 370

RTOS � Real number to string conversion 371

SELSOCT � Selector switch for string signals 372

STOR � String to real number conversion 374

TRIM � Remove leading and trailing whitechar 375

The STRING library is dedicated to string manipulation and analysis in REXY-

GEN system. It includes blocks like CONCAT for concatenating strings, FIND for searching
within strings, and REPLACE for replacing string segments. The library o�ers LEN and MID

for determining string length and extracting substrings, respectively. Advanced pattern
matching is provided by REGEXP. Conversion blocks such as ITOS, STOR and RTOS convert
integers and real numbers to strings, while a simple CNS block de�nes a string constant.
Additionally, the library features blocks like PJROCT for JSON parsing. This collection of
blocks is essential for handling and processing string data in various applications.

355

356 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

CNS � String constant

Block Symbol Licence: STANDARD

CNS

Function Description

The CNS block is a simple string constant with maximal available size. A value of scv is
always truncated to nmax. If the string parameter filename is not empty, the initializa-
tion data are loaded from the �le filename on the host computer.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter

scv String (constant) value String

nmax Allocated size of string ↓0 ↑65520 Long (I32)

filename Data �le (content loaded into scv if set) String

Output

sy String output value String

357

CONCAT � Concat string by pattern

Block Symbol Licence: STANDARD

su1
su2
su3
su4
su5
su6
su7
su8

sy

CONCAT

Function Description

The CONCAT block concatenates up to 8 input strings su1 to su8 by pattern speci�ed in
ptrn parameter.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su1..su8 String input value String

Parameter

ptrn Concatenation pattern ⊙%1%2%3%4 String

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

sy String output value String

358 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

FIND � Find substring

Block Symbol Licence: STANDARD

su1

su2

pos

iE

FIND

Function Description

The FIND block searches for the string su2 in the string su1. If su2 is found, the index
of the �rst occurrence of su2 in su1 (counted from one) is returned in the output pos.
If su2 is not found, zero is returned in the output pos and an error is indicated in the
output iE. Both input strings are truncated to the length nmax.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su1 String input value String

su2 String input value String

Parameter

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

pos Position of substring Long (I32)

iE Error code Error

359

ITOS � Integer number to string conversion

Block Symbol Licence: STANDARD

n sy

ITOS

Function Description

The ITOS block is used for converting an integer into text. The len parameter speci�es
the minimum length of the output string. If the number has a smaller number of digits,
zeroes or spaces will be added according to the mode parameter. The radix parameter
speci�es the numerical system in which the conversion is to be performed. The output
string does not contain any identi�cation of the numerical system used (e.g. the 0x pre�x
for the hexadecimal system).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

n Integer input of the block Long (I32)

Parameter

len Minimum length of output string ↓0 ↑30 Long (I32)

mode Output string format ⊙1 Long (I32)

1 Align right, �ll with spaces
2 Align right, �ll with zeroes
3 Align left, �ll with spaces

radix Radix ⊙10 Long (I32)

2 Binary
8 Octal
10 Decimal
16 Hexadecimal

Output

sy String output value String

360 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

LEN � String length

Block Symbol Licence: STANDARD

su len

LEN

Function Description

The LEN block returns the actual length of the string in su in UTF-8 characters.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String

Parameter

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

len Length of input string Long (I32)

361

MID � Substring extraction

Block Symbol Licence: STANDARD

su
l
p

sy

iE

MID

Function Description

The MID block extracts a substring sy from the string su. The inputs l and p specify
the position and length of the string to be extracted in UTF-8 characters. The value of
the input p is counted from one.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String

l Length of output string Long (I32)

p Position of output string Long (I32)

Parameter

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

sy String output value String

iE Error code Error

362 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

PJROCT � Parse JSON string (real output)

Block Symbol Licence: STANDARD

jtxt

RUN

y1
y2
y3
y4
y5
y6
y7
y8
iE

PJROCT

Function Description

The PJROCT block parses input JSON string jtxt according to speci�ed name* parameters
when the input RUN is on. Output signals are real type. In case of an error, the y* outputs
are set to the value of the yerr parameter (e.g. the speci�ed object does not exist or the
value is not a number).

This block expects text in JSON format on the jtxt input. The outputs of y1 to
y7 then have the values (string) of the objects identi�ed by the parameters name1 to
name7. If one of the parameters name1 to name7 is empty, the corresponding output will
be empty and this is not considered as an error. The input string evaluates only if RUN
= on. An error is indicated on the output iE. The following cases may occur:

• 0 - no error

• -1 - one of the parameters name1 to name7 refers to an object that does not appear
in the input text (at the input jtxt)

• -103 - the text on the input jtxt does not correspond to the JSON format

• -106 - all of the parameters name1 to name7 refer to an object that does not appear
in the input text (on the input jtxt)

Examples

Let
jtxt = "{"id": 12345, "params": {"temperature": 23, "pressure": 2.34 },

"description": "reactor1", "values" :[12, 34.5 , 45.0, 30.2]}"

name1 = "params.temperature",
name2 = "values[0]",
name3 = "pressure",
name4 = "description",
then the output y1 will be the "23" string, the output y2 will be the "12" string, output
y3 will remain empty and an error will be signaled, the output y4 will remain empty and
an error will be signaled.

363

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

jtxt JSON formated string String

RUN Enable execution Bool

Parameter

name1..name8 Name of JSON object String

nmax Allocated size of string ↓0 ↑65520 Long (I32)

yerr Substitute value for an error case Double (F64)

Output

y1..y8 Block output signal Double (F64)

iE Error code Error

364 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

PJSEXOCT � Parse JSON string (string output)

Block Symbol Licence: STANDARD

jtxt
RUN
sn1
sn2
sn3
sn4
sn5
sn6
sn7
sn8

sy1
sy2
sy3
sy4
sy5
sy6
sy7
sy8
iE

PJSEXOCT

Function Description

The PJSEXOCT block is almost identical to the PJSOCT block. It expects text in JSON
format on the jtxt input. The outputs of sy1 to sy7 then have the values of the objects
identi�ed by the parameters name1 to name7. Unlike the PJSOCT block, the parameters
name1 to name7 can contain the placeholder % + number instead of which the text from
the input sn + number is substituted.

Examples

Let
sn1 = "2",
sn2 = "rpm",
name1 = "motor[%1].temp",
name2 = "motor[%1].%2",
then the output sy1 will be the value of the object motor[2].temp, and the output sy2
will be the value of the object motor[2].rpm.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

jtxt JSON formated string String

RUN Enable execution Bool

sn1..sn8 Name of JSON object String

Parameter

name1..name8 Name of JSON object String

nmax Allocated size of string ↓0 ↑65520 Long (I32)

365

Output

sy1..sy8 String output value String

iE Error code Error

366 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

PJSOCT � Parse JSON string (string output)

Block Symbol Licence: STANDARD

jtxt

RUN

sy1
sy2
sy3
sy4
sy5
sy6
sy7
sy8
iE

PJSOCT

Function Description

The PJROCT block parses input JSON string jtxt according to speci�ed name* parameters
when the input RUN is on. Output signals are string type.

This block expects text in JSON format on the jtxt input. The outputs of sy1 to
sy7 then have the values of the objects identi�ed by the parameters name1 to name7. If
one of the parameters name1 to name7 is empty, the corresponding output will be empty
and this is not considered as an error. The input string evaluates only if RUN = on. An
error is indicated on the output iE. The following cases may occur:

• 0 - no error

• -1 - one of the parameters name1 to name7 refers to an object that does not appear
in the input text (at the input jtxt)

• -103 - the text on the input jtxt does not correspond to the JSON format

• -106 - all of the parameters name1 to name7 refer to an object that does not appear
in the input text (on the input jtxt)

Examples

Let
jtxt = "{"id": 12345, "params": {"temperature": 23, "pressure": 2.34 },

"description": "reactor1", "values" :[12, 34.5 , 45.0, 30.2]}"

name1 = "params.temperature",
name2 = "values[0]",
name3 = "pressure",
name4 = "description",
then the output sy1 will be the "23" string, the output sy2 will be the "12" string,
output sy3 will remain empty and an error will be signaled, the output sy4 will be the
"reactor1" string.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

367

Input

jtxt JSON formated string String

RUN Enable execution Bool

Parameter

name1..name8 Name of JSON object String

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

sy1..sy8 String output value String

iE Error code Error

368 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

REGEXP � Regular expression parser

Block Symbol Licence: ADVANCED

text

RUN

MATCH
cap
cap1
cap2
cap3
cap4
cap5
cap6
cap7
cap8

REGEXP

Function Description

The REGEXP block implements the most common subset of regular expressions as known,
for example, from the regex command in Perl or C#, or the grep command known from
the command line of Unix operating systems.

Supported syntax is as follows:

• (?i) . . .Must be at the beginning of the regex. Makes match case-insensitive

• ^ . . .Match beginning of a bu�er

• $. . .Match end of a bu�er

• () . . . Grouping and substring capturing

• \s . . .Match whitespace

• \S . . .Match non-whitespace

• \d . . .Match decimal digit

• \n . . .Match new line character

• \r . . .Match line feed character

• \f . . .Match form feed character

• \v . . .Match vertical tab character

• \t . . .Match horizontal tab character

• \b . . .Match backspace character

• + . . .Match one or more times (greedy)

• +? . . .Match one or more times (non-greedy)

• * . . .Match zero or more times (greedy)

369

• *? . . .Match zero or more times (non-greedy)

• ? . . .Match zero or once (non-greedy)

• x|y . . .Match x or y (alternation operator)

• \meta . . .Match one of the meta characters: ^$().[]*+?|\

• \xHH . . .Match byte with hex value 0xHH, e.g. \x4a

• [...] . . .Match any character from set. Ranges like [a-z] are supported.

• [^...] . . .Match any character except the ones in set. Ranges like [a-z] are sup-
ported.

Examples

• [0-9]+ . . . Finds �rst integer in input string (and puts it into cap output).

• [-+]?[0-9]*\.[0-9]+([eE][-+]?[0-9]+)? . . . Find �rst real number in input string
(and puts it into cap output).

• ^\s*(.*?)\s*$. . . Puts trimmed input string into cap1 output.

• num\s*:\s*([0-9]*\.[0-9]*) . . . Expects input string in JSON format; �nd inte-
ger parameter num, and puts its value into cap1.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

text String to parse String

RUN Enable execution Bool

Parameter

expr Regular expression pattern String

nmax Allocated size of string ↓0 ↑65534 Long (I32)

bufmax Parser internal bu�er size (0 = autodetect) ↓0 ↑10000000 Long (I32)

Output

MATCH Pattern match �ag Bool

cap Whole matching string String

cap1..cap8 Captured string String

370 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

REPLACE � Replace substring

Block Symbol Licence: STANDARD

su1
su2
l
p

sy

iE

REPLACE

Function Description

The REPLACE block replaces a substring from su1 by the string su2 and puts the result
in sy. The parameters l and p specify position and length of the string being replaced
in UTF-8 characters. The parameter p is numbered from one.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su1 String input value String

su2 String input value String

l Length of origin text Long (I32)

p Position of origin text Long (I32)

Parameter

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

sy String output value String

iE Error code Error

371

RTOS � Real number to string conversion

Block Symbol Licence: STANDARD

u sy

RTOS

Function Description

The RTOS converts a real number in u into a string value in su. Precision and format are
speci�ed by the prec and mode parameters. Possible values of the mode parameter are:

• 1: Best �t � �xed point, but for extremely small or big numbers exponential
format; parameter prec is total maximum number of characters in output (mantisa
for exponential format)

• 2: Normal � �xed point format; parameter prec is number of places after the
decimal point

• 3: Exponential � scienti�c format; parameter prec is number of places after the
decimal point

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

prec Precision (number of digits) ↓0 ↑20 Long (I32)

mode Output string format ⊙1 Long (I32)

1 Best �t
2 Normal
3 Exponential

Output

sy String output value String

372 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

SELSOCT � Selector switch for string signals

Block Symbol Licence: STANDARD

su0
su1
su2
su3
su4
su5
su6
su7
iSW
SW1
SW2
SW3

sy

SELSOCT

Function Description

The SELSOCT block selects one of the input strings and copy it to the output string
sy. The selection of the active signal u0. . . u15 is based on the iSW input or the binary
inputs SW1. . . SW3. These two modes are distinguished by the BINF binary �ag. The signal
is selected according to the following table:

iSW SW1 SW2 SW3 y

0 off off off u0

1 on off off u1

2 off on off u2

3 on on off u3

4 off off on u4

5 on off on u5

6 off on on u6

7 on on on u7

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su0..su7 String input value String

iSW Active signal selector Long (I32)

SW1 Binary signal selector Bool

SW2 Binary signal selector Bool

SW3 Binary signal selector Bool

Parameter

BINF Enable the binary selectors Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

373

Output

sy The selected input signal String

374 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

STOR � String to real number conversion

Block Symbol Licence: STANDARD

su
y

E

STOR

Function Description

The STOR block converts the string on the input su to a real number on the output y. If
the conversion fails, an error is indicated in E.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String

Parameter

yerr Substitute value for an error case Double (F64)

Output

y Analog output of the block Double (F64)

E Error indicator Bool

375

TRIM � Remove leading and trailing whitechar

Block Symbol Licence: STANDARD

su sy

TRIM

Function Description

The TRIM block removes leading and trailing white spaces from the input string su and
puts the result in the output string sy.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String

Parameter

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

sy String output value String

376 CHAPTER 11. STRING � BLOCKS FOR STRING OPERATIONS

Chapter 12

PARAM � Blocks for parameter

handling

Contents

GETPA � Block for remote array parameter acquirement 378

GETPB, GETPI, GETPR � Blocks for remote parameter acquirement . 381

GETPS � Block for remote string parameter acquirement 383

GETPX � Block for remote parameter acquirement 384

PARA � Block with input-de�ned array parameter 386

PARE � Block with input-de�ned enumeration parameter 388

PARB, PARI, PARR � Blocks with input-de�ned parameter 389

PARS � Block with input-de�ned string parameter 391

PARX � Block with input-de�ned parameter 392

SETPA � Block for remote array parameter setting 394

SETPB, SETPI, SETPR � Blocks for remote parameter setting 396

SETPS � Block for remote string parameter setting 398

SETPX � Block for remote parameter setting 399

SGSLP � Set, get, save and load parameters 401

SILO � Save input value, load output value 405

SILOS � Save input string, load output string 407

The PARAM library is designed for parameter management and signal processing
in the REXYGEN system. It includes blocks like PARR and its variants for de�ning and
modifying various types of parameters. Blocks for getting parameters of other blocks
like GETPA and GETPS. Conversely, SETPA, SETPR and SETPS are used to dynamically set
parameter values of other blocks. Additionally, the library contains SILO and SILOS for
exporting and importing values from a �le. This library is crucial for systems requiring
dynamic parameter manipulation and the ability to read/save values to a �le.

377

378 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

GETPA � Block for remote array parameter acquirement

Block Symbol Licence: STANDARD

GET
arrRef

E

GETPA

Function Description

The GETPA block is used for acquiring the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the GETF parameter.
For GETF = off the output arrRef is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the block works in single-shot read mode. In that case the remote parameter
is read only when rising edge (off→on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

• Relative:

� Starts with a '.' character, indicating the level where the GETPA block is
placed. Examples of paths: ".CNDR:yp", ".Lights.ATMT:touts".

� Starts with '..' characters, indicating a level above the GETPA block. Exam-
ples of paths: "..CNDR:yp", "..Lights.ATMT:touts".

• Relative to Task: Starts at the root level of the task where the GETPA block is
located. The string has to be pre�xed with '%' in this case. Examples of paths:
"%CNDR:yp", "%Lights.ATMT:touts".

• Absolute: A complete sequence of hierarchic levels down to the block. For re-
ferring to blocks located in the driver task (see the IOTASK block for details on
con�guration) the '&' followed by the driver's name is used at the beginning
of the absolute path. Examples of absolute paths: "task1.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the GETPA block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value reading. Therefore, it is recommended
to include the GETPA block in a slower task (longer period/execution time) and read pa-
rameter in a faster task (shorter period/execution time). In the opposite situation (e.g.
the GETPA block in a faster task), the SETPA block should be used in a slower task.

379

Note 1: If parameter GETF = off and source array is in same task as the GETPA block,
data are not copy into intermediate array, but output is direct reference to original array.
It save resources (cpu time and memory). The nmax, etype parameters are ignored in
this case.

Note 2: If multiple GETPA blocks are used to read arrays in another task, it is not
guaranteed that all arrays will be read in one period of the second task. It is only
guaranteed that the GETPA block executed earlier will read the array from the same or
earlier period of the second task than the GETPA block executed later. The execution
order can be seen in the REXYGEN Studio program diagnostics.

Note 3: The remote parameter must be a primary array (for example CNA:acn,
RTOV:xVec, MX_MAT:ay). The array reference (like CNA:vec, RTOV:yVec, SUBSYSTEM:Outport)
is not supported.

Note 3: The remote array (from which data is read) can be either a primary array
(e.g., CNA:acn, RTOV:xVec, MX_MAT:ay) or an array reference (e.g. CNA:vec, RTOV:yVec,
SUBSYSTEM:Outport). The array reference should be placed in the same task as the
primary array to avoid inconsistency.

Note 4: The INCONN block can also be used to read the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

GET Input for initiating one-shot parameter read Bool

Parameter

sc String connection to the parameter String

GETF Get parameter only when forced to Bool

off . . . Remote parameter is continuously read
on One-shot mode

nmax Maximum size of array ↓10 ⊙256 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

Output

arrRef Array reference Reference

380 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

E Error indicator Bool

off . . . No error
on An error occurred

381

GETPB, GETPI, GETPR � Blocks for remote parameter acquire-
ment

Block Symbols Licence: STANDARD

GET
Y

E

GETPB

GET
k

E

GETPI

GET
y
E

GETPR

Function Description

The GETPR, GETPI, and GETPB blocks are used for acquiring the parameters of other blocks
in the model remotely . Blocks have identical functionality, di�ering only in the type of
parameter they acquire. The GETPR block is for a real number, GETPI for an integer, and
GETPB for a Boolean value. To comply with the naming convention for variables 1.3, the
outputs of individual blocks are named according to the type of the acquired parameter:

• y � real output of the GETPR block,

• k � integer output of the GETPI block,

• Y � Boolean output for the GETPB block.

The blocks operate in two modes, which are switched by the GETF parameter. For
GETF = off the output y (or k, Y) is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the blocks work in single-shot read mode. In that case the remote parameter
is read only when rising edge (off→on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT:touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be read can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

• Relative:

� Starts with a '.' character, indicating the level where the GETPR block (or
GETPI, GETPB) is placed. Examples: ".GAIN:k", ".Motor1.Position:ycn".

� Starts with '..' characters, indicating a level above the GETPR block (or
GETPI, GETPB). Examples: "..GAIN:k", "..Motor1.Position:ycn".

382 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

• Relative to Task: Starts at the root level of the task where the GETPR block
(or GETPI, GETPB) is located. The string has to be pre�xed with '%' in this case.
Examples: "%GAIN:k", "%Motor1.Position:ycn".

• Absolute: A complete sequence of hierarchic levels down to the block. For referring
to blocks located in the driver task (see the IOTASK block for details on con�gura-
tion) the '&' followed by the driver's name is used at the beginning of the absolute
path. Examples: "task1.inputs.lin1:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the GETPx block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value reading. Therefore, it is recommended
to include the GETPx block in a slower task (longer period/execution time) and read pa-
rameter in a faster task (shorter period/execution time). In the opposite situation (e.g.
the GETPx block in a faster task), the SETPx block should be used in a slower task.

Note 1: When using multiple GETPx blocks, it is not guaranteed to read all data
from a remote task in the same tick. It is only guaranteed that the previous block will
receive a value in the same or previous period as the next block. The execution order
can be seen in the REXYGEN Studio program diagnostics. To obtain multiple values in
the same period, it is needed to use the Inport and Outport blocks or the GETPA block.

Note 2: The GETPX and INCONN blocks can also be used to read the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

GET Input for initiating one-shot parameter read Bool

Parameter

sc String connection to the parameter String

GETF Get parameter only when forced to Bool

off . . . Remote parameter is continuously read
on One-shot mode

Output

y Parameter value Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

383

GETPS � Block for remote string parameter acquirement

Block Symbol Licence: STANDARD

GET
sy
E

GETPS

Function Description

The GETPS block has the same function as the GETPR, GETPI, and GETPB blocks, di�ering
only in that it acquires a string parameter value.

Note: The GETPX and INCONN blocks can also be used to read the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

GET Input for initiating one-shot parameter read Bool

Parameter

sc String connection to the parameter String

GETF Get parameter only when forced to Bool

off . . . Remote parameter is continuously read
on One-shot mode

nmax Allocated size of string Long (I32)

Output

sy Parameter value String

E Error indicator Bool

off . . . No error
on An error occurred

384 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

GETPX � Block for remote parameter acquirement

Block Symbol Licence: STANDARD

GET
y
E

GETPX

Function Description

The GETPX block works on the same principle as the GETPB, GETPI, GETPR and GETPS

blocks. However, unlike these blocks, it is universal and can read parameters of all types
except array. The name of the remote parameter is entered in the sc parameter in the
same way as with the other blocks. The value type is set by the type parameter, and
the parameter reading mode is set by the GETF parameter. If the GETF parameter is set
to on, the block reads the parameter value only when requested at the GET input. If the
GETF parameter is set to off, the block reads the parameter value continuously.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

GET Input for initiating one-shot parameter read Bool

Parameter

sc String connection to the parameter String

GETF Get parameter only when forced to Bool

off . . . Remote parameter is continuously read
on One-shot mode

type Data type of item ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference

385

Output

y Parameter value Any

E Error indicator Bool

off . . . No error
on An error occurred

386 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

PARA � Block with input-de�ned array parameter

Block Symbol Licence: STANDARD

uRef
LOC

yRef
E

PARA

Function Description

The PARA block allows, additionally to the standard way of parameter setting, changing
one of its parameters by the input signal. The input-parameter pair is uRef and apar.

The logical input LOC (LOCal) determines whether the value of the internal parameter
apar is read from the input uRef. In this case LOC = off. If the block is in the local mode
(LOC = on), the internal parameter apar stores the last value that was on the input uRef
just before the local mode was activated (LOC = off → on).

The output value is equivalent to the value of the parameter (yRef = apar).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uRef Array reference Reference

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Parameter

SETS Set array size �ag Bool

nmax Allocated size of array ↓10 ⊙100 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

apar Internal value of parameter ⊙[0.0 1.0 2.0 3.0 4.0 5.0] Double (F64)

387

Output

yRef Array reference Reference

388 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

PARE � Block with input-de�ned enumeration parameter

Block Symbol Licence: STANDARD

ip
LOC

iy
sy

PARE

Function Description

The block is similar to the the PARI block with the additional option to assign texts to
numeric values. The corresponding text is set on the output sy. The block has two modes
and the active mode is selected by the LIST parameter. If LIST=off a corresponding text
for the input value is set on the output sy. If LIST=on the input number is considered as
a bit�eld, texts are de�ned for each bit and the output sy is composed of the texts that
correspond to bits which are set. The behavior for unde�ned values is determined by
the SATF parameter. If SATF=off, unde�ned values are set to output iy and the output
sy is set to empty text. Unde�ned values are ignored if SAT=on. The pupstr parameter
has the same format as in the CNE block: <number1>: <description1>|<number2>:

<description2>|<number3>: <description3> ...

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

ip Parameter value Long (I32)

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Parameter

ipar Internal value of parameter ⊙1 Long (I32)

pupstr Popup list de�nition
⊙1: option A|2: option B|3: option C

String

NUM Number in string output Bool

LIST Bit�eld mode Bool

SATF Saturation �ag Bool

Output

iy Integer output of the block Long (I32)

sy String output value String

389

PARB, PARI, PARR � Blocks with input-de�ned parameter

Block Symbols Licence: STANDARD

P

LOC
Y

PARB

ip
LOC

k

PARI

p
LOC

y

PARR

Function Description

The PARR, PARI and PARB blocks allow, additionally to the standard way of parameters
setting, changing one of their parameters by the input signal. The input-parameter pairs
are:

• p and par for the PARR block,

• ip and ipar for the PARI block,

• P and PAR for the PARB block.

The Boolean input LOC (LOCal) determines whether the value of the par (or ipar,
PAR) parameter is read from the input p (or ip, P) or is input-independent (LOC = on).
In the local mode LOC = on the parameter par (or ipar, PAR) contains the last value
of input p (or ip, P) entering the block right before LOC was set to on. Afterwards it is
possible to modify the value manually.

The output value is equivalent to the value of the parameter y = par, (or k = ipar,
Y = PAR). The output of the PARR and PARI blocks can be additionally constrained by
the saturation limits ⟨lolim, hilim⟩. The saturation is active only when SATF = on.

Note: The PARX block works on the same principle, but it can set parameters of
all types. Consider also using the SHLD block, which can be used for storing numerical
values, similarly to the PARR block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

p Parameter value Double (F64)

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Parameter

par Internal value of parameter ⊙1.0 Double (F64)

390 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SATF Saturation �ag Bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal ⊙1.0 Double (F64)

lolim Lower limit of the output signal ⊙-1.0 Double (F64)

Output

y Analog output of the block Double (F64)

391

PARS � Block with input-de�ned string parameter

Block Symbol Licence: STANDARD

sp
LOC

sy

PARS

Function Description

The PARS block has the same function as the PARR, PARI, and PARB blocks, di�ering only
in that the set parameter spar is a string and is set by changing the input sp.

Note: The PARX and INCONN blocks can also be used to change the string value of a
remote parameter.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

sp Parameter value String

LOC Activation of local mode Bool

Parameter

spar Internal value of parameter String

nmax Allocated size of string Long (I32)

Output

sy String output of the block String

392 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

PARX � Block with input-de�ned parameter

Block Symbol Licence: STANDARD

p
LOC

y

PARX

Function Description

The PARX block, like the PARB, PARI, PARR and PARS blocks, allows changing one of its
parameters by changing the input. Unlike the blocks mentioned above, the PARX block
parameter can be of any type. The parameter type is set with the type parameter. It is
possible to set parameter saturation limits for relevant types.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

p Parameter value Any

LOC Activation of local mode Bool

off . . . The parameter follows the input
on Local mode active

Parameter

par Internal value of parameter ⊙1.0 Double (F64)

SATF Saturation �ag Bool

off . . . Signal not limited
on Saturation limits active

hilim Upper limit of the output signal ⊙1.0 Double (F64)

lolim Lower limit of the output signal ⊙-1.0 Double (F64)

393

type Data type of item ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference

Output

y Parameter value Any

394 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SETPA � Block for remote array parameter setting

Block Symbol Licence: STANDARD

arrRef

SET
E

SETPA

Function Description

The SETPA block is used for setting the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the SETF parameter.
For SETF = off the remote parameter cs is set to the value of the input vector signal
arrRef at the start and every time when the input signal changes. If the SETF parameter
is set to on, then the block works in one-shot write mode. In that case the remote
parameter is set only when rising edge (off→on) occurs at the SET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

• Relative:

� Starts with a '.' character, indicating the level where the SETPA block is
placed. Examples of paths: ".CNDR:yp", ".Lights.ATMT:touts".

� Starts with '..' characters, indicating a level above the SETPA block. Exam-
ples of paths: "..CNDR:yp", "..Lights.ATMT:touts".

• Relative to Task: Starts at the root level of the task where the SETPA block is
located. The string has to be pre�xed with '%' in this case. Examples of paths:
"%CNDR:yp", "%Lights.ATMT:touts".

• Absolute: A complete sequence of hierarchic levels down to the block. For re-
ferring to blocks located in the driver task (see the IOTASK block for details on
con�guration) the '&' followed by the driver's name is used at the beginning
of the absolute path. Examples of absolute paths: "task1.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the SETPA block, block
execution is delayed until the remote task is completed. It is necessary to avoid the
so-called race conditions and guarantee the correct value setting. Therefore, it is recom-
mended to include the SETPA block in a slower task (longer period/execution time) and

395

set parameter in a faster task (shorter period/execution time). In the opposite situation
(e.g. the SETPA block in a faster task), the GETPA block should be used in a slower task.

Note 1: When using multiple SETPA blocks, it is not guaranteed that all data will
be written to the remote task in the same tick. It is only guaranteed that the previous
block will set a value in the same or previous period as the next block. The execution
order can be seen in the REXYGEN Studio program diagnostics.

Note 2: The remote array (the parameter to which the block refers) can be either
a primary array (e.g., CNA:acn, RTOV:xVec, MX_MAT:ay) or a reference to an array (like
CNA:vec, RTOV:yVec, SUBSYSTEM:Outport). References to an array should be placed in
the same task as the primary array to avoid inconsistencies.

Note 3: The OUTCONN block can also be used for writing the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

arrRef Array reference Reference

SET Input for initiating one-shot parameter write Bool

Parameter

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

off . . . Remote parameter is continuously updated
on One-shot mode

SETS Set array size �ag Bool

Output

E Error indicator Bool

off . . . No error
on An error occurred

396 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SETPB, SETPI, SETPR � Blocks for remote parameter setting

Block Symbols Licence: STANDARD

P

SET

Y

E

SETPB

ip
SET

k
E

SETPI

p
SET

y
E

SETPR

Function Description

The SETPR, SETPI, SETPB blocks are used for setting the parameters of other blocks in
the model remotely. The only di�erence among the three blocks is the type of parameter
which they are setting. The SETPR block is used for setting real parameters, the SETPI

block for integer parameters and the SETPB block for Boolean parameters. To comply
with the naming convention for variables 1.3, the inputs and outputs of individual blocks
are named according to the type of the set parameter:

• p, y � real input and output of the SETPR block,

• ip, k � integer input and output of the SETPI block,

• P, Y � Boolean input and output for the SETPB block.

The blocks operate in two modes, which are switched by the SETF parameter. For
SETF = off the remote parameter sc is set to the value of the input signal p (or ip, P)
at the start and every time when the input changes. If the SETF parameter is set to on,
then the blocks work in one-shot write mode. In that case the remote parameter is set
only when rising edge (off→on) occurs at the SET input. Successful modi�cation of the
remote parameter is indicated by zero error output E = off and the output y (or k, Y)
is set to the value of the modi�ed parameter. The error output is set to E = on in case
of write error.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT:touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be set can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

• Relative:

� Starts with a '.' character, indicating the level where the SETPR block (or
SETPI, SETPB) is placed. Examples: ".GAIN:k", ".Motor1.Position:ycn".

� Starts with '..' characters, indicating a level above the SETPR block (or
SETPI, SETPB). Examples: "..GAIN:k", "..Motor1.Position:ycn".

397

• Relative to Task: Starts at the root level of the task where the SETPR block
(or SETPI, SETPB) is located. The string has to be pre�xed with '%' in this case.
Examples: "%GAIN:k", "%Motor1.Position:ycn".

• Absolute: A complete sequence of hierarchic levels down to the block. For referring
to blocks located in the driver task (see the IOTASK block for details on con�gura-
tion) the '&' followed by the driver's name is used at the beginning of the absolute
path. Examples: "task1.inputs.lin1:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the SETPx block, block
execution is delayed until the remote task is completed. It is necessary to avoid the
so-called race conditions and guarantee the correct value setting. Therefore, it is recom-
mended to include the SETPx block in a slower task (longer period/execution time) and
set parameter in a faster task (shorter period/execution time). In the opposite situation
(e.g. the SETPx block in a faster task), the GETPx block should be used in a slower task.

Note 1:When using multiple SETPx blocks, it is not guaranteed that all data will be
written to the remote task in the same tick. It is only guaranteed that the previous block
will set a value in the same or previous period as the next block. The execution order
can be seen in the REXYGEN Studio program diagnostics. To send multiple values in the
same period, it is needed to use the Inport and Outport blocks or the SETPA block.

Note 2: The SETPX and OUTCONN blocks can also be used for writing the value
remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

p Desired parameter value Double (F64)

SET Input for initiating one-shot parameter write Bool

Parameter

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

off . . . Remote parameter is continuously updated
on One-shot mode

Output

y Parameter value Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

398 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

SETPS � Block for remote string parameter setting

Block Symbol Licence: STANDARD

sp
SET

sy
E

SETPS

Function Description

The SETPS block has the same function as the SETPR, SETPI, and SETPB blocks, di�ering
only in that it sets a string parameter value.

Note: The SETPX and OUTCONN blocks can also be used to set the value of a remote
parameter.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sp Desired parameter value String

SET Input for initiating one-shot parameter write Bool

Parameter

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

nmax Allocated size of string Long (I32)

Output

sy Parameter value String

E Error indicator Bool

399

SETPX � Block for remote parameter setting

Block Symbol Licence: STANDARD

p
SET

y
E

SETPX

Function Description

The SETPX block works on the same principle as the SETPB, SETPI, SETPR and SETPS

blocks. However, unlike these blocks, it is universal and can set parameters of all types
except array. The name of the remote parameter is entered in the sc parameter in the
same way as with the other blocks. The value type is set by the type parameter, and
the parameter setting mode is set by the SETF parameter. If the SETF parameter is set
to on, the block sets the parameter value only when requested at the SET input. If the
SETF parameter is set to off, the block sets the parameter value continuously.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

p Desired parameter value Any

SET Input for initiating one-shot parameter write Bool

Parameter

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

off . . . Remote parameter is continuously updated
on One-shot mode

type Data type of item ⊙8 Byte (U8)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference

400 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

Output

y Parameter value Any

E Error indicator Bool

off . . . No error
on An error occurred

401

SGSLP � Set, get, save and load parameters

Block Symbol Licence: ADVANCED

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
ips
SET
GET
SAVE
LOAD

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
E
iE

SGSLP

Function Description

The SGSLP block is a special function block for manipulation with parameters of other
function blocks in the REXYGEN system con�guration. It works also in the Matlab-
Simulink system but its scope is limited to the .mdl �le it is included in.

The block can manage up to 16 parameter sets, which are numbered from 0 to 15. The
number of parameter sets is given by the nps parameter and the active set is de�ned by
the ips input. If the ips input remains unconnected, the active parameter set is ips = 0.
Each set contains up to 16 di�erent parameters de�ned by the string parameters sc0

to sc15. Thus the SGSLP block can work with a maximum of 256 parameters of the
REXYGEN system. An empty sci string means that no parameter is speci�ed, otherwise
one of the following syntaxes is used:

1. <block>:<param> � Speci�es one function block named block and its parameter
param. The same block and parameter are used for all nps parameter sets in this
case.

2. <block>:<param><sep>. . . <block>:<param> � This syntax allows the parameters
to di�er among the parameter sets. In general, each sci string can contain up to
16 items in the form <blok>:<param> separated by comma or semi-colon. E.g. the
third item of these is active for ips = 2. There should be exactly nps items in each
non-empty sci string. If there is less items than nps none of the below described
operations can be executed on the incomplete parameter set.

It is recommended not to use both syntaxes in one SGSLP block, all 16 sci strings should
have the same form. The �rst syntax is for example used when producing nps types of
goods, where many parameters must be changed for each type of production. The second
syntax is usually used for saving user-de�ned parameters to disk (see the SAVE operation

402 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

below). In that case it is desirable to arrange automated switching of the ips input (e.g.
using the ATMT block from the LOGIC library).

The broot parameter is suitable when all blocks whose parameters are to be con-
trolled by the SGSLP block reside in the same subsystem or deeper in the hierarchy. It
is inserted in front of each <block> substring in the sci parameters. The '.' character
stands for the subsystem where the SGSLP block is located. No quotation marks are
used to de�ne the parameter, they are used here solely to highlight a single character.
If the broot parameter is an empty string, all <block> items must contain full path.
For example, to create a connection to the CNR block and its parameter ycn located in
the same subsystem as the SGSLP block, broot = . and sc0 = CNR:ycn must be set. Or
it is possible to leave the broot parameter empty and put the '.' character to the sc0

string. See the GETPR or SETPR blocks description for more details about full paths in the
REXYGEN system.

The SGSLP block executes one of the below described operations when a rising edge
(off→on) occurs at the input of the same name. The operations are:

SET � Sets the parameters of the corresponding parameter set ips to the values of the
input signals ui. In case the parameter is successfully set, the same value is also
sent to the yi output.

GET � Gets the parameters of the corresponding parameter set ips. In case the parameter
is successfully read, its value is sent to the yi output.

SAVE � Saves the parameters of the corresponding parameter set ips to a �le on the
target platform. The parameters of the procedure and the format of the resulting
�le are described below.

LOAD � Loads the parameters of the corresponding parameter set ips from a �le on
the target platform. This operation is executed also during the initialization of the
block but only when 0 ≤ ips0 ≤ nps − 1. The parameters of the procedure and
the format of the �le are described below.

The LOAD and SAVE operations work with a �le on the target platform. The name of
the �le is given by the fname parameter and the following rules:

• If no extension is speci�ed in the fname parameter, the .rxs (ReX Status �le)
extension is added.

• A backup �le is created when overwriting the �le. The �le name is preserved, only
the extension is modi�ed by adding the ' ' character right after the '.' (e.g. when
no extension is speci�ed, the backup �le has a . rxs extension.

• The path is relative to the folder where the archives of the REXYGEN system are
stored. The �le should be located on a media which is not erased by system restart
(�ash drive or hard drive, not RAM).

403

The SAVE operation stores the data in a text �le. Two lines are added for each
parameter sci, i = 0, . . . ,m, where m < 16 de�nes the nonempty scm string with the
highest number. The lines have the form:

"<block>:<param>", . . . , "<block>:<param>"

<value>, . . . , <value>

There are nps individual items "<block>:<param>" which are separated by commas.
The second line contains the same number of <value> items which contain the value
of the parameter at the same position in the line above. Note that the format of the
�le remains the same even for sci containing only one <block>:<param> item (see the
syntax no. 1 above). The "<block>:<param>" item is always listed nps-times in the �le,
which allows seamless switching of the sci parameters syntax without modifying the �le.
Consider using the SILO block if working with only a few values.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u0..u15 Analog input of the block Double (F64)

ips Parameter set index Long (I32)

SET Set parameters Bool

GET Get parameters Bool

SAVE Save parameters Bool

LOAD Load parameters Bool

Parameter

nps Number of parameter sets ↓1 ↑16 ⊙1 Long (I32)

ips0 Initial parameter set index ↓-1 ↑15 Long (I32)

iprec Precision of parameters (number of digits) ↓2 ↑15 ⊙12 Long (I32)

icolw Column width in status �le ↓0 ↑22 Long (I32)

fname Name of persistent storage �le ⊙status String

broot Root block in hierarchy ⊙. String

sc0..sc15 List of connected parameters String

Output

y0..y15 Analog output of the block Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

404 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

iE Error or warning code Long (I32)

0 Operation successful
1 Fatal error of the Matlab system
2 LOAD operation error
3 SAVE operation error
4 Incorrect �le format
5 The ips parameter set not found
6 Parameter not found, name mismatch
7 Unexpected end of �le
8 Error writing to �le (disk full?)
9 Parameter syntax error
10 Only whitespace in the parameter name
11 Error creating the backup �le
12 GET operation error
13 SET operation error
14 Timeout
15 The speci�ed parameter is read-only
16 The ips parameter is out of range

405

SILO � Save input value, load output value

Block Symbol Licence: STANDARD

u
SAVE
LOAD

y
E

lastErr

SILO

Function Description

The SILO block can be used to export or import a single value to/from a �le. The value
is saved when a rising edge (off→on) occurs at the SAVE input and the value is also set
to the y output. The value is loaded at startup and when a rising edge (off→on) occurs
at the LOAD input.

The outputs E and lastErr indicate an error during disk operation. The E indicator is
reset on falling edge at the SAVE or LOAD input while the lastErr output holds the value
until another disk operation is invoked. If the error occurs during the LOAD operation, a
substitute value yerr is set to the y output.

Alternatively it is possible to write or read the value continuously if the corresponding
�ag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter de�nes the location of the �le on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Use the SGSLP function block for advanced and complex operations.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal Double (F64)

SAVE Save value to �le Bool

LOAD Load value from �le Bool

Parameter

fname Name of persistent storage �le String

CSF Continuous saving Bool

CLF Continuous loading Bool

yerr Substitute value for an error case Double (F64)

406 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

Output

y Output signal Double (F64)

E Error indicator Bool

off . . . No error
on An error occurred

lastErr Result of last operation Long (I32)

407

SILOS � Save input string, load output string

Block Symbol Licence: STANDARD

su
SAVE
LOAD
APPEND

sy

E

lastErr

SILOS

Function Description

The SILOS block can be used to export or import a string to/from a �le. The string is
saved when a rising edge (off→on) occurs at the SAVE input and the string is also set to
the sy output. The string is loaded at startup and when a rising edge (off→on) occurs
at the LOAD input.

If the APPEND input is set to on, the string from the input is appended to the end of
the �le. This mode is suitable for logging events to text �les. This entry has no e�ect on
loading from a �le.

The LLO parameter is intended for choosing whether to load the entire �le (off) or
its last line only (on).

The outputs E and lastErr indicate an error during disk operation. The E indicator
is reset on falling edge at the SAVE or LOAD input while the lastErr output holds the
value until another disk operation is invoked.

Alternatively it is possible to write or read the string continuously if the corresponding
�ag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter de�nes the location of the �le on the target platform. The path
is relative to the data folder of the RexCore runtime module.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

su String input of the block ⊙0 String

SAVE Save string to �le Bool

LOAD Load string from �le Bool

APPEND Append saved string to �le Bool

Parameter

fname Name of persistent storage �le String

408 CHAPTER 12. PARAM � BLOCKS FOR PARAMETER HANDLING

CSF Continuous saving Bool

CLF Continuous loading Bool

LLO Last line only loading Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

Output

sy String output of the block String

E Error indicator Bool

off . . . No error
on An error occurred

lastErr Result of last operation Long (I32)

Chapter 13

MODEL � Dynamic systems

simulation

Contents

CDELSSM � Continuous state space model with time delay 411

CSSM � Continuous state space model 414

DDELSSM � Discrete state space model with time delay 417

DFIR � Discrete �nite input response �lter 419

DSSM � Discrete state space model 420

EKF � Extended (nonlinear) Kalman �lter 423

FOPDT � First order plus dead-time model 426

IPEN2, IPEN3 � N-link inverted pendulum on cart - Physical pa-
rameters . 427

IPEN2pu, IPEN3pu � N-link inverted pendulum on cart - Dynamic
parameters . 430

MDL � Process model . 433

MDLI � Process model with input-de�ned parameters 434

MVD � Motorized valve drive . 435

NSSM � Nonlinear State-Space Model 436

NUREACT � Model of nuclear reactor 439

QCOPT � Model of quadrucopter . 440

SGEN � Synchronous generator model 442

SGENTX � Synchronous generator model 444

SOPDT � Second order plus dead-time model 446

STMGEN � Model of steam generator 448

STURB � Steam turbine model . 450

409

410 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

The MODEL library is centered around system modeling and simulation. It includes
blocks like CSSM and DSSM for continuous and discrete state-space models, and DFIR for
digital �nite impulse response �lters. The library o�ers EKF for Extended Kalman Filter
implementations, and FOPDT, SOPDT for �rst and second order process time delay models.
Additionally, it provides FMUCS and FMUINFO for interfacing with Functional Mock-up
Units, and MDL, MDLI for generic model interfaces. Advanced functionalities are covered
by blocks like CDELSSM, DDELSSM for continuous and discrete state space models of a
linear system with time delay, and MVD for model variable delays, catering to a wide
range of modeling requirements in REXYGEN system.

411

CDELSSM � Continuous state space model with time delay

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

CDELSSM

Function Description

The CDELSSM block (Continuous State Space Model with time DELay) simulates behavior
of a linear system with time delay del:

dx(t)

dt
= Acx(t) +Bcu(t− del), x(0) = x0

y(t) = Ccx(t) +Dcu(t),

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the initial value of the state vector,
u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector. The matrix Ac ∈ Rn×n is
the system dynamics matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the output
matrix and Dc ∈ Rp×m is the direct transmission (feedthrough) matrix. If UD=off, the
matrix Dc is not used during simulation (it behaves as if it were zero).

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is �rst converted to the discrete (discretized) state space model:

x((k + 1)T) = Adx(kT) +Bd1u((k − d)T) +Bd2u((k − d+ 1)T), x(0) = x0

y(kT) = Ccx(kT) +Dcu(kT),

where k ∈ {1, 2, . . .} is the simulation step, T is the execution period of the block in
seconds and d is a delay in simulation step such that (d−1)T < del ≤ d.T . The period T
is not entered in the block, it is determined automatically as a period of the task (TASK,
QTASK nebo IOTASK) containing the block.

Inputs of the simulated system u1..u16 represent the input vector u(t). For a given
simulation, the �rst m inputs are used, where m is the number of columns of the matrix
Bc. If the input u(t) is changed only in the moments of sampling and between two

412 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

consecutive sampling instants is constant, i.e. u(t) = u(kT) for t ∈ [kT, (k + 1)T), then
the matrices Ad, Bd1 and Bd2 are determined by:

Ad = eAcT

Bd1 = eAc(T−∆)

∫ ∆

0
eAcτBcdτ

Bd2 =

∫ T−∆

0
eAcτBcdτ,

where ∆ = del − (d− 1)T .
Computation of discrete matrices Ad, Bd1 and Bd2 is based on a method described

in [8], which uses Padé approximations of matrix exponential and its integral and scaling
technique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Outputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the �rst p
outputs are used, where p is the number of rows of the matrix Cc.

The output iE is an integer and contains information about the simulation progress:

• 0: everything is OK, the block simulates correctly

• -213: incompatibility of the dimensions of the state space model matrices

• -510: the task is ill-conditioned (one of the working matrices is singular or close
to a singular matrix)

• xxx: error code xxx of the REXYGENsystem, see more in Appendix C

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

R1 Block reset Bool

HLD Hold current model state Bool

u1..u16 Analog input of the block Double (F64)

Parameter

UD Matrix Dc usage Bool

del Model delay [s] ↓0.0 Double (F64)

is Pade approximation order ↓0 ↑4 ⊙2 Long (I32)

eps Approximation accuracy ↓0.0 ↑1.0 ⊙1e-15 Double (F64)

Ac Matrix A of the continuous model
⊙[-0.36 -1.24 -0.18; 1 0 0; 0 1 0]

Double (F64)

Bc Matrix B of the continuous model ⊙[0.5; 0; 0] Double (F64)

413

Cc Matrix C of the continuous model ⊙[0.12 0.48 0.36] Double (F64)

Dc Matrix D of the continuous model ⊙[0] Double (F64)

x0 Initial value of the state x ⊙[0; 0; 0] Double (F64)

Output

iE Error code Error

y1..y16 Analog output of the block Double (F64)

414 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

CSSM � Continuous state space model

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

CSSM

Function Description

The CSSM block (Continuous State Space Model) simulates behavior of a linear system:

dx(t)

dt
= Acx(t) +Bcu(t), x(0) = x0

y(t) = Ccx(t) +Dcu(t),

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the initial value of the state vector,
u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector. The matrix Ac ∈ Rn×n is
the system dynamics matrix, Bc ∈ Rn×m is the input matrix, Cc ∈ Rp×n is the output
matrix and Dc ∈ Rp×m is the direct transmission (feedthrough) matrix. If UD=off, the
matrix Dc is not used during simulation (it behaves as if it were zero).

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is �rst converted to the discrete (discretized) state space model:

x((k + 1)T) = Adx(kT) +Bdu(kT), x(0) = x0

y(kT) = Ccx(kT) +Dcu(kT),

where k ∈ {1, 2, . . .} is the simulation step, T is the execution period of the block in
seconds. The period T is not entered in the block, it is determined automatically as a
period of the task (TASK, QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = u(kT) for t ∈ [kT, (k + 1)T), then the

415

matrices Ad and Bd are determined by:

Ad = eAcT

Bd =

∫ T

0
eAcτBcdτ

Computation of discrete matrices Ad and Bd is based on a method described in [8],
which uses Padé approximations of matrix exponential and its integral and scaling tech-
nique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Outputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the �rst p
outputs are used, where p is the number of rows of the matrix Cc.

The output iE is an integer and contains information about the simulation progress:

• 0: everything is OK, the block simulates correctly

• -213: incompatibility of the dimensions of the state space model matrices

• -510: the task is ill-conditioned (one of the working matrices is singular or close
to a singular matrix)

• xxx: error code xxx of the REXYGENsystem, see more in Appendix C

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

R1 Block reset Bool

HLD Hold current model state Bool

u1..u16 Analog input of the block Double (F64)

Parameter

UD Matrix Dc usage Bool

is Pade approximation order ↓0 ↑4 ⊙2 Long (I32)

eps Approximation accuracy ↓0.0 ↑1.0 ⊙1e-15 Double (F64)

Ac Matrix A of the continuous model
⊙[-0.36 -1.24 -0.18; 1 0 0; 0 1 0]

Double (F64)

Bc Matrix B of the continuous model ⊙[0.5; 0; 0] Double (F64)

Cc Matrix C of the continuous model ⊙[0.12 0.48 0.36] Double (F64)

Dc Matrix D of the continuous model ⊙[0] Double (F64)

x0 Initial value of the state x ⊙[0; 0; 0] Double (F64)

416 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Output

iE Error code Error

y1..y16 Analog output of the block Double (F64)

417

DDELSSM � Discrete state space model with time delay

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

DDELSSM

Function Description

The DDELSSM block (Discrete State Space Model with time DELay) simulates behavior
of a linear system with time delay del:

x(k + 1) = Adx(k) +Bdu(k − d), x(0) = x0

y(k) = Cdx(k) +Ddu(k),

where k is the simulation step, x(k) ∈ Rn is the state vector, x0 ∈ Rn is the initial
value of the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the output vector.
The matrix Ad ∈ Rn×n is the system dynamics matrix, Bd ∈ Rn×m is the input matrix,
Cd ∈ Rp×n is the output matrix and Dd ∈ Rp×m is the direct transmission (feedthrough)
matrix. If UD=off, the matrix Dd is not used during simulation (it behaves as if it were
zero). Number of steps of the delay d is the largest integer such that d.T ≤ del, where T
is the block execution period.

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Outputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the �rst p
outputs are used, where p is the number of rows of the matrix Cd.

The output iE is an integer and contains information about the simulation progress:

• 0: everything is OK, the block simulates correctly

• -213: incompatibility of the dimensions of the state space model matrices

• xxx: error code xxx of the REXYGENsystem, see more in Appendix C

418 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

R1 Block reset Bool

HLD Hold current model state Bool

u1..u16 Analog input of the block Double (F64)

Parameter

UD Matrix Dd usage Bool

del Model delay [s] ↓0.0 Double (F64)

Ad Matrix A of the discrete model
⊙[0.235700090 -0.904208075 -0.120785644; 0.671031354 0.477271377 -0.072129196; 0.400717757 0.815289746 0.974161395]

Double (F64)

Bd Matrix B of the discrete model
⊙[0.335515677; 0.200358878; 0.071773902]

Double (F64)

Cd Matrix C of the discrete model ⊙[0.12 0.48 0.36] Double (F64)

Dd Matrix D of the discrete model ⊙[0] Double (F64)

x0 Initial value of the state x ⊙[0; 0; 0] Double (F64)

Output

iE Error code Error

y1..y16 Analog output of the block Double (F64)

419

DFIR � Discrete �nite input response �lter

Block Symbol Licence: ADVANCED

u
R1
HLD
u0

y

RDY

DFIR

Function Description

The DFIR block is a �lter whose impulse response (or response to any �nite length input)
is of �nite duration, because it settles to zero in �nite time. The calculation takes place
in the form of a convolutional integral (sum) - the impulse characteristic is entered in
the hk �eld already in discretized form for the correct period.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

RST Block reset Bool

HLD Hold Bool

u0 Initial input value (�ll bu�er) Double (F64)

Parameter

nmax Allocated size of array ↓10 ↑10000000 ⊙100 Long (I32)

hk Discrete impulse response ⊙[0.6 0.3 0.1] Double (F64)

Output

y Analog output of the block Double (F64)

RDY Outputs valid (ready �ag) Bool

420 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

DSSM � Discrete state space model

Block Symbol Licence: ADVANCED

R1
HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

iE
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

DSSM

Function Description

The DSSM block (Discrete State Space Model) simulates behavior of a linear system:

x(k + 1) = Adx(k) +Bdu(k), x(0) = x0

y(k) = Cdx(k) +Ddu(k),

where k is the simulation step, x(k) ∈ Rn is the state vector, x0 ∈ Rn is the initial
value of the state vector, u(k) ∈ Rm is the input vector, y(k) ∈ Rp is the output vector.
The matrix Ad ∈ Rn×n is the system dynamics matrix, Bd ∈ Rn×m is the input matrix,
Cd ∈ Rp×n is the output matrix and Dd ∈ Rp×m is the direct transmission (feedthrough)
matrix. If UD=off, the matrix Dd is not used during simulation (it behaves as if it were
zero).

All matrices are speci�ed in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The x0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Outputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the �rst p
outputs are used, where p is the number of rows of the matrix Cd.

The output iE is an integer and contains information about the simulation progress:

• 0: everything is OK, the block simulates correctly

• -213: incompatibility of the dimensions of the state space model matrices

• xxx: error code xxx of the REXYGENsystem, see more in Appendix C

421

This block propagates the signal quality. More information can be found in the 1.4
section.

422 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Input

R1 Block reset Bool

HLD Hold current model state Bool

u1..u16 Analog input of the block Double (F64)

u Analog input of the block Double (F64)

Parameter

UD Matrix Dd usage Bool

Ad Matrix A of the discrete model
⊙[0.235700090 -0.904208075 -0.120785644; 0.671031354 0.477271377 -0.072129196; 0.400717757 0.815289746 0.974161395]

Double (F64)

Bd Matrix B of the discrete model
⊙[0.335515677; 0.200358878; 0.071773902]

Double (F64)

Cd Matrix C of the discrete model ⊙[0.12 0.48 0.36] Double (F64)

Dd Matrix D of the discrete model ⊙[0] Double (F64)

x0 Initial value of the state x ⊙[0; 0; 0] Double (F64)

Output

iE Error code Error

y1..y16 Analog output of the block Double (F64)

423

EKF � Extended (nonlinear) Kalman �lter

Block Symbol Licence: MODEL

funcRef

u

z

nz

Qk

Rk

RST

HLD

x0

P0

x

P

trP

cmd

f

df

err

EKF

Function Description

The block implements a nonlinear state estimator known as Extended Kalman �lter.
The goal is to provide estimates of unmeasurable state quantities of a nonlinear dynamic
system described by a state space model in the form

dx(t)

dt
= f(x(t), u(t)) + w(t),

y(t) = h(x(t), u(t)) + v(t)

for a continuous-time case and

x(k + 1) = f(x(k), u(k)) + w(k),

y(k) = h(x(k), u(k)) + v(k)

for the case of a discrete-time system. The variable x represents the state vector, u the
input vector, and y the output vector. The variables w and v represent the process and
observation noises, respectively. Both are assumed to be zero-mean multivariate Gaussian
processes with covariance matrices Qk and Rk, which are speci�ed as block parameters:

w(t) ∼ N (0, Qk),

v(t) ∼ N (0, Rk).

The Extended Kalman �lter is the nonlinear version of the Kalman �lter which linearizes
the state and output equations about the current working point. It is a predictor-corrector
type algorithm which switches between open-loop prediction using the state equation and
correction of the estimates by directly measured output quantities. The measurements
can be supplied to the �lter non-equidistantly in an arbitrary execution period of the
block.

The prediction step is performed in each execution period and solves the state
equation by numerical integration, starting from an initial value x0 and initial covari-
ance P0. Various numerical methods, chosen by the user speci�ed parameter solver, are

424 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

available to perform the integration of the vector state di�erential equation. A special
choice of solver = 1 signalizes the discrete-time system case for which the numerical
integration reduces to simple evaluation of the recursive formula given by the �rst-order
di�erence equation in x(k + 1) = f(x(k), u(k)). Apart from the state vector, also its
covariance matrix P is propagated in time� representing the variance of the state esti-
mate and the correlations between its components. The state estimate is modelled as a
random variable with a normal distribution:

x̂(t) ∼ N (x, P).

Please refer to the documentation of the NSSM block for more details about the available
numerical integration algorithms.

The �ltering correction step takes place whenever the input of the block is set to
nz > 0. This signalizes that new vector of measurements is available at the z input and
it is used to correct the state and its covariance estimates from the prediction step. Mul-
tiple right sides of the output equation can be implemented in the cooperating REXLANG

block. This may be useful e.g. for systems equipped with various sensors providing their
data asynchronously to each other (and with respect to the block execution times) with
di�erent sampling periods. For the setting nz = 0, the user algorithm signalizes no out-
put data available in the current execution period, forcing the �lter to extrapolate the
state estimates by performing the prediction step only.

The Extended Kalman �lter is generally not an optimal �lter in the sense of mini-
mization of the mean-squared error of the obtained state estimates. However, it provides
modest performance for su�ciently smooth nonlinear systems and is considered to be a
de facto standard solution for nonlinear estimation. A special case is obtained by setting
linear state and output equations in the cooperating REXLANG block. This case leads to
standard linear Kalman �lter which is stochastically optimal for the formulated state
estimation problem.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

funcRef Cooperating REXLANG block reference Reference

u Input vector of the model Reference

z Output (measurement) vector of the model Reference

nz Index of the actual output vector set ↓1 Long (I32)

Qk State noise covariance matrix Reference

Rk Output noise covariance matrix Reference

RST Block reset Bool

HLD Hold Bool

x0 Initial state vector Reference

P0 Initial covariance matrix Reference

425

Parameter

nmax Allocated size of output matrix (total number of items)
↓5 ↑10000 ⊙20

Long (I32)

solver Numeric integration method ⊙2 Long (I32)

1 Discrete equation
2 Euler (1st order)
3 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
7 4th order Runge-Kutha
8 implicit Euler
9 implicit Euler(more iteration)
10 2nd order Adams-Multon implicit
11 2nd order Adams-Multon implicit (more iteration)
12 3rd order Adams-Multon implicit
13 3rd order Adams-Multon implicit (more iteration)
14 2nd order RadauIIA implicit
15 2nd order RadauIIA implicit (more iteration)
16 �
17 �
18 �
19 �

Output

x Model state vector Reference

P Model state covariance matrix Reference

trP Trace of model state covariance matrix Reference

cmd Cooperating REXLANG block requested function Long (I32)

f Vector reference set by cooperating REXLANG block Reference

df Matrix reference set by cooperating REXLANG block Reference

err Error code (0 is OK, see SystemLog for details) Long (I32)

426 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

FOPDT � First order plus dead-time model

Block Symbol Licence: STANDARD

u y

FOPDT

Function Description

The FOPDT block is a discrete simulator of a �rst order continuous-time system with time
delay, which can be described by the transfer function below:

P (s) =
k0

(tau · s+ 1)
· e−del·s

The exact discretization at the sampling instants is used for discretization of the P (s)
transfer function. The sampling period used for discretization is equivalent to the exe-
cution period of the FOPDT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

k0 Static gain ⊙1.0 Double (F64)

del Dead time [s] Double (F64)

tau Time constant ⊙1.0 Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙1000 Long (I32)

Output

y Analog output of the block Double (F64)

427

IPEN2, IPEN3 � N-link inverted pendulum on cart - Physical
parameters

Block Symbols Licence: MODEL

u

R1

d1

d2

x

dd1

dd2

dx

E

IPEN2

u

R1

d1

d2

d3

x

dd1

dd2

dd3

dx

E

IPEN3

Function Description

The IPEN2 and IPEN3 blocks simulate the dynamics of double and triple inverted pen-
dulums on a cart, respectively. These models enable users to conduct experiments with
various control strategies, making them suitable for both educational and research pur-
poses.

The primary input to the models is an analog signal u, interpreted based on the IACC
parameter setting:

• for IACC=on, the input u is assumed to be a force acting on the cart [N],

• for IACC=off, the models assume the input represents speed [m/s].

The R1 signal is used to reset each model to its initial con�guration.
Both models can be precisely con�gured with a series of parameters that re�ect the

system's physical characteristics. These include the relative center of gravity positions a,
moments of inertia J, lengths l, and masses of the pendulums m, as well as damping coef-
�cients b and the initial state of the system (positions d_0, velocities dd_0). A schematic
representation of the system with parameters is shown below. The parameters are intu-
itively de�ned. The relative position of the center of gravity for the i-th pendulum, ai,
is determined by the equation

|Ai−1Ti| = aili,

where Ai−1 is the position of the previous joint, Ti is the position of the pendulum's
center of gravity, and li is the length of the pendulum.

The computation of the models adheres to the mathematical model and physical
parameters detailed in the literature [9]. The IPEN2pu and IPEN3pu blocks are used for
simulating the inverted pendulum models with dynamic parameters.

428 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Tn

T2

T1

��

m0 f
y

z

��

�n

m1,J1,l1,a1,b1

m2,J2,l2,a2,b2

mn,Jn,ln,an,bn

A0

A1

An

b0

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

Parameter

a1 Relative position of center of gravity ⊙1.0 Double (F64)

a2 Relative position of center of gravity ⊙1.0 Double (F64)

a3 Relative position of center of gravity ⊙1.0 Double (F64)

J1 Moment of inertia of pendulum ⊙1.0 Double (F64)

J2 Moment of inertia of pendulum ⊙1.0 Double (F64)

J3 Moment of inertia of pendulum ⊙1.0 Double (F64)

l1 Length of pendulum [m] ⊙1.0 Double (F64)

l2 Length of pendulum [m] ⊙1.0 Double (F64)

l3 Length of pendulum [m] ⊙1.0 Double (F64)

m1 Mass of pendulum [kg] ⊙1.0 Double (F64)

m2 Mass of pendulum [kg] ⊙1.0 Double (F64)

m3 Mass of pendulum [kg] ⊙1.0 Double (F64)

m0 Mass of cart [kg] ⊙1.0 Double (F64)

b1 Damping coe�cient of pendulum ⊙1.0 Double (F64)

b2 Damping coe�cient of pendulum ⊙1.0 Double (F64)

b3 Damping coe�cient of pendulum ⊙1.0 Double (F64)

b0 Damping coe�cient of cart ⊙1.0 Double (F64)

d1_0 Initial angle of pendulum [rad] ⊙1.0 Double (F64)

d2_0 Initial angle of pendulum [rad] ⊙1.0 Double (F64)

d3_0 Initial angle of pendulum [rad] ⊙1.0 Double (F64)

429

x_0 Initial position of cart [m] ⊙1.0 Double (F64)

dd1_0 Initial angular velocity of pendulum [rad/s] ⊙1.0 Double (F64)

dd2_0 Initial angular velocity of pendulum [rad/s] ⊙1.0 Double (F64)

dd3_0 Initial angular velocity of pendulum [rad/s] ⊙1.0 Double (F64)

dx_0 Initial velocity of cart [m/s] ⊙1.0 Double (F64)

IACC on=Input u is velocity, o�=Input u is force Bool

Output

d1 Angle of pendulum [rad] Double (F64)

d2 Angle of pendulum [rad] Double (F64)

d3 Angle of pendulum [rad] Double (F64)

x Position of cart [m] Double (F64)

dd1 Angular velocity of pendulum [rad/s] Double (F64)

dd2 Angular velocity of pendulum [rad/s] Double (F64)

dd3 Angular velocity of pendulum [rad/s] Double (F64)

dx Velocity of cart [m/s] Double (F64)

E Error indicator Bool

430 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

IPEN2pu, IPEN3pu � N-link inverted pendulum on cart - Dy-
namic parameters

Block Symbols Licence: MODEL

a

R1

d1
d2
x

dd1
dd2
dx
E

IPEN2pu

a

R1

d1
d2
d3
x

dd1
dd2
dd3
dx
E

IPEN3pu

Function Description

The IPEN2pu and IPEN3pu blocks simulate the dynamics of double and triple inverted
pendulums on a cart, respectively. These models enable users to conduct experiments
with various control strategies, making them suitable for both educational and research
purposes.

For both models, the primary input is an analog signal a, which denotes the ac-
celeration of the cart [m/s2]. The R1 signal is used to reset each model to its initial
con�guration.

Both models can be precisely con�gured with using the system's dynamic parameters
p1 - p11 and the initial state of the system (positions d_0, velocities dd_0). The dynamic
parameters can be determined using the physical parameters de�ned in the IPEN2 and
IPEN3 blocks and the equations listed below. The model details are thoroughly described
in the literature [9].

For the IPEN2pu model, the dynamic parameters are de�ned as follows:

p1 =

(
m1a1

2 +m2

)
l1

2 + J1

m2a2l2l1
, p2 =

a2
2l2

2m2 + J2
m2a2l2l1

, p3 =
m1a1 +m2

m2a2l2
,

p4 =
1

l1
, p5 =

b1
m2a2l2l1

, p6 =
b2

m2a2l2l1
.

For the IPEN3pu model, the dynamic parameters are de�ned as follows:

p1 =
l1(m2a2 +m3)

a3l3m3
, p2 =

l1
l2
, p3 =

(
m1a1

2 +m2 +m3

)
l1

2 + J1

a3l3m3l2
,

p4 =
(m2a2

2 +m3)l2
2 + J2

a3l3m3l2
, p5 =

a3
2l3

2m3 + J3
a3l3m3l2

, p6 =
l1(m1a1 +m2 +m3)

a3l3m3l2
,

p7 =
a2m2 +m3

a3l3m3
, p8 =

1

l2
, p9 =

b1
a3l3m3l2

, p10 =
b2

a3l3m3l2
, p11 =

b3
a3l3m3l2

.

431

This block does not propagate the signal quality. More information can be found in the
1.4 section.

432 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Input

a Acceleration of cart [m/s2] Double (F64)

R1 Block reset Bool

Parameter

p1..p11 Dynamic model parameter (see model equation) ⊙1.0 Double (F64)

d1_0 Initial angle of pendulum [rad] ⊙1.0 Double (F64)

d2_0 Initial angle of pendulum [rad] ⊙1.0 Double (F64)

d3_0 Initial angle of pendulum [rad] ⊙1.0 Double (F64)

x_0 Initial position of cart [m] ⊙1.0 Double (F64)

dd1_0 Initial angular velocity of pendulum [rad/s] ⊙1.0 Double (F64)

dd2_0 Initial angular velocity of pendulum [rad/s] ⊙1.0 Double (F64)

dd3_0 Initial angular velocity of pendulum [rad/s] ⊙1.0 Double (F64)

dx_0 Initial velocity of cart [m/s] ⊙1.0 Double (F64)

Output

d1 Angle of pendulum [rad] Double (F64)

d2 Angle of pendulum [rad] Double (F64)

d3 Angle of pendulum [rad] Double (F64)

x Position of cart [m] Double (F64)

dd1 Angular velocity of pendulum [rad/s] Double (F64)

dd2 Angular velocity of pendulum [rad/s] Double (F64)

dd3 Angular velocity of pendulum [rad/s] Double (F64)

dx Velocity of cart [m/s] Double (F64)

E Error indicator Bool

433

MDL � Process model

Block Symbol Licence: STANDARD

u y

MDL

Function Description

The MDL block is a discrete simulator of continuous-time system with transfer function

F (s) =
K0e

−Ds

(τ1s+ 1)(τ2s+ 1)
,

where K0 > 0 is the static gain k0, D ≥ 0 is the time-delay del and τ1, τ2 > 0 are the
system time-constants tau1 and tau2.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

k0 Static gain ⊙1.0 Double (F64)

del Dead time [s] Double (F64)

tau1 The �rst time constant ⊙1.0 Double (F64)

tau2 The second time constant ⊙2.0 Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙1000 Long (I32)

Output

y Analog output of the block Double (F64)

434 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

MDLI � Process model with input-de�ned parameters

Block Symbol Licence: STANDARD

u
k0
del
tau1
tau2

y

MDLI

Function Description

The MDLI block is a discrete simulator of continuous-time system with transfer function

F (s) =
K0e

−Ds

(τ1s+ 1)(τ2s+ 1)
,

where K0 > 0 is the static gain k0, D ≥ 0 is the time-delay del and τ1, τ2 > 0 are the
system time-constants tau1 and tau2. In contrary to the MDL block the system is time
variant. The system parameters are determined by the input signals.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

k0 Static gain Double (F64)

del Dead time [s] Double (F64)

tau1 The �rst time constant Double (F64)

tau2 The second time constant Double (F64)

Parameter

nmax Allocated size of array ↓10 ↑10000000 ⊙1000 Long (I32)

Output

y Analog output of the block Double (F64)

435

MVD � Motorized valve drive

Block Symbol Licence: STANDARD

UP

DN

y
HS
LS

MVD

Function Description

The MVD block simulates a servo valve. The UP (DN) input is a binary command for opening
(closing) the valve at a constant speed 1/tv, where tv is a parameter of the block. The
opening (closing) continues for UP = on (DN = on) until the full open y = hilim (full
closed y = lolim) position is reached. The full open (full closed) position is signalized
by the end switch HS (LS). The initial position at start-up is y = y0. If UP = DN = on or
UP = DN = off, then the position of the valve remains unchanged (neither opening nor
closing).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

UP Open Bool

DN Close Bool

Parameter

y0 Initial valve position Double (F64)

tv Transition time [s] ⊙10.0 Double (F64)

hilim Upper limit position (open) ⊙1.0 Double (F64)

lolim Lower limit position (closed) Double (F64)

Output

y Valve position Double (F64)

HS Upper end switch Bool

LS Lower end switch Bool

436 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

NSSM � Nonlinear State-Space Model

Block Symbol Licence: MODEL

funcRef

u

RST

HLD

x0

x

cmd

f

df

err

NSSM

Function Description

The block provides a solution to a nonlinear continuous-time state-space model in the
form of

dx(t)

dt
= f(x(t), u(t)),

y(t) = h(x(t), u(t))

or its discrete-time counterpart de�ned as

x(k + 1) = f(x(k), u(k)),

y(k) = h(x(k), u(k)).

The equation is discretized into a form

x(t) = F (x(t− T), u(t)),

where T is sampling period of the NSSM block.
The method used for discretization (i.e. a method to numerically solve the vector

di�erential equation) depends on the solver parameter . Various methods for numeri-
cal integration are implemented including one step methods (like Runge-Kutta, Euler),
multistep methods (Adams-Bashforth), and also implicit methods (Adams-Moulton). It
is possible to choose di�erent method order for each kind to �nd a suitable precision vs
computational time trade-o�.

The block does not support variable step algorithms (the time-step for the solver is
always the same as the execution period of the task where the block is inserted).

The non-linear-vector function f(x, u) must be implemented in the REXLANG block
that is connected to the NSSM block in a special way. The input funcRef of the NSSM block
must be connected to the output y0 of the REXLANG block and the output y0 can not be
used internally in the code/script of the REXLANG block. The outputs x, f and df of the
NSSM block must be connected to the inputs of the REXLANG block. These inputs must
be processed in the REXLANG code as an input array. The main function of the REXLANG

block must set the value of f(x, u) into the f vector (e.g. into the input array, where f is
connected) and the matrix df(x, u)/dx into the af matrix.

437

The NSSM block calls the main-function of the REXLANG block when needed for nu-
merical integration of the di�erential equation system (for example the Runge-Kutta
method performs 4 calls in each execution period with di�erent x-vector values). The
REXLANG block should be disabled in the schematics of the algorithm to prevent its exe-
cution REXYGEN system itself. If the REXLANG must be executed by REXYGEN (e.g. for
compute output function y = h(x, u)), it is recommended to connect the output cmd

of the NSSM block into input of the REXLANG block to distinguish between calling by the
NSSM block (cmd = 0) and calling by REXYGEN system (cmd = −1).

Notes:

• computation of the df(x, u)/dx is necessary for implicit methods only (explicit
methods do not use it).

• size of the vector x (and also f, df) is de�ned by the size of the vector x0. The size
should be changed by reset only (the RST input).

• solver=1: discrete signalizes a discrete-time state space model with the func-
tions f and h designating the right side of the corresponding di�erence equation.
This mode does not require numerical integration and the algorithm reduces to the
execution of the code in the connected REXLANG block; the mode is used mainly for
symmetry with the EKF block.

• for NSSM connecting the output cmd is necessary, because cmd>0 indicate number
of measurement and REXLANG must return f = h(x, u), df = dh(x, u)/dx.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

funcRef Cooperating REXLANG block reference Reference

u Input vector of the model Reference

RST Block reset Bool

HLD Hold Bool

x0 Initial state vector Reference

Parameter

nmax Allocated size of output matrix (total number of items)
↓5 ↑10000 ⊙20

Long (I32)

438 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

solver Numeric integration method ⊙2 Long (I32)

1 Discrete equation
2 Euler (1st order)
3 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
7 4th order Runge-Kutha
8 implicit Euler
9 implicit Euler(more iteration)
10 2nd order Adams-Multon implicit
11 2nd order Adams-Multon implicit (more iteration)
12 3rd order Adams-Multon implicit
13 3rd order Adams-Multon implicit (more iteration)
14 2nd order RadauIIA implicit
15 2nd order RadauIIA implicit (more iteration)
16 �
17 �
18 �
19 �

Output

x Model state vector Reference

y Model output vector Reference

cmd Cooperating REXLANG block requested function Long (I32)

f Vector reference set by cooperating REXLANG block Reference

df Matrix reference set by cooperating REXLANG block Reference

err Error code (0 is OK, see SystemLog for details) Long (I32)

439

NUREACT � Model of nuclear reactor

Block Symbol Licence: MODEL

R1

HLD

r

iE
p

dpp
c1
c2
c3
c4
c5
c6

NUREACT

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

R1 Block reset Bool

HLD Hold current model state Bool

r Reactivity [] Double (F64)

Parameter

p0 Initial reactor power [W] ⊙1.0 Double (F64)

b1..b6 Model parameter beta(see model equation) ⊙1.0 Double (F64)

l1..l6 Model parameter lambda(see model equation) ⊙1.0 Double (F64)

tau Time constant [s] ⊙1.0 Double (F64)

Output

iE Error code Bool

p Reactor thermal power [W] Double (F64)

dpp Derivative of reactor thermal power [W] Double (F64)

c1..c6 Neutron concentration (see model equation) Double (F64)

440 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

QCOPT � Model of quadrucopter

Block Symbol Licence: MODEL

u1

u2

u3

u4

R1

sx
sy
sz
ax
ay
az
vx
vy
vz
ox
oy
oz
vxb
vyb
vzb

QCOPT

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u1..u4 motor input value Double (F64)

R1 Block reset Bool

Parameter

m Total mass [kg] ⊙1.0 Double (F64)

g Gravity constant [m/s2] ⊙1.0 Double (F64)

KT Rotor trust coe�cient [N/u] ⊙1.0 Double (F64)

KTT Rotor torque coe�cient [Nm/u] ⊙1.0 Double (F64)

Ixx Inertia tensor entry ⊙1.0 Double (F64)

Iyy Inertia tensor entry ⊙1.0 Double (F64)

Izz Inertia tensor entry ⊙1.0 Double (F64)

pM Rotors position matrix [x1 y1 z1; x2 y2 z2; x3 y3 z3; x4 y4 z4]
⊙1.0

Double (F64)

Output

sx Position of the mass centre [m] Double (F64)

sy Position of the mass centre [m] Double (F64)

sz Position of the mass centre [m] Double (F64)

441

vx Velocity of the mass centre[m/s] Double (F64)

vy Velocity of the mass centre[m/s] Double (F64)

vz Velocity of the mass centre[m/s] Double (F64)

ax Euler angle [rad] Double (F64)

ay Euler angle [rad] Double (F64)

az Euler angle [rad] Double (F64)

ox derivative of Euler angle [rad/s] Double (F64)

oy derivative of Euler angle [rad/s] Double (F64)

oz derivative of Euler angle [rad/s] Double (F64)

vxb Velocity in the body frame Double (F64)

vyb Velocity in the body frame Double (F64)

vzb Velocity in the body frame Double (F64)

442 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

SGEN � Synchronous generator model

Block Symbol Licence: MODEL

uf

rpm

pload

qload

MODE

R1

if
u1
u
i
p
q

freq
phir
phiu
phim
mload

E

SGEN

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uf Feed voltage [V] Double (F64)

rpm Rotation per minute Double (F64)

pload Load active power [W] Double (F64)

qload Load reactive power [VAr] Double (F64)

MODE 1=grid operation, 0=island operation Bool

R1 Model state reset Bool

Parameter

pn Nominal power [VA] ⊙1.0 Double (F64)

un Nominal RMS voltage [V] ⊙1.0 Double (F64)

fn Nominal frequency [Hz] ⊙1.0 Double (F64)

ifn Nominal feed current [A] Double (F64)

pp Number of polpairs ↓1 ↑10000 ⊙2 Long (I32)

ZM on=constant impedance mode, o�=constant power mode Bool

ra Stator winding resistance [p.u.] ⊙0.011 Double (F64)

rf Feed winding resistance [p.u.] ⊙0.0006 Double (F64)

r1d D-axis damping winding resistance [p.u.] ⊙0.0354 Double (F64)

r1q Q-axis damping winding resistance [p.u.] ⊙0.0428 Double (F64)

ld D-axis stator winding self inductance [p.u.] ⊙1.05 Double (F64)

lq Q-axis stator winding self inductance [p.u.] ⊙0.7 Double (F64)

443

lad D-axis damping winding self inductance [p.u.] ⊙0.9 Double (F64)

laq Q-axis damping winding self inductance [p.u.] ⊙0.55 Double (F64)

lff Feed winding self inductance [p.u.] ⊙1.571 Double (F64)

lf1d Feed damping winding mutual inductance [p.u.] ⊙0.9 Double (F64)

l11d D-axis stator and damping winding mutual inductance [p.u.]
⊙1.1

Double (F64)

l11q Q-axis stator and damping winding mutual inductance [p.u.]
⊙0.8067

Double (F64)

Output

if Feed current [A] Double (F64)

u1 1st phase actual voltage [V] Double (F64)

u RMS (phase) voltage [V] Double (F64)

i RMS (phase) current [A] Double (F64)

p Active power [W] Double (F64)

q Reactive power [VA] Double (F64)

freq Frequency [Hz] Double (F64)

phir Rotor actual angle [rad] Double (F64)

phiu Load/torque angle[rad] Double (F64)

phim Mains-genertor phase di�erence [rad] Double (F64)

mload Shaft torque [Nm] Double (F64)

E Error indicator Bool

444 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

SGENTX � Synchronous generator model

Block Symbol Licence: MODEL

uf

pm

pl

ql

um

fm

MODE

R1

if
u1
u
i
p
q

freq
phir
phiu
phim
cos
E

SGENTX

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uf Feed voltage [p.u.] Double (F64)

pm Prime mover torque [p.u.] Double (F64)

pload Load active power [p.u.] Double (F64)

qload Load reactive power [p.u] Double (F64)

MODE 1=grid operation, 0=island operation Bool

R1 Model state reset Bool

Parameter

um Mains voltage [p.u.] ⊙0.011 Double (F64)

fm Mains frequency [p.u.] ⊙0.011 Double (F64)

pn Nominal power [VA] ⊙10000000.0 Double (F64)

un Nominal RMS voltage [V] ⊙6000.0 Double (F64)

fn Nominal frequency [Hz] ⊙1.0 Double (F64)

pp Number of pole pairs ↓1 ↑1000 ⊙2 Long (I32)

ZM on=constant impedance mode, o�=constant power mode Bool

J Mass of inertia [p.u.] ⊙0.0006 Double (F64)

Tdoi D-axis transient time constant (open winding) [p.u.] ⊙0.0354 Double (F64)

Tdoii D-axis subtransient time constant (open winding) [p.u.]
⊙0.0354

Double (F64)

Tqoi Q-axis transient time constant (open winding) [p.u.] ⊙0.0354 Double (F64)

445

Tqoii Q-axis subtransient time constant (open winding) [p.u.]
⊙0.0354

Double (F64)

Xd D-axis static impedance [p.u.] ⊙0.0428 Double (F64)

Xdi D-axis transient impedance [p.u.] ⊙0.0428 Double (F64)

Xdii D-axis subtransient impedance [p.u.] ⊙0.0428 Double (F64)

Xq Q-axis static impedance [p.u.] ⊙0.0428 Double (F64)

Xqi Q-axis transient impedance [p.u.] ⊙0.0428 Double (F64)

Xqii Q-axis subtransient impedance [p.u.] ⊙0.0428 Double (F64)

r Stator winding resistance [p.u.] ⊙0.011 Double (F64)

Xmd Feed cross impedance [p.u.] ⊙0.011 Double (F64)

rf Feed winding resistance [p.u.] ⊙0.011 Double (F64)

rm Mains line resistance [p.u.] ⊙0.011 Double (F64)

xm Mains line reactance [p.u.] ⊙0.011 Double (F64)

Output

if Feed current [p.u.] Double (F64)

u1 1st phase actual voltage [p.u.] Double (F64)

u RMS (phase-to-N) voltage [p.u.] Double (F64)

i RMS (phase) current [p.u.] Double (F64)

p Active power [p.u.] Double (F64)

q Reactive power [p.u.] Double (F64)

freq Frequency [p.u.] Double (F64)

phir Rotor actual angle [rad] Double (F64)

phiu Load/torque angle[rad] Double (F64)

phim Mains-genertor phase di�erence [rad] Double (F64)

rpm Rotation per minute Double (F64)

cos Power factor Double (F64)

E Error indicator Bool

446 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

SOPDT � Second order plus dead-time model

Block Symbol Licence: STANDARD

u y

SOPDT

Function Description

The SOPDT block is a discrete simulator of a second order continuous-time system with
time delay, which can be described by one of the transfer functions below. The type of
the model is selected by the itf parameter.

itf = 1 : P (s) =
pb1 · s+ pb0

s2 + pa1 · s+ pa0
· e−del·s

itf = 2 : P (s) =
k0 (tau · s+ 1)

(tau1 · s+ 1) (tau2 · s+ 1)
· e−del·s

itf = 3 : P (s) =
k0 · om2 · (tau/om · s+ 1)

(s2 + 2 · xi · om · s+ om2)
· e−del·s

itf = 4 : P (s) =
k0 (tau · s+ 1)

(tau1 · s+ 1) s
· e−del·s

For simulation of �rst order plus dead time systems (FOPDT) use the LLC block with
parameter a set to zero.

The exact discretization at the sampling instants is used for discretization of the
P (s) transfer function. The sampling period used for discretization is equivalent to the
execution period of the SOPDT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

itf Transfer function form ⊙1 Long (I32)

1 General
2 Real poles
3 Complex poles
4 Integrating

k0 Static gain ⊙1.0 Double (F64)

447

tau Numerator time constant Double (F64)

tau1 The �rst time constant ⊙1.0 Double (F64)

tau2 The second time constant ⊙1.0 Double (F64)

om Natural frequency ⊙1.0 Double (F64)

xi Relative damping coe�cient ⊙1.0 Double (F64)

pb0 Numerator coe�cient: s^0 ⊙1.0 Double (F64)

pb1 Numerator coe�cient: s^1 ⊙1.0 Double (F64)

pa0 Denominator coe�cient: s^0 ⊙1.0 Double (F64)

pa1 Denominator coe�cient: s^1 ⊙1.0 Double (F64)

del Dead time [s] Double (F64)

nmax Allocated size of array ↓10 ↑10000000 ⊙1000 Long (I32)

Output

y Analog output of the block Double (F64)

448 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

STMGEN � Model of steam generator

Block Symbol Licence: MODEL

mw
tw1
mf
tf
ms
R1

tw2
ps
ts
lvl
P

ierr

STMGEN

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

mw Heating water �ow from the reactor [kg/s] Double (F64)

tw1 Reactor heating water temperature [◦C] Double (F64)

mf Feeding water �ow [kg/s] Double (F64)

tf Feeding water temperature [◦C] Double (F64)

ms Output steam �ow [kg/s] Double (F64)

R1 Model reset Bool

Parameter

dsg Internal diameter [m] ↓0.0 ⊙4.0 Double (F64)

lsg Length of the exchanger's pipes [m] ↓0.0 ⊙13.2 Double (F64)

npipe Total number of pipes ↓0 ⊙8000 Long (I32)

nseg Number of segments (rows of pipes) ↓0 ⊙10 Long (I32)

dpipe External pipe's diameter [m] ↓0.0 ⊙0.04 Double (F64)

thpipe Pipe's wall thickness [m] ↓0.0 ⊙0.005 Double (F64)

hl Lowest line of row distance from the bottom [m] ↓0.0 ⊙0.5 Double (F64)

hh Highest line of row distance from the bottom [m] ↓0.0 ⊙3.5 Double (F64)

vExt Volume of Main Steam Collector [m3] ↓0.0 Double (F64)

ww Diameter of water chamber/colector [m] ↓0.0 ⊙0.4 Double (F64)

kq Thermal transfer constant [kW/K/m2] ↓0.0 ⊙3.2 Double (F64)

t0 Initial temperature [◦C] ↓0.0 ⊙280.0 Double (F64)

lvl0 Initial water level (from the bottom) [m] ↓0.0 Double (F64)

449

Output

tw2 Water temperature back to the reactor [◦C] Double (F64)

ps Output steam pressure [MPa] Double (F64)

ts Output steam temperature [◦C] Double (F64)

lvl Feeding water level from the bottom [m] Double (F64)

P Actual thermal power [kW] Double (F64)

ierr Error code Error

450 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

STURB � Steam turbine model

Block Symbol Licence: MODEL

uMS
uRS
f
Mload
MODE
R1

Pgen

xLP

rpm

E

STURB

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMS Main valve requested position [0..1] Double (F64)

uRS Reheater valve requested position [0..1] Double (F64)

f Mains frequency [Hz] Double (F64)

Mload Shaft torque [Nm] Double (F64)

MODE 1=mains mode, 0=island mode Bool

R1 Model reset Bool

Parameter

Kms Main valve time constant [1/s] ⊙1.0 Double (F64)

Khp High-pressure turbine part time constant [1/s] ⊙1.0 Double (F64)

Krs Reheater valve time constant [1/s] ⊙1.0 Double (F64)

Krh Reheater time constant [1/s] ⊙1.0 Double (F64)

Kip Intermediate-pressure turbine part time constant [1/s] ⊙1.0 Double (F64)

Klp Low-pressure turbine part time constant [1/s] ⊙1.0 Double (F64)

p Input steam pressure [bar] ⊙1.0 Double (F64)

J Mass interia [kg.m2] ⊙1.0 Double (F64)

dhhp High-pressure turbine part enthalpy di�erence [J/kg] ⊙1.0 Double (F64)

dhip Intermediate-pressure turbine part enthalpy di�erence [J/kg]
⊙1.0

Double (F64)

dhlp Low-pressure turbine part enthalpy di�erence [J/kg] ⊙1.0 Double (F64)

B Friction constant [Nm.s/rad] ⊙1.0 Double (F64)

Mfmax Maximum shaft torque [Nm] ⊙1.0 Double (F64)

K1 Load model constant [Nm] ⊙1.0 Double (F64)

451

K2 Load model constant [Nm.s] ⊙1.0 Double (F64)

Pmin Limit (minimal) power [W] ⊙1.0 Double (F64)

hMS_0 Main valve position initial value [0..1] ⊙1.0 Double (F64)

xHP_0 High-pressure part steam �ow initial value [kg/s] ⊙1.0 Double (F64)

hRS_0 Reheater valve position initial value [0..1] ⊙1.0 Double (F64)

xRH_0 Reheater steam �ow initial value [kg/s] ⊙1.0 Double (F64)

xIP_0 Intermediate-pressure part steam �ow initial value [kg/s] ⊙1.0 Double (F64)

xLP_0 Low-pressure part steam �ow initial value [kg/s] ⊙1.0 Double (F64)

e_0 Slip angle initial value [rad] ⊙1.0 Double (F64)

n_0 Shaft rotation frequency initial value [Hz] ⊙1.0 Double (F64)

Output

Pgen Output shaft power [W] Double (F64)

xLP Output steam �ow [kg/s] Double (F64)

rpm Rotation per minute Double (F64)

E Error indicator Bool

452 CHAPTER 13. MODEL � DYNAMIC SYSTEMS SIMULATION

Chapter 14

MATRIX � Blocks for matrix and

vector operations

Contents

CNA � Array (vector/matrix) constant 456

MB_DASUM � Sum of the absolute values 458

MB_DAXPY � Performs y := a*x + y for vectors x,y 460

MB_DCOPY � Copies vector x to vector y 462

MB_DDOT � Dot product of two vectors 464

MB_DGEMM � Performs C := alpha*op(A)*op(B) + beta*C, where
op(X) = X or op(X) = X^T . 466

MB_DGEMV � Performs y := alpha*A*x + beta*y or y := alpha*A^T*x
+ beta*y . 468

MB_DGER � Performs A := alpha*x*y^T + A 470

MB_DNRM2 � Euclidean norm of a vector 472

MB_DROT � Plain rotation of a vector 474

MB_DSCAL � Scales a vector by a constant 476

MB_DSWAP � Interchanges two vectors 478

MB_DTRMM � Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X^T for triangular matrix A . . . 480

MB_DTRMV � Performs x := A*x or x := A^T*x for triangular
matrix A . 482

MB_DTRSV � Solves one of the system of equations A*x = b or
A^T*x = b for triangular matrix A 484

ML_DGEBAK � Backward transformation to ML_DGEBAL of left
or right eigenvectors . 486

ML_DGEBAL � Balancing of a general real matrix 488

ML_DGEBRD � Reduces a general real matrix to bidiagonal form by
an orthogonal transformation . 490

453

454CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGECON � Estimates the reciprocal of the condition number of
a general real matrix . 492

ML_DGEES � Computes the eigenvalues, the Schur form, and, op-
tionally, the matrix of Schur vectors 495

ML_DGEEV � Computes the eigenvalues and, optionally, the left
and/or right eigenvectors . 497

ML_DGEHRD � Reduces a real general matrix A to upper Hessenberg
form . 499

ML_DGELQF � Computes an LQ factorization of a real M-by-N ma-
trix A . 501

ML_DGELSD � Computes the minimum-norm solution to a real lin-
ear least squares problem . 503

ML_DGEQRF � Computes an QR factorization of a real M-by-N
matrix A . 505

ML_DGESDD � Computes the singular value decomposition (SVD)
of a real M-by-N matrix A . 507

ML_DLACPY � Copies all or part of one matrix to another matrix . 509

ML_DLANGE � Computes one of the matrix norms of a general matrix511

ML_DLASET � Initilizes the o�-diagonal elements and the diagonal
elements of a matrix to given values 513

ML_DTRSYL � Solves the real Sylvester matrix equation for quasi-
triangular matrices A and B . 515

MX_AT � Get Matrix/Vector element 517

MX_ATSET � Set Matrix/Vector element 518

MX_CNADD � Add scalar to each Matrix/Vector element 519

MX_CNMUL � Multiply a Matrix/Vector by a scalar 520

MX_CTODPA � Discretizes continuous model given by (A,B) to (Ad,Bd)
using Pade approximations . 521

MX_DIM � Matrix/Vector dimensions 523

MX_DIMSET � Set Matrix/Vector dimensions 524

MX_DSAGET � Set subarray of A into B 526

MX_DSAREF � Set reference to subarray of A into B 528

MX_DSASET � Set A into subarray of B 530

MX_DTRNSP � General matrix transposition: B := alpha*A^T . . . 532

MX_DTRNSQ � Square matrix in-place transposition: A := alpha*A^T534

MX_FILL � Fill real matrix or vector 536

MX_FNX � Matrix and vector scalar functions 537

MX_MAT � Matrix data storage block 539

MX_RAND � Randomly generated matrix or vector 540

MX_REFCOPY � Copies input references of matrices A and B to
their output references . 542

MX_SLFS � Save or load a Matrix/Vector into �le or string 543

455

MX_VEC � Vector data storage block 546

MX_WRITE � Write a Matrix/Vector to the console/system log . . 547

RTOV � Vector multiplexer . 549

SWVMR � Vector/matrix/reference signal switch 551

VTOR � Vector demultiplexer . 552

The MATRIX library is designed for advanced matrix computations and manipula-
tions. It encompasses a wide range of blocks such as MB_DGEMM, MB_DTRMM, and MB_DGER

for matrix-matrix and matrix-vector operations. The library includes functions for ma-
trix decomposition (ML_DGEBRD, ML_DGEQRF), eigenvalue problems (ML_DGEEV, ML_DGEES),
and singular value decomposition (ML_DGESDD). Additionally, it o�ers utility blocks like
MX_MAT, MX_VEC, and MX_FILL for matrix creation and manipulation, as well as spe-
cialized blocks such as MX_DTRNSP for matrix transposition and MX_RAND for generating
random matrices. This library is essential for complex mathematical operations involving
matrices in various applications.

Implementation notices

First element of a matrix has index (0,0), �rst element of a vector has index (0).
The vector is one-column-matrix, not separate object. One-row-matrix is called a row

vector, but that object should not be used as vector in REXYGEN.
The matrix inputs and outputs are references. It means one block (the MX_MAT block

or the MX_VEC block most often) reserve memory for the matrix and other block (using
same reference) write/read same space. The MB_DCOPY block (and second the MX_MAT

block) must be used to create copy of the matrix.
Some blocks using vector (MB_DCPY, RTOV, VTOR) not check exact dimensions (for

example a 10x10 matrix is regard as 100-elements vector). Matrix is linearize into vector
column by column, because a matrix is stored this way in memory (e.g. for a 10x10
matrix: element (1,0) has index 1 in vector, element (2,0) has index 2 in vector, element
(0,1) has index 10 in vector, element (0,2) has index 11 in vector, etc.). These type of
blocks could not be used with submatrix returned by the MX_DSAREF block. Behavior is
unde�ned in this case.

The most matrix blocks has input and output matrix reference. Both are equal, but
connecting input reference to output reference of previous block de�ne execution order
(the blocks are executed according signal �ow in REXYGEN) and therefore computed
matrix equation.

456CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

CNA � Array (vector/matrix) constant

Block Symbol Licence: STANDARD

vec

CNA

Function Description

The block CNA allocates memory for nmax elements of the type etype of the vector/matrix
referenced by the output vec and initializes all elements to data stored in the parameter
acn.

If the string parameter filename is not empty then it loads initalization data from
the filename �le on the host computer in CSV format. Column separator can be comma
or semicolon or space (but the same in the whole �le), decimal separator have to be dot,
row separator is new line. Empty lines are skipped.

If the parameter TRN = on then the output reference vec contains transposed data.
Note: In case of etype = Large (I64), values loaded from parameter acn are con-

verted to double-precision �oat due to implementation reasons, so you can loose precision
for very large values. If this could be a problem, use external �le for initialization which
does not have this issue.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter

filename CSV data �le String

TRN Transpose loaded matrix Bool

nmax Allocated size of output matrix (total number of items)
↓2 ↑10000000 ⊙100

Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

acn Initial array value ⊙[0 1 2 3] Double (F64)

457

Output

vec Reference to vector/matrix data Reference

458CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DASUM � Sum of the absolute values

Block Symbol Licence: STANDARD

uX

n

incx

HLD

yX

value

E

MB_DASUM

Function Description

The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DASUM is called internally:

value = DASUM(N, uX, INCX);

where the values N and INCX are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx > 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uX is not de�ned (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ INCX+ 1 > CNT.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

HLD Hold Bool

Output

yX Output reference to vector x Reference

459

value Return value of the function Double (F64)

E Error indicator Bool

460CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DAXPY � Performs y := a*x + y for vectors x,y

Block Symbol Licence: STANDARD

uX

uY

a

n

incx

incy

HLD

yX

yY

E

MB_DAXPY

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DAXPY is
called internally:

DAXPY(N, a, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTY referenced by uY.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX,

• (N− 1) ∗ |INCY|+ 1 > CNTY.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

461

uY Input reference to vector y Reference

a Scalar coe�cient a Double (F64)

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

Output

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

462CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DCOPY � Copies vector x to vector y

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

HLD

yX

yY

E

MB_DCOPY

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DCOPY is
called internally:

DCOPY(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

uY Input reference to vector y Reference

463

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

Output

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

464CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DDOT � Dot product of two vectors

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

HLD

yX

yY

value

E

MB_DDOT

Function Description

The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DDOT is
called internally:

DDOT(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

uY Input reference to vector y Reference

465

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

Output

yX Output reference to vector x Reference

yY Output reference to vector y Reference

value Return value of the function Double (F64)

E Error indicator Bool

466CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DGEMM � Performs C := alpha*op(A)*op(B) + beta*C,
where op(X) = X or op(X) = X^T

Block Symbol Licence: STANDARD

uA

uB

uC

transa

transb

alpha

beta

HLD

yA

yB

yC

E

MB_DGEMM

Function Description

The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the BLAS function DGEMM

is called internally:

DGEMM(sTRANSA, sTRANSB, M, N, KA, alpha, uA, LDA, uB, LDB, beta, uC, LDC);

where parameters of DGEMM are set in the following way:

• Integer inputs transa and transb are mapped to strings sTRANSA and sTRANSB:
{0, 1} → "N", {2} → "T" and {3} → "C".

• M is number of rows of the matrix referenced by uC.

• N is number of columns of the matrix referenced by uC.

• If the input transa is equal to 0 or 1 then KA is number of columns else KA is
number rows of the matrix referenced by uA.

• LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.

The error �ag E is set to on if:

• the reference uA or uB or uC is not de�ned (i.e. input uA or uB or uC is not connected),

• transa or transb is less than 0 or greater than 3,

• KA ̸= KB; if the input transb is equal to 0 or 1 then KB is number of rows else KB is
number of columns of the matrix referenced by uB (i.e. matrices op(A) and op(B)
have to be multipliable).

• the call of the function DGEMM returns error using the function XERBLA, see the
system log.

467

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uC Input reference to matrix C Reference

transa Transposition of matrix A ↓0 ↑3 Long (I32)

transb Transposition of matrix B ↓0 ↑3 Long (I32)

alpha Scalar coe�cient alpha Double (F64)

beta Scalar coe�cient beta Double (F64)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yC Output reference to matrix C Reference

E Error indicator Bool

468CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DGEMV � Performs y := alpha*A*x + beta*y or y := al-
pha*A^T*x + beta*y

Block Symbol Licence: STANDARD

uA

uX

uY

trans

incx

incy

alpha

beta

HLD

yA

yX

yY

E

MB_DGEMV

Function Description

The output references yA, yX and yY are always set to the corresponding input references
uA, uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DGEMV

is called internally:

DGEMV(sTRANS, M, N, alpha, uA, LDA, uX, INCX, beta, uY, INCY);

where parameters of DGEMV are set in the following way:

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uA or uX or uY is not de�ned (i.e. input uA or uX or uY is not connected),

• trans is less than 0 or greater than 3,

• the call of the function DGEMV returns error using the function XERBLA, see the
system log.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

469

Input

uA Input reference to matrix A Reference

uX Input reference to vector x Reference

uY Input reference to vector y Reference

trans Transposition of the input matrix ↓0 ↑3 Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

alpha Scalar coe�cient alpha Double (F64)

beta Scalar coe�cient beta Double (F64)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

470CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DGER � Performs A := alpha*x*y^T + A

Block Symbol Licence: STANDARD

uX

uY

uA

incx

incy

alpha

HLD

yX

yY

yA

E

MB_DGER

Function Description

The output references yX, yY and yA are always set to the corresponding input references
uX, uY and uA. If HLD = on then nothing is computed otherwise the BLAS function DGER

is called internally:

DGER(M, N, alpha, uX, INCX, uY, INCY, uA, LDA);

where parameters of DGER are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

• LDA is the leading dimension of matrix referenced by uA.

The error �ag E is set to on if:

• the reference uX or uY or uA is not de�ned (i.e. input uX or uY or uA is not connected),

• the call of the function DGER returns error using the function XERBLA, see the system
log.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

uY Input reference to vector y Reference

471

uA Input reference to matrix A Reference

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Output

yX Output reference to vector x Reference

yY Output reference to vector y Reference

yA Output reference to matrix A Reference

E Error indicator Bool

472CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DNRM2 � Euclidean norm of a vector

Block Symbol Licence: STANDARD

uX

n

incx

HLD

yX

value

E

MB_DNRM2

Function Description

The output reference yX is always set to the input reference uX. If HLD = on then nothing
is computed otherwise the BLAS function DNRM2 is called internally:

value = DNRM2(N, uX, INCX);

where the values N and INCX are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx > 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uX is not de�ned (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ |INCX|+ 1 > CNT.

See BLAS documentation [10] for more details.

Use the block ML_DLANGE for computation of various norms of a matrix.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

HLD Hold Bool

473

Output

yX Output reference to vector x Reference

value Return value of the function Double (F64)

E Error indicator Bool

474CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DROT � Plain rotation of a vector

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

c

s

HLD

yX

yY

E

MB_DROT

Function Description

The output references yX and yY are always set to the corresponding input references
uX and uY. If HLD = on then nothing is computed otherwise the BLAS function DROT is
called internally:

DROT(N, uX, INCX, uY, INCY, c, s);

where parameters of DROT are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

475

uY Input reference to vector y Reference

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

c Scalar coe�cient c Double (F64)

s Scalar coe�cient s Double (F64)

HLD Hold Bool

Output

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

476CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DSCAL � Scales a vector by a constant

Block Symbol Licence: STANDARD

uX

a

n

incx

HLD

yX

E

MB_DSCAL

Function Description

The output references yX is always set to the corresponding input reference uX. If HLD =
on then nothing is computed otherwise the BLAS function DSCAL is called internally:

DSCAL(N, a, uX, INCX);

where parameters of DSCAL are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNT referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uX is not de�ned (i.e. input uX is not connected),

• n < 0 or incx < 0,

• (N− 1) ∗ INCX+ 1 > CNT.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

a Scalar coe�cient a Double (F64)

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

HLD Hold Bool

477

Output

yX Output reference to vector x Reference

E Error indicator Bool

478CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DSWAP � Interchanges two vectors

Block Symbol Licence: STANDARD

uX

uY

n

incx

incy

HLD

yX

yY

E

MB_DSWAP

Function Description

The output references yX and yY are always set to the corresponding input references uX
and uY. If HLD = on then nothing is computed otherwise the BLAS function DSWAP is
called internally:

DSWAP(N, uX, INCX, uY, INCY);

where the values N, INCX and INCY are set in the following way:

• If the input n > 0 then N is set to n else N is set to the current number of the vector
or matrix elements CNTX referenced by uX.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

• If the input incy ̸= 0 then INCY is set to incy else INCY is set to 1.

The error �ag E is set to on if:

• the reference uX or uY is not de�ned (i.e. input uX or uY is not connected),

• n < 0,

• (N− 1) ∗ |INCX|+ 1 > CNTX,

• (N − 1) ∗ |INCY| + 1 > CNTY, where CNTY is a number of the vector or matrix
elements referenced by uY.

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uX Input reference to vector x Reference

uY Input reference to vector y Reference

479

n Number of processed vector elements Long (I32)

incx Index increment of vector x Long (I32)

incy Index increment of vector y Long (I32)

HLD Hold Bool

Output

yX Output reference to vector x Reference

yY Output reference to vector y Reference

E Error indicator Bool

480CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DTRMM � Performs B := alpha*op(A)*B or B := alpha*B*op(A),
where op(X) = X or op(X) = X^T for triangular matrix A

Block Symbol Licence: STANDARD

uA

uB

RSIDE

LUPLO

transa

NDIAG

alpha

HLD

yA

yB

E

MB_DTRMM

Function Description

The output references yA and yB are always set to the corresponding input references uA
and uB. If HLD = on then nothing is computed otherwise the BLAS function DTRMM is
called internally:

DTRMM(sRSIDE, sLUPLO, sTRANSA, sNDIAG, M, N, alpha, uA, LDA, uB, LDB);

where parameters of DTRMM are set in the following way:

• If RSIDE = on then the string sRSIDE is set to "R" else it is set to "L".

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input transa is mapped to the string sTRANSA: {0, 1} → "N", {2} → "T"

and {3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• M is number of rows of the matrix referenced by uB.

• N is number of columns of the matrix referenced by uB.

• LDA and LDB are leading dimensions of matrices referenced by uA and uB.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• transa is less than 0 or greater than 3,

• matrix referenced by uA is not square or is not compatible with the matrix refer-
enced by uB,

• the call of the function DTRMM returns error using the function XERBLA, see the
system log.

481

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

RSIDE Operation is applied from right side Bool

LUPLO Matrix A is a lower triangular matrix Bool

transa Transposition of matrix A ↓0 ↑3 Long (I32)

NDIAG Matrix A is not assumed to be unit triangular Bool

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

482CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DTRMV � Performs x := A*x or x := A^T*x for triangular
matrix A

Block Symbol Licence: STANDARD

uA

uX

LUPLO

trans

NDIAG

incx

HLD

yA

yX

E

MB_DTRMV

Function Description

The output references yA and yX are always set to the corresponding input references uA
and uX. If HLD = on then nothing is computed otherwise the BLAS function DTRMV is
called internally:

DTRMV(sLUPLO, sTRANS, sNDIAG, N, uA, LDA, uX, INCX);

where parameters of DTRMV are set in the following way:

• If LUPLO = on then the string sLUPLO is set to "L" else it is set to "U".

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• N is number of rows and columns of the square matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uA or uX is not de�ned (i.e. input uA or uX is not connected),

• trans is less than 0 or greater than 3,

• matrix referenced by uA is not square,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX.

• the call of the function DTRMV returns error using the function XERBLA, see the
system log.

483

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uX Input reference to vector x Reference

LUPLO Matrix A is a lower triangular matrix Bool

trans Transposition of the input matrix ↓0 ↑3 Long (I32)

NDIAG Matrix A is not assumed to be unit triangular Bool

incx Index increment of vector x Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yX Output reference to vector x Reference

E Error indicator Bool

484CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MB_DTRSV � Solves one of the system of equations A*x = b or
A^T*x = b for triangular matrix A

Block Symbol Licence: STANDARD

uA

uX

LUPLO

trans

NDIAG

incx

HLD

yA

yX

E

MB_DTRSV

Function Description

The output references yA and yX are always set to the corresponding input references uA
and uX. If HLD = on then nothing is computed otherwise the BLAS function DTRSV is
called internally:

DTRSV(sLUPLO, sTRANS, sNDIAG, N, uA, LDA, uX, INCX);

where parameters of DTRSV are set in the following way:

• If LUPLO = on, then the string sLUPLO is set to "L" else it is set to "U".

• Integer input trans is mapped to the string sTRANS: {0, 1} → "N", {2} → "T" and
{3} → "C".

• If NDIAG = on then the string sNDIAG is set to "N" else it is set to "U".

• N is number of rows and columns of the square matrix referenced by uA.

• LDA is the leading dimension of matrix referenced by uA.

• If the input incx ̸= 0 then INCX is set to incx else INCX is set to 1.

The error �ag E is set to on if:

• the reference uA or uX is not de�ned (i.e. input uA or uX is not connected),

• trans is less than 0 or greater than 3,

• matrix referenced by uA is not square,

• (N − 1) ∗ |INCX| + 1 > CNTX, where CNTX is a number of the vector or matrix
elements referenced by uX.

• the call of the function DTRMV returns error using the function XERBLA, see the
system log.

485

See BLAS documentation [10] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uX Input reference to vector x Reference

LUPLO Matrix A is a lower triangular matrix Bool

trans Transposition of the input matrix ↓0 ↑3 Long (I32)

NDIAG Matrix A is not assumed to be unit triangular Bool

incx Index increment of vector x Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yX Output reference to vector x Reference

E Error indicator Bool

486CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEBAK � Backward transformation to ML_DGEBAL of
left or right eigenvectors

Block Symbol Licence: MATRIX

uSCALE

uV

job

RSIDE

ilo

ihi

HLD

ySCALE

yV

E

info

ML_DGEBAK

Function Description

The output references ySCALE and yV are always set to the corresponding input references
uSCALE and uV. If HLD = on then nothing is computed otherwise the LAPACK function
DGEBAK is called internally:

DGEBAK(sJOB, sRSIDE, N, ilo, IHI, uSCALE, M, uV, LDV, info);

where parameters of DGEBAK are set in the following way:

• Integer input job is mapped to the string sJOB: {0, 1} → "N", {2} → "P", {3} →
"S" and {4} → "B".

• If RSIDE = on, then the string sRSIDE is set to "R" else it is set to "L".

• N is number of elements of the vector referenced by uSCALE.

• If the input ihi ̸= 0 then IHI is set to ihi else IHI is set to N− 1.

• M is number of columns of the matrix referenced by uV.

• LDV is the leading dimension of the matrix referenced by uV.

• info is return code from the function DGEBAK.

The error �ag E is set to on if:

• the reference uSCALE or uV is not de�ned (i.e. input uSCALE or uV is not connected),

• the call of the function DGEBAK returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

487

Input

uSCALE Input reference to vector SCALE Reference

uV Reference to matrix of right or left eigenvectors to be transformed Reference

job Type of backward transformation required ↓0 ↑4 Long (I32)

RSIDE Operation is applied from right side Bool

ilo Zero based low row and column index of working submatrix Long (I32)

ihi Zero based high row and column index of working submatrix Long (I32)

HLD Hold Bool

Output

ySCALE Output reference to vector SCALE Reference

yV Reference to matrix of transformed right or left eigenvectors Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

488CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEBAL � Balancing of a general real matrix

Block Symbol Licence: MATRIX

uA

uSCALE

job

HLD

yA

ySCALE

ilo

ihi

E

info

ML_DGEBAL

Function Description

The output references yA and ySCALE are always set to the corresponding input references
uA and uSCALE. If HLD = on then nothing is computed otherwise the LAPACK function
DGEBAL is called internally:

DGEBAL(sJOB, N, uA, LDA, ilo, ihi, uSCALE, info);

where parameters of DGEBAL are set in the following way:

• Integer input job is mapped to the string sJOB: {0, 1} → "N", {2} → "P", {3} →
"S" and {4} → "B".

• N is number of columns of the square matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• ilo and ihi are returned low and high row and column indices of the balanced
submatrix of the matrix referenced by uA.

• info is return code from the function DGEBAL.

The error �ag E is set to on if:

• the reference uA or uSCALE is not de�ned (i.e. input uA or uSCALE is not connected),

• matrix referenced by uA is not square,

• number of elements of the vector referenced by uSCALE is less than N.

• the call of the function DGEBAL returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

489

Input

uA Input reference to matrix A Reference

uSCALE Input reference to vector SCALE Reference

job Speci�es the operations to be performed on matrix A ↓0 ↑4 Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

ySCALE Output reference to vector SCALE Reference

ilo Zero based low row and column index of working submatrix Long (I32)

ihi Zero based high row and column index of working submatrix Long (I32)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

490CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGEBRD � Reduces a general real matrix to bidiagonal form
by an orthogonal transformation

Block Symbol Licence: MATRIX

uA

uD

uE

uTAUQ

uTAUP

uWORK

HLD

yA

yD

yE

yTAUQ

yTAUP

yWORK

E

info

ML_DGEBRD

Function Description

The output references yA, yD, yE, yTAUQ, yTAUP and yWORK are always set to the corre-
sponding input references uA, uD, uE, uTAUQ, uTAUP and uWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEBRD is called internally:

DGEBRD(M, N, uA, LDA, uD, uE, uTAUQ, uTAUP, uWORK, info);

where parameters of DGEBRD are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• info is return code from the function DGEBRD.

The error �ag E is set to on if:

• the reference uA or uD or uE or uTAUQ or uTAUP or uWORK is not de�ned (i.e. input
uA or uD or uE or uTAUQ or uTAUP or uWORK is not connected),

• number of elements of any vector referenced by uD, uTAUQ and uTAUP is less than
MINMN, where MINMN is minimum from M and N,

• number of elements of the vector referenced by uE is less than MINMN− 1,

• the call of the function DGEBRD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

491

Input

uA Input reference to matrix A Reference

uD Diagonal elements of the bidiagonal matrix B Reference

uE O�-diagonal elements of the bidiagonal matrix B Reference

uTAUQ Reference to a vector of scalar factors of the elementary re�ectors
which represent the orthogonal matrix Q

Reference

uTAUP Reference to a vector of scalar factors of the elementary re�ectors
which represent the orthogonal matrix P

Reference

uWORK Input reference to working vector WORK Reference

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yD Output reference to D Reference

yE Output reference to E Reference

yTAUQ Output reference to TAUQ Reference

yTAUP Output reference to TAUP Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

492CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

ML_DGECON � Estimates the reciprocal of the condition number
of a general real matrix

Block Symbol Licence: MATRIX

uA

uWORK

uIWORK

INORM

anorm

HLD

yA

yWORK

yIWORK

rcond

E

info

ML_DGECON

Function Description

The output references yA, yWORK and yIWORK are always set to the corresponding input
references uA, uWORK and uIWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGECON is called internally:

DGECON(sINORM, N, uA, LDA, anorm, rcond, uWORK, uIWORK, info);

where parameters of DGECON are set in the following way:

• If INORM = on then the string sINORM is set to "I" else it is set to "1".

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• rcond is returned reciprocal value of the condition number of the matrix referenced
by uA.

• info is return code from the function DGECON.

The error �ag E is set to on if:

• the reference uA or uWORK or uIWORK is not de�ned (i.e. input uA or uWORK or uIWORK
is not connected),

• the matrix referenced by uA is not square,

• number of elements of the vector referenced by uWORK is less than 4 ∗ N,

• number of elements of the integer vector referenced by uIWORK is less than N,

• the call of the function DGECON returns error using the function XERBLA, see the
return code info and system log.

493

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

494CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Input

uA Input reference to matrix A Reference

uWORK Input reference to working vector WORK Reference

uIWORK Input reference to integer working vector WORK Reference

INORM Use In�nity-norm Bool

anorm Norm of the original matrix A Double (F64)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yWORK Output reference to working vector WORK Reference

yIWORK Output reference to integer working vector WORK Reference

rcond The reciprocal of the condition number of the matrix A Double (F64)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

495

ML_DGEES � Computes the eigenvalues, the Schur form, and,
optionally, the matrix of Schur vectors

Block Symbol Licence: MATRIX

uA

uWR

uWI

uVS

uWORK

uBWORK

JOBVS

SORT

HLD

yA

yWR

yWI

yVS

yWORK

yBWORK

sdim

E

info

ML_DGEES

Function Description

The output references yA, yWR, yWI, yVS, yWORK and yBWORK are always set to the corre-
sponding input references uA, uWR, uWI, uVS, uWORK and uBWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEES is called internally:

DGEES(sJOBVS, sSORT, SELECT, N, uA, LDA, sdim, uWR, uWI, uVS, LDVS,uWORK,

LWORK, uBWORK, info);

where parameters of DGEES are set in the following way:

• If JOBVS = on then the string sJOBVS is set to "V" else it is set to "N".

• If SORT = on then the string sSORT is set to "S" else it is set to "N".

• SELECT is the reference to Boolean eigenvalues sorting function which in this func-
tion block returns always true (i.e. on).

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• sdim is returned number of eigenvalues for which the function SELECT is true.

• LDVS is the leading dimension of the matrix referenced by uVS.

• LWORK is number of elements in the vector referenced by uWORK.

• info is return code from the function DGEES.

The error �ag E is set to on if:

• the reference uA or uWR or uWI or uVS or uWORK or uBWORK is not de�ned (i.e. input
uA or uWR or uWI or uVS or uWORK or uBWORK is not connected),

496CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

• the matrix referenced by uA is not square,

• number of elements of any vector referenced by uWR, uWI and uBWORK is less than
N,

• number of columns of the matrix referenced by uVS is not equal to N,

• the call of the function DGEES returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uWR Input reference to vector of real parts of eigenvalues Reference

uWI Input reference to vector of imaginary parts of eigenvalues Reference

uVS Input reference to orthogonal matrix of Schur vectors Reference

uWORK Input reference to working vector WORK Reference

uBWORK Input reference to Boolean working vector WORK Reference

JOBVS If true then Schur vectors are computed Bool

SORT If true then eigenvalues are sorted Bool

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yWR Output reference to vector of real parts of eigenvalues Reference

yWI Output reference to vector of imaginary parts of eigenvalues Reference

yVS Output reference to VS Reference

yWORK Output reference to working vector WORK Reference

yBWORK Output reference to Boolean working vector WORK Reference

sdim If SORT then number of eigenvalues for which SELECT is true
else 0

Long (I32)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

497

ML_DGEEV � Computes the eigenvalues and, optionally, the left
and/or right eigenvectors

Block Symbol Licence: MATRIX

uA

uWR

uWI

uVL

uVR

uWORK

JOBVL

JOBVR

HLD

yA

yWR

yWI

yVL

yVR

yWORK

E

info

ML_DGEEV

Function Description

The output references yA, yWR, yWI, yVL, yVR and yWORK are always set to the corre-
sponding input references uA, uWR, uWI, uVL, uVR and uWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGEEV is called internally:

DGEEV(sJOBVL, sJOBVR, N, uA, LDA, uWR, uWI, uVL, LDVL, uVR, LDVR,

uWORK, LWORK, info);

where parameters of DGEEV are set in the following way:

• If JOBVL = on then the string sJOBVL is set to "V" else it is set to "N".

• If JOBVR = on then the string sJOBVR is set to "V" else it is set to "N".

• N is number of columns of the matrix referenced by uA.

• LDA, LDVL and LDVR are leading dimensions of the matrices referenced by uA, uVL
and uVR.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEEV.

The error �ag E is set to on if:

• the reference uA or uWR or uWI or uVL or uVR or uWORK is not de�ned (i.e. input uA
or uWR or uWI or uVL or uVR or uWORK is not connected),

• the matrix referenced by uA is not square,

• number of elements of vectors referenced by uWR or uWI is less than N,

• number of columns of matrices referenced by uVL or uVR is not equal to N,

498CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

• the call of the function DGEEV returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uWR Input reference to vector of real parts of eigenvalues Reference

uWI Input reference to vector of imaginary parts of eigenvalues Reference

uVL Input reference to matrix of left eigenvectors Reference

uVR Input reference to matrix of right eigenvectors Reference

uWORK Input reference to working vector WORK Reference

JOBVL If true then left eigenvectors are computed Bool

JOBVR If true then right eigenvectors are computed Bool

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yWR Output reference to vector of real parts of eigenvalues Reference

yWI Output reference to vector of imaginary parts of eigenvalues Reference

yVL Output reference to VL Reference

yVR Output reference to VR Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

499

ML_DGEHRD � Reduces a real general matrix A to upper Hes-
senberg form

Block Symbol Licence: MATRIX

uA

uTAU

uWORK

ilo

ihi

HLD

yA

yTAU

yWORK

E

info

ML_DGEHRD

Function Description

The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK.If HLD = on then nothing is computed otherwise the
LAPACK function DGEHRD is called internally:

DGEHRD(N, ilo, IHI, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGEHRD are set in the following way:

• N is number of columns of the square matrix referenced by uA.

• If the input ihi ̸= 0 then IHI is set to ihi else IHI is set to N− 1.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEHRD.

The error �ag E is set to on if:

• the reference uA or uTAU or uWORK is not de�ned (i.e. input uA or uTAU or uWORK is
not connected),

• matrix referenced by uA is not square,

• number of elements of the vector referenced by uTAU is less than N− 1.

• the call of the function DGEHRD returns error using the function XERBLA, see the
return code info and system log.

Emphasize that the indices ilo and ihi start from zero unlike FORTRAN version where
they start from one. See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

500CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Input

uA Input reference to matrix A Reference

uTAU Input reference to vector of scalar factors of the elementary
re�ectors

Reference

uWORK Input reference to working vector WORK Reference

ilo Zero based low row and column index of working submatrix Long (I32)

ihi Zero based high row and column index of working submatrix Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yTAU Output reference to vector of scalar factors of the elementary
re�ectors

Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

501

ML_DGELQF � Computes an LQ factorization of a real M-by-N
matrix A

Block Symbol Licence: MATRIX

uA

uTAU

uWORK

HLD

yA

yTAU

yWORK

E

info

ML_DGELQF

Function Description

The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGELQF is called internally:

DGELQF(M, N, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGELQF are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGELQF.

The error �ag E is set to on if:

• the reference uA or uTAU or uWORK is not de�ned (i.e. input uA or uTAU or uWORK is
not connected),

• number of elements of the vector referenced by uTAU is less than the minimum of
number of rows and number of columns of the matrix referenced by uA.

• the call of the function DGELQF returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

502CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Input

uA Input reference to matrix A Reference

uTAU Input reference to vector of scalar factors of the elementary
re�ectors

Reference

uWORK Input reference to working vector WORK Reference

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yTAU Output reference to vector of scalar factors of the elementary
re�ectors

Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

503

ML_DGELSD � Computes the minimum-norm solution to a real
linear least squares problem

Block Symbol Licence: MATRIX

uA

uB

uS

uWORK

uIWORK

rcond

HLD

yA

yB

yS

yWORK

yIWORK

irank

E

info

ML_DGELSD

Function Description

The output references yA, yB, yS, yWORK and yIWORK are always set to the corresponding
input references uA, uB, uS, uWORK and uIWORK. If HLD = on then nothing is computed
otherwise the LAPACK function DGELSD is called internally:

DGELSD(M, N, NRHS, uA, LDA, uB, LDB, uS, rcond, irank,uWORK,

LWORK, uIWORK, info);

where parameters of DGELSD are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• NRHS is number of columns of the matrix referenced by uB.

• LDA and LDB are leading dimensions of the matrices referenced by uA and uB.

• irank is returned e�ective rank of the matrix referenced by uA.

• LWORK is number of elements in the vector referenced by uWORK.

• info is return code from the function DGELSD.

The error �ag E is set to on if:

• the reference uA or uB or uS or uWORK or uIWORK is not de�ned (i.e. input uA or uB
or uS or uWORK or uIWORK is not connected),

• the number of rows of the matrix referenced by uB is not equal to M,

• number of elements of any vector referenced by uS is less than the minimum of M
and N,

504CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

• number of elements of the integer vector referenced by uIWORK is not su�cient (see
details in the LAPACK documentation of the function DGELSD),

• the call of the function DGELSD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uS Input reference to vector of singular values Reference

uWORK Input reference to working vector WORK Reference

uIWORK Input reference to integer working vector WORK Reference

rcond Used to determine the e�ective rank of A Double (F64)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yS Output reference to vector of singular values Reference

yWORK Output reference to working vector WORK Reference

yIWORK Output reference to integer working vector WORK Reference

irank E�ective rank of A Long (I32)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

505

ML_DGEQRF � Computes an QR factorization of a real M-by-N
matrix A

Block Symbol Licence: MATRIX

uA

uTAU

uWORK

HLD

yA

yTAU

yWORK

E

info

ML_DGEQRF

Function Description

The output references yA, yTAU and yWORK are always set to the corresponding input
references uA, uTAU and uWORK. If HLD = on then nothing is computed otherwise the
LAPACK function DGEQRF is called internally:

DGEQRF(M, N, uA, LDA, uTAU, uWORK, LWORK, info);

where parameters of DGEQRF are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGEQRF.

The error �ag E is set to on if:

• the reference uA or uTAU or uWORK is not de�ned (i.e. input uA or uTAU or uWORK is
not connected),

• number of elements of the vector referenced by uTAU is less than the minimum of
number of rows and number of columns of the matrix referenced by uA.

• the call of the function DGEQRF returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

506CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Input

uA Input reference to matrix A Reference

uTAU Input reference to vector of scalar factors of the elementary
re�ectors

Reference

uWORK Input reference to working vector WORK Reference

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yTAU Output reference to vector of scalar factors of the elementary
re�ectors

Reference

yWORK Output reference to working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

507

ML_DGESDD � Computes the singular value decomposition (SVD)
of a real M-by-N matrix A

Block Symbol Licence: MATRIX

uA

uS

uU

uVT

uWORK

uIWORK

jobz

HLD

yA

yS

yU

yVT

yWORK

yIWORK

E

info

ML_DGESDD

Function Description

The output references yA, yS, yU, yVT, yWORK and yIWORK are always set to the corre-
sponding input references uA, uS, uU, uVT, uWORK and uIWORK. If HLD = on then nothing
is computed otherwise the LAPACK function DGESDD is called internally:

DGESDD(sJOBZ, M, N, uA, LDA, uS, uU, LDU, uVT, LDVT, uWORK, LWORK,

uIWORK, info);

where parameters of DGESDD are set in the following way:

• Integer input jobz is mapped to the string sJOBZ: {0, 1} → "A", {2} → "S",
{3} → "O" and {4} → "N".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA, LDU and LDVT are leading dimensions of the matrices referenced by uA, uU and
uVT.

• LWORK is number of elements of the vector referenced by uWORK.

• info is return code from the function DGESDD.

The error �ag E is set to on if:

• the reference uA or uS or uU or uVT or uWORK or uIWORK is not de�ned (i.e. input uA
or uS or uU or uVT or uWORK or uIWORK is not connected),

• number of elements of the vector referenced by uS is less than MINMN, the minimum
of number of rows and number of columns of the matrix referenced by uA,

• number of elements of the integer vector referenced by uIWORK is less than 8∗MINMN,

508CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

• the call of the function DGESDD returns error using the function XERBLA, see the
return code info and system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uS Input reference to vector of singular values Reference

uU Input reference to matrix containing left singular vectors of A Reference

uVT Input reference to matrix containing right singular vectors of A Reference

uWORK Input reference to working vector WORK Reference

uIWORK Input reference to integer working vector WORK Reference

jobz Speci�es options for computing Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yS Output reference to vector of singular values Reference

yU Output reference to matrix containing left singular vectors of A Reference

yVT Output reference to matrix containing right singular vectors of
A

Reference

yWORK Output reference to working vector WORK Reference

yIWORK Output reference to integer working vector WORK Reference

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

509

ML_DLACPY � Copies all or part of one matrix to another matrix

Block Symbol Licence: STANDARD

uA

uB

uplo

HLD

yA

yB

E

ML_DLACPY

Function Description

The output references yA and yB are always set to the corresponding input references uA
and uB. If HLD = on then nothing is computed otherwise the LAPACK function DLACPY

is called internally:

DLACPY(sUPLO, M, N, uA, LDA, uB, LDA);

where parameters of DLACPY are set in the following way:

• Integer input uplo is mapped to the string sUPLO: {0, 1} → "A", {2} → "U" and
{3} → "L".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

The number of rows of the matrix referenced by uB is set to M and the leading
dimension of the matrix referenced by uB is set to LDA

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• the allocated number of elements of the matrix referenced by uA is di�erent from
the allocated number of elements of the matrix referenced by uB.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

510CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

uplo Part of the matrix to be copied Long (I32)

0 All
1 All
2 Upper
3 Lower

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

511

ML_DLANGE � Computes one of the matrix norms of a general
matrix

Block Symbol Licence: STANDARD

uA

uWORK

norm

HLD

yA

yWORK

value

E

ML_DLANGE

Function Description

The output references yA and yWORK are always set to the corresponding input references
uA and uWORK. If HLD = on then nothing is computed otherwise the LAPACK function
DLANGE is called internally:

value = DLANGE(sNORM, M, N, uA, LDA, uWORK;

where parameters of DLACPY are set in the following way:

• Integer input norm is mapped to the string sNORM: {0, 1} → "F" (Frobenius norm),
{2} → "M" (max(abs(A(i,j)))), {3} → "1" (one norm) and {4} → "I" (in�nity
norm).

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

• uWORK is the working vector of dimension LWORK ≥ M. uWORK is used only for in�nity
norm, otherwise it is not referenced.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

• the reference uWORK is not de�ned for norm = 4 (i.e. input uWORK is not connected).

See LAPACK documentation [11] for more details.

Use the block MB_DNRM2 for computation of Frobenius norm of a vector.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

512CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Input

uA Input reference to matrix A Reference

uWORK Input reference to working vector WORK Reference

norm The selected matrix norm ↓0 ↑4 Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yWORK Output reference to working vector WORK Reference

value Return value of the function Double (F64)

E Error indicator Bool

513

ML_DLASET � Initilizes the o�-diagonal elements and the diag-
onal elements of a matrix to given values

Block Symbol Licence: STANDARD

uA

uplo

alpha

beta

HLD

yA

E

ML_DLASET

Function Description

The output reference yA is always set to the corresponding input references uA. If HLD =
on then nothing is computed otherwise the LAPACK function DLASET is called internally:

DLASET(sUPLO, M, N, alpha, beta,uA, LDA);

where parameters of DLASET are set in the following way:

• Integer input uplo is mapped to the string sUPLO: {0, 1} → "A", {2} → "U" and
{3} → "L".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• LDA is the leading dimension of the matrix referenced by uA.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected).

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uplo Part of the matrix to be copied Long (I32)

0 All
1 All
2 Upper
3 Lower

alpha Scalar coe�cient alpha Double (F64)

beta Scalar coe�cient beta Double (F64)

HLD Hold Bool

514CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Output

yA Output reference to matrix A Reference

E Error indicator Bool

515

ML_DTRSYL � Solves the real Sylvester matrix equation for
quasi-triangular matrices A and B

Block Symbol Licence: MATRIX

uA

uB

uC

trana

tranb

isgn

HLD

yA

yB

yC

scale

E

info

ML_DTRSYL

Function Description

The output references yA, yB and yC are always set to the corresponding input references
uA, uB and uC. If HLD = on then nothing is computed otherwise the LAPACK function
DTRSYL is called internally:

DTRSYL(sTRANA, sTRANB, M, N, uA, LDA, uB, LDB, uC, LDC, scale, info);

where parameters of DTRSYL are set in the following way:

• Integer inputs trana and tranb are mapped to strings sTRANA and sTRANB: {0, 1} →
"N", {2} → "T" and {3} → "C".

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uB.

• LDA, LDB and LDC are leading dimensions of matrices referenced by uA, uB and uC.

• scale is returned scaling factor to avoid over�ow.

• info is return code from the function DTRSYL.

The error �ag E is set to on if:

• the reference uA or uB or uC is not de�ned (i.e. input uA or uB or uC is not connected),

• trana or tranb is less than 0 or greater than 3,

• number of columns of the matrix referenced by uA is not equal to M,

• number of rows of the matrix referenced by uB is not equal to N,

• number of rows of the matrix referenced by uC is not equal to N or number of
columns of this matrix is not equal to M,

516CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

• the call of the function DTRSYL returns error using the function XERBLA, see the
system log.

See LAPACK documentation [11] for more details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uC Input reference to matrix C Reference

trana Transposition of matrix A ↓0 ↑3 Long (I32)

tranb Transposition of matrix B ↓0 ↑3 Long (I32)

isgn Sign in the equation (1 or -1) ↓-1 ↑1 Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yC Output reference to matrix C Reference

scale Scale Double (F64)

E Error indicator Bool

info LAPACK function result info. If info = -i, the i=th argument
had an illegal value

Long (I32)

517

MX_AT � Get Matrix/Vector element

Block Symbol Licence: STANDARD

uMV

i

j

yMV

value

E

MX_AT

Function Description

The function block MX_AT returns the value (output value) of the matrix element at the
i-th row and j-th column or the i-th vector element.

The output reference yMV is always set to the corresponding input reference uMV to
the connected matrix/vector.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• the zero based row index i < 0 or i ≥ m, where m is the number of rows,

• the zero based column index j < 0 or j ≥ n, where n is the number of columns.
Note that j must be 0 for a vector.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

i Row index of the element ↓0 Long (I32)

j Column index of the element ↓0 Long (I32)

Output

yMV Output reference to a matrix or vector Reference

value Value of element at position (i,j) Long (I32)

E Error indicator Bool

518CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_ATSET � Set Matrix/Vector element

Block Symbol Licence: STANDARD

uMV

i

j

value

yMV

E

MX_ATSET

Function Description

The function block MX_ATSET sets the value (input value) to the matrix element at the
i-th row and j-th column or to the i-th vector element.

The output reference yMV is always set to the corresponding input reference uMV to
the connected matrix/vector.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• the zero based row index i < 0 or i ≥ m, where m is the number of rows,

• the zero based column index j < 0 or j ≥ n, where n is the number of columns.
Note that j must be 0 for a vector.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

i Row index of the element ↓0 Long (I32)

j Column index of the element ↓0 Long (I32)

value Value which should be set to the element at position (i,j) Long (I32)

Output

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

519

MX_CNADD � Add scalar to each Matrix/Vector element

Block Symbol Licence: STANDARD

uAX

uBY

alpha

HLD

yAX

yBY

E

MX_CNADD

Function Description

The function block MX_CNADD adds the value of the input alpha to each matrix/vector
element referenced by uAX and the result is stored to the matrix/vector referenced by
uBY.

The output references yAX and yBY are always set to the corresponding input refer-
ences uAX and uBY. The dimensions of the matrix/vector referenced by uBY are set to the
dimensions of the matrix/vector referenced by uAX if they are di�erent.
By setting HLD = on the calculation is stopped, but the references are passed further.
The error �ag E is set to on, if:

• the reference uAX of uBY is not de�ned (i.e. input uAX or uBY is not connected),

• the count of allocated elements of the matrix/vector referenced by uAX is di�erent
from the count of allocated elements of the matrix/vector referenced by uBY.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uAX Input reference to the matrix A or vector X Reference

uBY Input reference to the matrix B or vector Y Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Output

yAX Output reference to the matrix A or vector X Reference

yBY Output reference to the matrix B or vector Y Reference

E Error indicator Bool

520CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_CNMUL � Multiply a Matrix/Vector by a scalar

Block Symbol Licence: STANDARD

uAX

uBY

alpha

HLD

yAX

yBY

E

MX_CNMUL

Function Description

The function block MX_CNMUL multiplies each matrix/vector element referenced by uAX

by the value of the input alpha and the result is stored to the matrix/vector referenced
by uBY.

The output references yAX and yBY are always set to the corresponding input refer-
ences uAX and uBY. The dimensions of the matrix/vector referenced by uBY are set to the
dimensions of the matrix/vector referenced by uAX if they are di�erent.
By setting HLD = on the calculation is stopped, but the references are passed further.
The error �ag E is set to on, if:

• the reference uAX of uBY is not de�ned (i.e. input uAX or uBY is not connected),

• the count of allocated elements of the matrix/vector referenced by uAX is di�erent
from the count of allocated elements of the matrix/vector referenced by uBY.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uAX Input reference to the matrix A or vector X Reference

uBY Input reference to the matrix B or vector Y Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

Output

yAX Output reference to the matrix A or vector X Reference

yBY Output reference to the matrix B or vector Y Reference

E Error indicator Bool

521

MX_CTODPA � Discretizes continuous model given by (A,B) to
(Ad,Bd) using Pade approximations

Block Symbol Licence: STANDARD

uA

uB

uAd

uBd

uP

uQ

uR

HLD

yA

yB

yAd

yBd

yP

yQ

yR

E

MX_CTODPA

Function Description

Function block MX_CTODPA discretizes a continuous state space model using Padé
approximations of matrix exponential and its integral and scaling technique ([8]). The
used technique is similar to method 3 Scaling and squaring described in [12].

The output references yA, yB, yAd, yBd, yP , yQ and yR are always set to the corre-
sponding input references uA, uB, uAd, uBd, uP, uQ and uR. If HLD = on then nothing is
computed otherwise the function mCtoD is called internally:

mCtoD(nRes, uAd, uBd, uA, uB, N, M, is, Ts, eps, uP, uQ, uR);

where parameters of mCtoD are set in the following way:

• nRes is return code from the function mCtoD.

• N is number of rows of the square system matrix referenced by uA.

• M is number of columns of the input matrix referenced by uB.

• Ts is sampling period for the discretization, which is equal to sampling period of
the task containing this function block.

The error �ag E is set to on if:

• the reference uA or uB or uAd or uBd or uP or uQ or uR is not de�ned (i.e. input uA
or uB or uAd or uBd or uP or uQ or uR is not connected),

• number of columns of the matrix referenced by uA is not equal to N,

• number of rows of the matrix referenced by uB is not equal to M,

• number of elements of any matrix referenced by uAd, uP, uQ or uR is less than N∗N,

• number of elements of the matrix referenced by uBd is less than N ∗ M,

522CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

• the return code nRes of the function mCtoD is not equal to zero.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uAd Input reference to discretized matrix A Reference

uBd Input reference to discretized matrix B Reference

uP Input reference to a helper matrix Reference

uQ Input reference to a helper matrix Reference

uR Input reference to a helper matrix Reference

HLD Hold Bool

Parameter

is Pade approximation order ↓0 ↑4 ⊙2 Long (I32)

eps Approximation accuracy ↓1e-20 ↑0.001 ⊙1e-15 Double (F64)

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

yAd Output reference to discretized matrix A Reference

yBd Output reference to discretized matrix B Reference

yP Output reference to a helper matrix Reference

yQ Output reference to a helper matrix Reference

yR Output reference to a helper matrix Reference

E Error indicator Bool

523

MX_DIM � Matrix/Vector dimensions

Block Symbol Licence: STANDARD

uMV

yMV
m
n
ld
cnt

amax
etype

MX_DIM

Function Description

The function block MX_DIM sets its outputs to the dimensions of the matrix or vector
referenced by uMV.

The output reference yMV is always set to the corresponding input reference uMV. The
error �ag E is set to on if the reference uMV is not de�ned (i.e. input uMV is not connected).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

Output

yMV Output reference to a matrix or vector Reference

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

ld Leading dimension (>= number of rows) Long (I32)

cnt Count of used matrix elements Long (I32)

amax Count of allocated elements (>= number of rows * number of
columns

Long (I32)

etype Type of elements Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

524CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DIMSET � Set Matrix/Vector dimensions

Block Symbol Licence: STANDARD

uMV
m
n
ld
HLD

yMV

cnt

amax

E

MX_DIMSET

Function Description

The function block MX_DIMSET sets number rows m of the vector or number of rows m,
number of columns n and the leading dimension ld of the matrix referenced by uMV. If
any of the inputs m, n, ld is not connected, its original value is retained.

The output cnt contains the actual number of occupied elements of the matrix/vector
and is determined by the formula

cnt = ld ∗ (n− 1) + m ≤ amax ,

where the output amax is the allocated count of matrix/vector elements. If this inequality
is ful�lled the output cnt is set to the matrix/vector structure and can be retrieved by
the MX_DIM block, otherwise the value of cnt shows the minimum necessary number of
elements of the matrix/vector.

The output reference yMV is always set to the corresponding input reference uMV.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• the number of rows m < 1 or m > ld,

• the number of columns n < 1,

• the required number of elements cnt > amax.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

ld Leading dimension (>= number of rows) Long (I32)

525

Output

yMV Output reference to a matrix or vector Reference

cnt Count of used matrix elements Long (I32)

amax Count of allocated elements (>= number of rows * number of
columns

Long (I32)

E Error indicator Bool

526CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DSAGET � Set subarray of A into B

Block Symbol Licence: STANDARD

uA

uB

uplo

i

j

m

n

HLD

yA

yB

E

MX_DSAGET

Function Description

Generally, the function block MX_DSAGET copies the subarray (submatrix) of matrix ref-
erenced by uA into the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing is copied otherwise the submatrix of matrix refer-
enced by uA starting the row with zero based index I and the column with zero based
index J containing M rows and N columns is copied (with respect to the value of the
input uplo) to the matrix referenced by uB. The mentioned variables have the following
meanings:

• If the input i ≤ 0 then I is set to 0 else if i ≥ MA then I is set to MA - 1 else I is
set to i, where MA is the number of rows of the matrix referenced by uA.

• If the input j ≤ 0 then J is set to 0 else if j ≥ NA then J is set to NA - 1 else J is
set to j, where NA is the number of columns of the matrix referenced by uA.

• Number of copied rows M is set in two stages. First, M is set to minimum of MA-I
and number of rows of the matrix referenced by uB. Second, if m > 0 then M is set
to the minimum of m and M.

• Number of copied columns N is set in two stages. First, N is set to minimum of NA-J
and number of columns of the matrix referenced by uB. Second, if n > 0 then N is
set to the minimum of n and N.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• uplo is less than 0 or greater than 3,

• the number of elements of the matrix referenced by uB is less than M ∗ N.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

527

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uplo Part of the matrix to be copied Long (I32)

0 All
1 All
2 Upper
3 Lower

i Index of the subarray �rst row Long (I32)

j Index of the subarray �rst column Long (I32)

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

528CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DSAREF � Set reference to subarray of A into B

Block Symbol Licence: STANDARD

uA

i

j

HLD

yA

yB

E

MX_DSAREF

Function Description

The function block MX_DSAREF creates a reference yB to the subarray (submatrix) of
matrix referenced by uA. This operation is very fast because no matrix element is copied.

The output reference yA is always set to the corresponding input reference uA, the
output reference yB is created inside each instance of this function block. If HLD = on

then no other operation is performed otherwise the reference to the matrix yB is created
with the following properties:

• Number of rows of the submatrix is set to M-i, where M is number of rows of the
matrix referenced by uA.

• Number of columns of the submatrix is set to N-j, where N is number of columns
of the matrix referenced by uA.

• The �rst element in position (0, 0) of the submatrix is the element of the matrix
referenced by uA in position (i, j), all indices are zero based.

• The matrix referenced by yB has the same leading dimension as the matrix refer-
enced by uA.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

• 0 > i ≥ M.

• 0 > j ≥ N.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

i Index of the subarray �rst row Long (I32)

j Index of the subarray �rst column Long (I32)

HLD Hold Bool

529

Parameter

ay Output reference of the subarray ⊙[0 0] Double (F64)

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

530CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DSASET � Set A into subarray of B

Block Symbol Licence: STANDARD

uA

uB

uplo

i

j

m

n

HLD

yA

yB

E

MX_DSASET

Function Description

Generally, the function block MX_DSASET copies the matrix referenced by uA into the
subarray (submatrix) of the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing is copied otherwise the matrix referenced by uA

is copied (with respect to the value of the input uplo) to the submatrix of the matrix
referenced by uB to the row with zero based index I and the column with zero based
index J containing M rows and N columns. The mentioned variables have the following
meanings:

• If the input i ≤ 0 then I is set to 0 else if i ≥ MB then I is set to MB - 1 else I is
set to i, where MB is the number of rows of the matrix referenced by uB.

• If the input j ≤ 0 then J is set to 0 else if j ≥ NB then J is set to NB - 1 else J is
set to j, where NB is the number of columns of the matrix referenced by uB.

• Number of copied rows M is set in two stages. First, M is set to minimum of MB - I
and number of rows of the matrix referenced by uA. Second, if m > 0 then M is set
to the minimum of m and M.

• Number of copied columns N is set in two stages. First, N is set to minimum of NB
- J and number of columns of the matrix referenced by uA. Second, if n > 0 then
N is set to the minimum of n and N.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• uplo is less than 0 or greater than 3,

• the number of elements of the matrix referenced by uB is less than M ∗ N.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

531

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

uplo Part of the matrix to be copied Long (I32)

0 All
1 All
2 Upper
3 Lower

i Index of the subarray �rst row Long (I32)

j Index of the subarray �rst column Long (I32)

m Number of matrix rows Long (I32)

n Number of matrix columns Long (I32)

HLD Hold Bool

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

532CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DTRNSP � General matrix transposition: B := alpha*A^T

Block Symbol Licence: STANDARD

uA

uB

alpha

HLD

yA

yB

E

MX_DTRNSP

Function Description

The function block MX_DTRNSP stores the scalar multiple of the general (i.e. rectangular)
matrix referenced by uA into the matrix referenced by uB.

The output references yA and yB are always set to the corresponding input references
uA and uB. If HLD = on then nothing else is done otherwise the BLAS-like function
X_DTRNSP is called internally:

X_DTRNSP(M, N, ALPHA, uA, LDA, uB, LDB);

where parameters of X_DTRNSP are set in the following way:

• M is number of rows of the matrix referenced by uA.

• N is number of columns of the matrix referenced by uA.

• If the input alpha is equal to 0 then ALPHA is set to 1 else ALPHA is set to alpha.

• LDA and LDB are leading dimensions of matrices referenced by uA and uB.

The error �ag E is set to on if:

• the reference uA or uB is not de�ned (i.e. input uA or uB is not connected),

• the call of the function X_DTRNSP returns error using the function XERBLA, see the
system log.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

533

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

E Error indicator Bool

534CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_DTRNSQ � Square matrix in-place transposition: A := al-
pha*A^T

Block Symbol Licence: STANDARD

uA

alpha

HLD

yA

E

MX_DTRNSQ

Function Description

The function block MX_DTRNSQ transpose the scalar multiple of the square matrix refer-
enced by uA in-place.

The output reference yA is always set to the corresponding input references uA. If
HLD = on then nothing else is done otherwise the BLAS-like function X_DTRNSQ is called
internally:

X_DTRNSQ(N, ALPHA, uA, LDA);

where parameters of X_DTRNSQ are set in the following way:

• N is number of rows and columns of the matrix referenced by uA.

• If the input alpha is equal to 0 then ALPHA is set to 1 else ALPHA is set to alpha.

• LDA is the leading dimension of the matrix referenced by uA.

The error �ag E is set to on if:

• the reference uA is not de�ned (i.e. input uA is not connected),

• the matrix referenced by uA is not square,

• the call of the function X_DTRNSQ returns error using the function XERBLA, see the
system log.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

alpha Scalar coe�cient alpha Double (F64)

HLD Hold Bool

535

Output

yA Output reference to matrix A Reference

E Error indicator Bool

536CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_FILL � Fill real matrix or vector

Block Symbol Licence: STANDARD

uMV

value

mode

HLD

yMV

E

MX_FILL

Function Description

The function block MX_FILL �lls elements of the matrix or vector referenced by uMV

according to the input mode.
The output reference yMV is always set to the corresponding input references uMV.

By setting HLD = on the function of the block is stopped, but the references are passed
further. The error �ag E is set to on, if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• 0 > mode > 4.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

value Fill value of matrix/vector Double (F64)

mode Fill mode Long (I32)

0 Value
1 Value
2 Ones
3 Diagonal value
4 Diagonal ones

HLD Hold Bool

Output

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

537

MX_FNX � Matrix and vector scalar functions

Block Symbol Licence: STANDARD

uMV

col

HLD

yMV
val
aux
E

MX_FNX

Function Description

The MX_FNX block returns the result of the function speci�ed by the efunc parameter to
the output val. The function is applied to the elements of the matrix or vector referenced
by uMV. For matrices, a speci�c column can be selected by the col input. By setting col

= -1, the whole matrix is considered. Depending on the efunc parameter, the aux output
displays an auxiliary value:

• efunc = 1:Minimum: aux contains the index of the element with the minimum
value,

• efunc = 2:Maximum: aux contains the index of the element with the maximum
value,

• efunc = 3:Sum: aux contains the number of summed elements,

• efunc = 4:Average: aux contains the number of averaged elements,

• efunc = 5:Standard deviation: aux contains the number of elements for the
calculation of the standard deviation,

• efunc = 6:RMS: aux contains the number of elements for the calculation of the
root mean square.

The output reference yMV is always set to the corresponding input reference uMV.
By setting HLD = on, the calculation is stopped, but the references are passed further.
The error �ag E is set to on, if:

• the reference uMV is not de�ned (i.e. the input uMV is not connected),

• the input col is out of the range of columns of the matrix referenced by uMV.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

col Column index (-1 for whole matrix) Long (I32)

HLD Hold Bool

538CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Parameter

efunc Function type ⊙1 Long (I32)

1 Minimum
2 Maximum
3 Sum
4 Average
5 Standard deviation
6 RMS

NZ Process non-zero values only Bool

tol Tolerance for zero detection Double (F64)

Output

yMV Output reference to a matrix or vector Reference

val Function value Double (F64)

aux Function auxiliary value Long (I32)

E Error indicator Bool

539

MX_MAT � Matrix data storage block

Block Symbol Licence: STANDARD

yMat

MX_MAT

Function Description

The function block MX_MAT allocates memory (during the block initialization) for m ∗ n
elements of the type determined by the parameter etype of the matrix referenced by the
output yMat. Also matrix leading dimension can be set by the parameter ld. If ld < m

then the leading dimension is set to m.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

m Number of matrix rows ↓1 ↑1000000000 ⊙10 Long (I32)

n Number of matrix columns ↓1 ↑1000000000 ⊙10 Long (I32)

ld Leading dimension (>= number of rows) ↓0 ↑1000000000 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

Output

yMat Output reference to a matrix Reference

540CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_RAND � Randomly generated matrix or vector

Block Symbol Licence: STANDARD

uMV

nseed

SET

HLD

yMV

E

MX_RAND

Function Description

The function block MX_RAND generates random elements of the matrix or vector referenced
by uMV.

The output reference yMV is always set to the corresponding input references uMV. If
HLD = on then nothing is generated otherwise pseudo-random values of the matrix or
vector elements referenced by uMV are generated using these rules:

• If the parameter BIP is on then the generated elements are inside the interval
[−scale; scale] else they are inside the interval [0; scale].

• Elements are internally generated using the standard C language function rand()

which generates pseudo-random numbers in the range from 0 to RAND_MAX. Note,
that the value of RAND_MAX can be platform dependent (and it should be at least
32767).

• The rising edge on the input SET causes that the standard C language function
srand(nseed) (initailizes the pseudo-random generator with the value of nseed)
is called before the generation of random elements. The same sequences of pseudo-
random numbers are generated after calls of srand(nseed) for the same values of
nseed.

The error �ag E is set to on if the reference uMV is not de�ned (i.e. input uMV is not
connected).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

nseed Random number seed Long (I32)

SET Set initial value of random number generator to nseed on rising
edge

Bool

HLD Hold Bool

541

Parameter

BIP Bipolar random values �ag Bool

scale Random values multiplication factor ⊙1.0 Double (F64)

Output

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

542CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_REFCOPY � Copies input references of matrices A and B to
their output references

Block Symbol Licence: STANDARD

uA

uB

yA

yB

MX_REFCOPY

Function Description

The function block MX_REFCOPY is an administrative block of the MATRIX blockset. It does
nothing else than copying the input references uA and uB to the corresponding output
references yA and yB.

But suitable insertion of this block to the function block scheme can substantially in-
�uence (change) the execution order of blocks which can be very advantageous especially
in combination with such blocks as e.g. MX_DSAREF.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Input reference to matrix A Reference

uB Input reference to matrix B Reference

Output

yA Output reference to matrix A Reference

yB Output reference to matrix B Reference

543

MX_SLFS � Save or load a Matrix/Vector into �le or string

Block Symbol Licence: STANDARD

uMV

uStr

LOAD

SAVE

yMV

yStr

iE

MX_SLFS

Function Description

The block allows to convert a matrix or vector into text form and vice versa. The matrix
is supplied as a reference to the uMV input. The yMV output refers to the same matrix as
the uMV input, and is intended to chain matrix blocks in the correct order, as is common
with all MATRIX blocks.

The text can be either in the input uStr (or output yStr for the opposite direction
of conversion) or in the �le. If the text is in a �le, its name is the string connected to
the uStr input. The usual REXYGEN system �le name rules applies, ie it is relative to
datadir and ../ is not allowed to leave the directory. If the uStr input is unattached (or
empty string), the path name of the �le is used with the full path (that is, including the
task name and all subsystems) with the .dat extension.

The format of a matrix in a text �le or in text input and output is determined by the
format parameter. Supported English and Czech CSV (i.e., columns separated by comma
or semicolon), JSON format (created by Google and often used in web applications) and
the format used by MATLAB (for entering a matrix in MATLAB scripts).

Conversion from text to matrix/vector or vice versa can be performed at each step
of the algorithm or is triggered by the LOAD and SAVE inputs. The exact method is
determined by the mode parameter:

• 1: level-triggered �le: data are converted from a �le to a matrix when LOAD =
on and from a matrix to a �le when SAVE = on; if both signals are active, it is an
error and no action is taken,

• 2: edge-triggered �le: data are converted from a �le to a matrix on the rising
edge (off→on) of the LOAD input and from a matrix to a �le on the rising edge
of the SAVE input; if there are rising edges on both signals, it is an error and no
action is taken,

• 3: level-triggered string: data are converted from the uStr input to a matrix
when LOAD = on and from a matrix to the yStr output when SAVE = on; if both
signals are active, it is an error and no action is taken,

• 4: edge-triggered string: data are converted from the uStr input to a matrix
on the rising edge of the LOAD input and from a matrix to the yStr output on the

544CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

rising edge of the SAVE input; if there are rising edges on both signals, it is an error
and no action is taken,

• 5: continuous string to matrix: data are converted from the uStr input to a
matrix at each step of the algorithm,

• 6: continuous matrix to string: data are converted from a matrix to the yStr
output at each step of the algorithm,

• 7: continuous �le to matrix: data are converted from a �le to a matrix at each
step of the algorithm,

• 8: continuous matrix to �le: data are converted from a matrix to a �le at each
step of the algorithm.

If an error occurs, it is signaled to the iE output and in the log. After a fatal error, the
conversion from/to the matrix stops. Error reset for mode = 1 .. 4 is done by setting
LOAD = SAVE = off, resetting fatal error cannot be performed for mode = 5 .. 8 (must
switch to mode = 1 .. 4 and then back).

The nmax parameter is used to allocate the output string. If nmax> 0, it is allocated
speci�ed number of chars during initialization. If this amount is insu�cient, the block
reports an error. If nmax = 0, the block increases the length of the output string as
needed. If user don't specify the nmax parameter it can lead to full RAM memory in
extreme situations and unpredictable behaviour of entire system.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

uStr Input string (to convert into matrix) or �lename String

LOAD Trigger to move data to matrix/vector Bool

SAVE Trigger to move data from matrix/vector Bool

Parameter

mode Triggering mode ⊙2 Long (I32)

1 level-triggered �le
2 edge-triggered �le
3 level-triggered string
4 edge-triggered string
5 continuous string to matrix
6 continuous matrix to string
7 continuous �le to matrix
8 continuous matrix to �le

545

format String/�le format ⊙1 Long (I32)

1 CSV
2 CSV(semicolon)
3 JSON
4 MATLAB

prec Number of digits for single value ↓0 ↑20 ⊙6 Long (I32)

TRN Transposition �ag Bool

nmax Allocated size of string ↓0 Long (I32)

Output

yMV Output reference to a matrix or vector Reference

yStr String representation of the matrix/vector String

iE Error code Error

546CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

MX_VEC � Vector data storage block

Block Symbol Licence: STANDARD

yVec

MX_VEC

Function Description

The function block MX_VEC allocates memory (during the block initialization) for n ele-
ments of the type determined by the parameter etype of the vector referenced by the
output yVec.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

n Number of vector elements ↓1 ↑1000000000 ⊙10 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

Output

yVec Output reference to a vector Reference

547

MX_WRITE � Write a Matrix/Vector to the console/system log

Block Symbol Licence: STANDARD

uMV
RUN

yMV
E

MX_WRITE

Function Description

The function block MX_WRITE can write a vector or matrix to the console or the system
log. The severity of the console/system log output is set by the parameter mode. The
function block is very useful for debugging purposes of matrix/vector algorithms.

The output references yMV is always set to the input reference uMV. If RUN = off

then nothing else is done otherwise matrix or vector is written to the system log if the
con�gured target logging level for function blocks contains the con�gured mode. Format
of each matrix/vector element is determined by parameters mchars and mdec.
The error �ag E is set to on if:

• the reference uMV is not de�ned (i.e. input uMV is not connected),

• 3 > mchars > 25,

• 0 > mdec > mchars− 2.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uMV Input reference to a matrix or vector Reference

RUN Enable execution Bool

Parameter

Symbol Matrix/vector symbolic name for console or log output ⊙A String

mchars Number of characters per single element ↓3 ↑25 ⊙8 Long (I32)

mdec Number of decimal digits per single element ↓0 ↑23 ⊙4 Long (I32)

mode Severity mode of writing ⊙3 Long (I32)

0 None
1 None
2 Verbose
3 Information
4 Warning
5 Error

548CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

Output

yMV Output reference to a matrix or vector Reference

E Error indicator Bool

549

RTOV � Vector multiplexer

Block Symbol Licence: STANDARD

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV

Function Description

The RTOV block can be used to create vector signals in the REXYGEN system. It combines
the scalar input signals into one vector output signal. It is also possible to chain the RTOV
blocks to create signals with more than 8 items.

The nmax parameter de�nes the maximal number of items in the vector (in other
words, the size of memory allocated for the signal). The offset parameter de�nes the
position of the �rst input signal u1 in the resulting signal. Only the �rst n input signals
are combined into the resulting yVec vector signal. Parametr etype determines the type
of input values and the type of values in the internal vector. If the vector (or matrix)
connected to the input uVec has a di�erent type, it will be converted.

ATTENTION: Up to version 2.50.10.x output vector is one-row-matrix. Later ver-
sion (2.51.0.9525 and later) use one-column-matrix. This change was necessary for con-
sistence in matrix operation.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

uVec Vector signal Reference

u1..u8 Analog input of the block Double (F64)

Parameter

nmax Allocated size of vector ↓0 ⊙8 Long (I32)

offset Index of the �rst input in vector ↓0 Long (I32)

n Number of valid inputs ↓0 ↑8 ⊙8 Long (I32)

550CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

Output

yVec Vector signal Reference

551

SWVMR � Vector/matrix/reference signal switch

Block Symbol Licence: STANDARD

uRef0
uRef1
uRef2
uRef3
uRef4
uRef5
uRef6
uRef7
iSW

yRef

SWVMR

Function Description

The SWVMR allows switching of vector or matrix signals. It also allow switching of motion
axes in motion control algorithms (see the RM_Axis block).

Use the SSW block or its alternatives SWR and SELU for switching simple signals.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uRef0..uRef7 Vector signal Reference

iSW Active signal selector Long (I32)

Output

yRef Vector signal Reference

552CHAPTER 14. MATRIX � BLOCKS FORMATRIX ANDVECTOROPERATIONS

VTOR � Vector demultiplexer

Block Symbol Licence: STANDARD

uVec

y1
y2
y3
y4
y5
y6
y7
y8

VTOR

Function Description

The VTOR block splits the input vector signal into individual signals. The user de�nes the
starting item and the number of items to feed to the output signals using the offset

and n parameter respectively. The etype parameter can be used to de�ne the type of
the output values. If the vector connected to the input uVec has a di�erent type, it will
be converted.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

uVec Vector signal Reference

Parameter

n Number of valid outputs ↓0 ↑8 ⊙8 Long (I32)

offset Index of the �rst output ↓0 Long (I32)

etype Type of elements ⊙8 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)

Output

y1..y8 Analog output of the block Double (F64)

Chapter 15

OPTIM � Optimization blocks

Contents

QP_MPC2QP � Conversion of MPC problem to quadratic program-
ming . 554

QP_OASES � Quadratic programming using active set method . . . 561

QP_UPDATE � Update matrices/vectors of quadratic programming 566

SOLNP � Nonlinear optimization solver 571

The OPTIM library is tailored for optimization algorithms and processes. It includes
QCEDPOPT for Quadratic Cost Economic Dispatch Problem optimization, providing ad-
vanced tools for handling complex optimization problems. The library also features blocks
like QP_MPC2QP and QP_OASES for Quadratic Programming, essential in Model Predictive
Control (MPC) scenarios. Additionally, QP_UPDATE is available for updating quadratic
program parameters. This library is particularly useful in systems requiring high-level
optimization solutions, such as in advanced control and decision-making algorithms.

553

554 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

QP_MPC2QP � Conversion of MPC problem to quadratic pro-
gramming

Block Symbol Licence: ADVANCED

np

nc

uA

uBu

uBv

uC

uQ

uW

uR

ul

uH

uGx

uGv

uGw

uSuL

uSv

uT

uScuL

uScv

uTc

uWORK

HLD

yA

yBu

yBv

yC

yQ

yW

yR

yl

yH

yGx

yGv

yGw

ySuL

ySv

yT

yScuL

yScv

yTc

yWORK

E

QP_MPC2QP

Function Description

Quadratic Programming (QP) is a standard technique which suites very well to solve
Model based Predictive Control (MPC) problems [13]. Quadratic Programming is an
optimization technique that minimizes the sum of quadratic form and linear form.

The QP_MPC2QP block converts a linear MPC problem with quadratic optimization
criterion to a quadratic programming problem. The block is compatible with the block
QP_UPDATE and the QP solver QP_OASES.

MPC problem formulation

The MPC problem consists of a discrete linear time invariant state space model

xk+1 = Axk +Buuk +Bvvk ,

yk = Cxk ,
(15.1)

where x ∈ Rn is the state vector, u ∈ Rmu is the input vector, v ∈ Rmv is the disturbance
vector and y ∈ Rp is the output vector. Matrices A ∈ Rn×n, Bu ∈ Rn×mu , Bv ∈ Rn×mv

and C ∈ Rp×n are referenced by inputs uA, uBu, uBv and uC. The model based predictive
control problem is formulated as an optimization problem � minimization of the quadratic

555

optimality criterion (cost function) in the form

J =

np∑
k=1

{
x̂TkQx̂k + x̂TkW + ûTk−1Rûk−1

}
, (15.2)

where symmetric and positive (semi-)de�nite matrices Q ∈ Rn×n and R ∈ Rmu×mu and
the vector W ∈ Rn are referenced by inputs uQ, uR and uW, and np is the prediction
horizon (input np).

Additional constraints on the state x and the output y may be required for the
minimization process:

xmin ≤ xk ≤ xmax (15.3)

ymin ≤ yk ≤ ymax (15.4)

Predictor

From the state equation with the initial condition x0 it holds

x1 = Ax0 +Buu0 +Bvv0

x2 = Ax1 +Buu1 +Bvv1

= A2x0 +ABuu0 +Buu1 +ABvv0 +Bvv1
...

xk = Akx0 +
[
Ak−1Bu . . . ABu Bu

] u0
...

uk−1

+
[
Ak−1Bv . . . ABv Bv

] v0
...

vk−1

Thus, for the prediction horizon np we have

x1
x2
...

︸︷︷︸
X

xnp

 =

Bu 0 . . . 0
ABu Bu . . . 0
...

...
. . .

...

︸ ︷︷ ︸
Su

Anp−1Bu Anp−2Bu . . . Bu

u0
u1
...

︸ ︷︷ ︸
U

unp−1

+

Bv 0 . . . 0
ABv Bv . . . 0
...

...
. . .

...

︸ ︷︷ ︸
Sv

Anp−1Bv Anp−2Bv . . . Bv

v0
v1
...

︸ ︷︷ ︸
V

vnp−1

+

A
A2

...

︸︷︷︸
T

Anp

x0

556 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

i.e.
X = SuU + SvV + Tx0 (15.5)

Similarly, for the output equation we can get

y1
y2
...

︸︷︷︸
Y

ynp

 =

Cx1
Cx2
...

Cxnp

 =

CBu 0 . . . 0
CABu CBu . . . 0

...
...

. . .
...

︸ ︷︷ ︸
Scu

CAnp−1Bu CAnp−2Bu . . . CBu

u0
u1
...

unp−1

+

CBv 0 . . . 0
CABv CBv . . . 0

...
...

. . .
...

︸ ︷︷ ︸
Scv

CAnp−1Bv CAnp−2Bv . . . CBv

v0
v1
...

vnp−1

+

CA
CA2

...

︸ ︷︷ ︸
Tc

CAnp

x0

i.e.
Y = ScuU + ScvV + Tcx0 (15.6)

and standard QP matrices Aeq and beq

Aeq = ScuL, beq = −ScvV − Tcx0 (15.7)

Predictor for control horizon less than prediction horizon

Until now, it was assumed that optimal control would be sought over the entire prediction
horizon np. For a long prediction horizon, this leads to time-consuming optimization,
which can be accelerated by choosing a control horizon nc (input nc) smaller than the
prediction horizon np. Then U can be written as

U =

u0
u1
...

unc−1

unc−1
...

unc−1

nc

np−nc

np

Note that the input uk is the di�erence of the state and for control horizon nc it holds
uk+nc−1 = uk+nc = uk+nc+1 = · · · = uk+np−1 = 0 (for the step k). Then it can be written

557

as

U =

nc

np−nc

Imu 0
. . .

0 Imu

0

︸ ︷︷ ︸
L

 u0

...
unc−1

 ≜ LUnc (15.8)

where U ∈ Rnp·mu , Unc ∈ Rnc·mu and Imu ∈ Rmu×mu is identity matrix.

The equations (15.5) and (15.6) are modi�ed for Unc to

X = SuLUnc + SvV + Tx0 (15.9)

Y = ScuLUnc + ScvV + Tcx0 (15.10)

Matrices SuL ∈ Rnp·n×nc·mu , Sv ∈ Rnp·n×np·mv , T ∈ Rnp·n×n, ScuL ∈ Rnp·p×nc·mu ,
Scv ∈ Rnp·p×np·mv and Tc ∈ Rnp·p×n are computed by this block, must be allocated e.g.
by the MX_MAT blocks and references to the preallocated matrices must be connected to
the block inputs uSuL, uSv, uT, uScuL, uScv and uTc.

The default value of the matrix L ∈ Rnp·mu×nc·mu in equation 15.8 selects the �rst
nc subvectors ui, i = 0, . . . , nc − 1 from U . The block also allows to select nc subvectors
ui with arbitrary indices from 0, . . . , np, which are contained in the integer vector of
dimension nc referenced by the input ul. The elements of this vector must form an
increasing sequence. If the input ul is not connected, the default value of L is used (the
same value of L is obtained if the vector referenced by ul is equal to [0, 1, . . . , nc−1]T).

Conversion of MPC with the same prediction and control horizons to QP

The standard form of cost function for QP is

JQP = hUTHU + UTG (15.11)

where U is a vector of optimal control sequence, H is a symmetric and positive (semi-)
de�nite Hessian matrix, G is a gradient vector and h is a scalar constant which is usually
equal to 1 or 1/2.

558 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

The cost function (15.2) can be modi�ed to the form

J =

np∑
k=1

{
xTkQxk + xTkW + uTk−1Ruk−1

}

=
[
x1 x2 . . . xnp

]

Q

Q
. . .

︸ ︷︷ ︸
Q̄ = Q̄T

Q

x1
x2
...

xnp

+
[
x1 x2 . . . xnp

]

W
W
...

︸︷︷︸
W̄

W

+
[
u0 u1 . . . unp−1

]

R

R
. . .

︸ ︷︷ ︸
R̄ = R̄T

R

u0
u1
...

unp−1

= XT Q̄X +XT W̄ + UT R̄U

= (UTST
u + V TST

v + xT0 T
T)Q̄(SuU + SvV + Tx0)

+ (UTST
u + V TST

v + xT0 T
T)W̄ + UT R̄U

= UTST
u Q̄SuU + UTST

u Q̄SvV + UTST
u Q̄Tx0

+ V TST
v Q̄SuU + V TST

v Q̄SvV + V TST
v Q̄Tx0

+ xT0 T
T Q̄SuU + xT0 T

T Q̄SvV + xT0 T
T Q̄Tx0

+ UTST
u W̄ + V TST

v W̄ + xT0 T
T W̄ + UT R̄U

= UT (ST
u Q̄Su + R̄)U + UTST

u (2Q̄SvV + 2Q̄Tx0 + W̄)

+ ︸ ︷︷ ︸
Jdif

V TST
v (Q̄SvV + 2Q̄Tx0 + W̄) + xT0 T

T (Q̄Tx0 + W̄) ≜ JQP + Jdif

(15.12)

where Jdif is a constant independent of U . From here follows

JQP = UT (ST
u Q̄Su + R̄)U + UTST

u (2Q̄SvV + 2Q̄Tx0 + W̄) (15.13)

Comparing this equation with (15.11), it is obvious that

H =
1

h
(ST

u Q̄Su + R̄)

G = ST
u (2Q̄SvV + 2Q̄Tx0 + W̄)

(15.14)

Conversion of MPC with control horizon less than prediction horizon

559

Similarly as in previous subsection we can get for nc < np

H =
1

h
LT (ST

u Q̄Su + R̄)L

G = (SuL)
T (2Q̄SvV + 2Q̄Tx0 + W̄) ≜ GvV +Gxx0 +Gw

(15.15)

where matrix L is de�ned by (15.8). The Hessian matrix H is a constant matrix for all
steps k of the MPC. But gradient vector G is generally changing in each step k because
vectors V and x0 are changing. Therefore, G is composed of parts Gv, Gx and Gw, which
are already constant vectors. The matrix H and vectors Gv, Gx and Gw are computed
by this function block and are referenced by inputs uH, uGv, uGx and uGw which must be
preallocated. The scalar constant h is the function block parameter.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

np Prediction horizon ↓1 ↑1000000 Long (I32)

nc Control horizon ↓1 ↑1000000 Long (I32)

uA Input reference to system matrix A Reference

uBu Input reference to input matrix Bu of control vector u Reference

uBv Input reference to input matrix Bv of disturbance vector v Reference

uC Input reference to output matrix C Reference

uQ Input reference to symmetric matrix Q in cost function Reference

uW Input reference to vector W in cost function Reference

uR Input reference to symmetric matrix R in cost function Reference

ul Input reference to integer index vector l Reference

uH Input reference to Hessian matrix H Reference

uGx Input reference to part of gradient vector G corresponding to
state vector x

Reference

uGv Input reference to part of gradient vector G corresponding to
disturbance vector v

Reference

uGw Input reference to part of gradient vector G corresponding to
vector W

Reference

uSuL Input reference to work matrix Su*L Reference

uSv Input reference to work matrix Sv Reference

uT Input reference to work matrix T Reference

uScuL Input reference to work matrix Scu*L Reference

uScv Input reference to work matrix Scv Reference

uTc Input reference to work matrix Tc Reference

uWORK Input reference to matrix WORK Reference

HLD Hold Bool

560 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

Output

yA Output reference to system matrix A Reference

yBu Output reference to input matrix Bu of control vector u Reference

yBv Output reference to input matrix Bv of disturbance vector v Reference

yC Output reference to output matrix C Reference

yQ Output reference to symmetric matrix Q in cost function Reference

yW Output reference to vector W in cost function Reference

yR Output reference to symmetric matrix R in cost function Reference

yl Output reference to integer index vector l Reference

yH Output reference to Hessian matrix H Reference

yGx Output reference to part of gradient vector G corresponding to
state vector x

Reference

yGv Output reference to part of gradient vector G corresponding to
disturbance vector v

Reference

yGw Output reference to part of gradient vector G corresponding to
vector W

Reference

ySuL Output reference to work matrix Su*L Reference

ySv Output reference to work matrix Sv Reference

yT Output reference to work matrix T Reference

yScuL Output reference to work matrix Scu*L Reference

yScv Output reference to work matrix Scv Reference

yTc Output reference to work matrix Tc Reference

yWORK Output reference to matrix WORK Reference

E Error indicator Bool

561

QP_OASES � Quadratic programming using active set method

Block Symbol Licence: ADVANCED

uQP

uH

uG

uA

uLB

uUB

uLBA

uUBA

uXopt

uYopt

unWSR

utime

VAR

INIT

HLD

yQP

yH

yG

yA

yLB

yUB

yLBA

yUBA

yXopt

yYopt

ynWSR

ytime

objval

E

iE

QP_OASES

Function Description

The QP_OASES block solves a quadratic programming problem using active set method
[14]:

min
x∈RnV

1
2x

THx+ xTG ,

s. t. lbA ≤ Ax ≤ ubA ,

lb ≤ x ≤ ub ,

where nV is number of variables, nC is number of constraints, the Hessian matrix H ∈
RnV×nV is symmetric and positive (semi-)de�nite, the gradient vector G ∈ RnV, the
constraint matrix A ∈ RnC×nV, bound vectors lb,ub ∈ RnV and constraint vectors
lbA, ubA ∈ RnC.

The block wraps the qpOASES library1, the use of which is described in the manual
[15].

The output references yH, yG, yA, yLB, yUB, yLBA, yUBA, yXopt and yYopt are always
set to the corresponding input uH, uG, uA, uLB, uUB, uLBA, uUBA, uXopt and uYopt. If the
input uQP is not connected, the particular quadratic problem (QP) is allocated in the
�rst execution of the function block (see below) and the output yQP is set to the reference
of the allocated QP. If uQP is connected (to the yQP output of the previous QP_OASES

block), the yQP output is set to uQP and the block works with an already allocated QP.
The block uses internal variables nV and nC. The value of nV is set to the number of

rows of the vector G referenced by uG, the value of nV is set to the number of rows of

1qpOASES which is distributed under the GNU Lesser General Public License, see Appendix A of [15].

562 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

the matrix A referenced by uA. If the reference uA is not de�ned (the matrix A is not
connected), the value nC = 0.

To solve the QP problem, a QProblem object is created in the generic case (see
Chapter 3 of [15]). However, the block can also solve the following special cases depending
on the input references and the hessianType parameter:

uH not connected. In this case, it is assumed that Hessian matrix has a trivial value of
the identity or zero matrix. The hessianType parameter must be equal to HST_ZERO
or HST_IDENTITY, see Section 4.5 of the manual [15].

uA not connected. In this case, the constraint matrix A is not used (nC = 0), the
QProblemB object is created, see Section 4.3 of the manual [15]. The hessianType
parameter can be any allowed value.

VAR = on. If the input VAR = on during the �rst time the block is executed, an object
of class SQProblem is created, see Section 4.2 of the manual [15]. In this case, all
input matrices and vectors can change in each execution step in which VAR = on.

To obtain the solution of the QP problem, at least one of the input references uXopt
and uYopt must be de�ned (connected to a vector). If connected to uXopt, the yXopt

output will refer to the primal solution Xopt ∈ RnV, if connected to uYopt, the yYopt

output will refer to the dual solution Yopt ∈ RnV+nC of the QP problem. If both in-
puts are connected, both solutions will be obtained in each step. The optimal objective
function value is indicated on the output objval.

The integer input unWSR speci�es the maximum number of working set recalculations
to be performed during the initial homotopy, see Section 3.2 of the manual [15]. Output
ynWSR contains the number of working set recalculations actually performed. If the double
input utime is connected and has a positive value, it contains the maximum allowed
CPU time in seconds for the whole initialisation. The actually required CPU time for
the initialization is indicated on the output ytime.

At least one vector must be connected to the uXopt or uYopt inputs and both has be
connected to obtain the solution of the QP problem. If uXopt is connected, the yXopt

output will refer to the primary Xopt solution, if uYopt is connected, the yYopt output
will refer to the dual Yopt solution of the QP task. If both inputs are connected, both
solutions will be obtained in each step.

If the input INIT = on then the particular allocated QP problem is re-initialized.
The INIT should be on for only a single period (edge) because no solution is computed
during the QP initialisation. If HLD = on then nothing is computed.
The error �ag E is set to on and the error code iE is set to zero if:

• the reference uG or uLB or uUB is not de�ned (i.e. input uG or uLB or uUB is not
connected),

• the reference uA is de�ned and uLBA or uUBA is not de�ned (i.e. input uA is connected
and uLBA or uUBA is not connected),

563

• both references uXopt and uYopt are not de�ned (i.e. neither of the inputs uXopt
and uYopt is connected),

• the Hessian matrix H referenced by uH has a di�erent number of rows and columns
than nV,

• the number of rows of vectors referenced by uLB and uUB is not equal to nV (or the
number of their columns is not equal to 1),

• the number of rows of vectors referenced by uLBA and uUBA is not equal to nC (or
the number of their columns is not equal to 1) if the matrix A referenced by uA is
connected,

• the number of rows of the vector referenced by uXopt is not equal to nV or the
number of rows of the vector referenced by yOpt is not equal to nV+nC (or the
number of their columns is not equal to 1),

• the internal space for transposed copies of matrices H or A is too small.

If the �ag E is set to on and the error code iE is not zero then iE indicates the
qpOASES error code, see the include �le MessageHandling.hpp from qpOASES library.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uQP Input reference to quadratic programming problem Reference

uH Input reference to Hessian matrix H Reference

uG Input reference to gradient vector G Reference

uA Input reference to constraint matrix A Reference

uLB Input reference to lower bound vector LB Reference

uUB Input reference to upper bound vector LB Reference

uLBA Input reference to lower constraints' bound vector LB Reference

uUBA Input reference to upper constraints' bound vector LB Reference

uXopt Input reference to primal optimal solution Reference

uYopt Input reference to dual optimal solution Reference

unWSR Maximum number of initial working set recalculations Long (I32)

utime Maximum allowed CPU time in seconds for the whole
initialisation

Double (F64)

VAR Indicates that matrices H and A are time varying Bool

INIT Calls init() function instead of hotstart() in each block execution Bool

HLD Hold Bool

564 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

Parameter

nVmax Maximum number of optimization variables nV Long (I32)

nCmax Maximum number of optimization constraints nC Long (I32)

hessianType Hessian matrix type Long (I32)

printLevel Print level Long (I32)

enableRamping Enable ramping Bool

enableFarBounds Enable use of far bounds Bool

enableFlippingBounds Enable use of �ipping bounds Bool

enableRegularisation Enable regularisation of semide�nite Hessian matrix Bool

enableFullLITests Enable use of condition-hardened linear independence
tests

Bool

enableNZCTests Enable nonzero curvature tests Bool

enableDriftCorrection Frequency of drift corrections (0 = o�) Long (I32)

enableCholeskyRefact Frequency of full refactorization of projected Hessian
(0 = o�)

Long (I32)

enableEqualities Equalities shall be always treated as active constraints Bool

terminationTolerance Termination tolerance Double (F64)

boundTolerance If upper and lower limits di�er less than this tolerance, they
are regarded equal, i.e. as equality constraint

Double (F64)

boundRelaxation Initial relaxation of bounds to start homotopy and initial
value for far bounds.

Double (F64)

epsNum Numerator tolerance for ratio tests Double (F64)

epsDen Denominator tolerance for ratio tests Double (F64)

maxPrimalJump Maximum allowed jump in primal variables in nonzero
curvature tests

Double (F64)

maxDualJump Maximum allowed jump in dual variables in linear
independence tests

Double (F64)

initialRamping Start value for ramping strategy Double (F64)

finalRamping Final value for ramping strategy Double (F64)

initialFarBounds Initial size of Far Bounds Double (F64)

growFarBounds Factor to grow Far Bounds Double (F64)

initialStatusBounds Initial status of bounds at �rst iteration Long (I32)

epsFlipping Tolerance of squared entry of Cholesky diagonal which triggers
�ipping bounds

Double (F64)

numRegularisationSteps Maximum number of successive regularisation
steps

Long (I32)

epsRegularisation Scaling factor of identity matrix used for Hessian
regularisation

Double (F64)

numRefinementSteps Maximum number of iterative re�nement steps Long (I32)

epsIterRef Early termination tolerance for iterative re�nement Double (F64)

epsLITests Tolerance for linear independence tests Double (F64)

epsNZCTests Tolerance for nonzero curvature tests Double (F64)

565

Output

yQP Output reference to quadratic programming problem Reference

yH Output reference to Hessian matrix H Reference

yG Output reference to gradient vector G Reference

yA Output reference to constraint matrix A Reference

yLB Output reference to lower bound vector LB Reference

yUB Output reference to upper bound vector LB Reference

yLBA Output reference to lower constraints' bound vector LB Reference

yUBA Output reference to upper constraints' bound vector LB Reference

yXopt Output reference to primal optimal solution Reference

yYopt Output reference to dual optimal solution Reference

ynWSR Number of performed initial working set recalculations Long (I32)

ytime Elapsed CPU time in seconds for the whole initialisation Double (F64)

objval Optimal objective function value Double (F64)

E Error indicator Bool

iE Error code Long (I32)

566 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

QP_UPDATE � Update matrices/vectors of quadratic program-
ming

Block Symbol Licence: ADVANCED

np

nc

ux0

uxmin

uxmax

uymin

uymax

uV

uGx

uGv

uGw

uSuL

uSv

uT

uScuL

uScv

uTc

uG

uCA

uLBA

uUBA

HLD

yx0

yxmin

yxmax

yymin

yymax

yV

yGx

yGv

yGw

ySuL

ySv

yT

yScuL

yScv

yTc

yG

yCA

yLBA

yUBA

E

QP_UPDATE

Function Description

The QP_UPDATE function block cooperates with the QP_MPC2QP block which converts
the MPC problem described by equations (15.1)�(15.4) with prediction horizon np and
control horizon nc (inputs np and nc), to quadratic programming and pre-computes
the Hessian matrix H, parts of the gradient vector Gx, Gv, Gw, matrices determining
state constraints SuL, Sv, T , and matrices determining output constraints ScuL, Scv, Tc.
Besides the constant Hessian matrix H, the other vectors and matrices are connected to
input references uGx, uGv, uGw, uSuL, uSv, uT, uScuL, uScv and uTc.

This block updates the QP problem for the given time instant with current values
of state vector initial condition x0, state vector bounds xmin and xmax, output vector
bounds ymin and ymax, vector V (see eq. (15.5)) of disturbance prediction vectors vk, k =
0, . . . , np − 1. These vectors are referenced by inputs ux0, uxmin, uxmax, uymin, uymax
and uV.

First, the gradient vector G referenced by the input uG is updated according to the
equation (15.15):

G = Gxx0 +GvV +Gw.

The state constraints (15.3) can be rewritten using (15.9) for the prediction horizon
np to

Xmin − SvV − Tx0 ≤ SuLUnc ≤ Xmax − SvV − Tx0,

567

where Xmin resp. Xmax is a vector composed of np copies of the xmin resp. xmax vector.
Similarly, the output constraints (15.4) can be rewritten using (15.10) to

Ymin − ScvV − Tcx0 ≤ ScuLUnc ≤ Ymax − ScvV − Tcx0, .

where Ymin resp. Ymax is a vector composed of np copies of the ymin resp. ymax vector.
The more compact form of these two equations is[

Xmin − SvV − Tx0

︸ ︷︷ ︸
lbA

Ymin − ScvV − Tcx0

]
≤

[
SuL

︸ ︷︷ ︸
CA

ScuL

]
Unc ≤

[
Xmax − SvV − Tx0

︸ ︷︷ ︸
ubA

Ymax − ScvV − Tcx0

]
, (15.16)

where the matrix CA and vectors lbA, ubA are computed by this block, must be allocated
e.g. by the MX_MAT blocks and references to the preallocated matrices must be connected
to the block inputs uCA, uLBA and uUBA.

The last equation 15.16 is a general form of QP constraints. It covers both equality
or inequality constraints for states and outputs.

If no state constraints are required, leave the uxmin, uxmax, uSuL, uSv and uT inputs
disconnected. Then equation 15.16 gets the form[︸ ︷︷ ︸

lbA

Xmin − SvV − Tx0
]
≤

[︸︷︷︸
CA

SuL
]
Unc ≤

[︸ ︷︷ ︸
ubA

Xmax − SvV − Tx0
]
. (15.17)

Similarly, if no output constraints are required, leave the uymin, uymax, uScuL, uScv
and uTc inputs disconnected. Then equation 15.16 gets the form[︸ ︷︷ ︸

lbA

Ymin − ScvV − Tcx0
]
≤

[︸ ︷︷ ︸
CA

ScuL
]
Unc ≤

[︸ ︷︷ ︸
ubA

Ymax − ScvV − Tcx0
]
. (15.18)

The output references yx0, yxmin, yxmax, yymin, yymax,yV, yGx, yGv, yGw, ySuL, ySv,
yT, yScuL, yScv, yTc, yG, yCA, yLBA and yUBA are always set to the corresponding input
ux0, uxmin, uxmax, uymin, uymax,uV, uGx, uGv, uGw, uSuL, uSv, uT, uScuL, uScv, uTc, uG,
uCA, uLBA and yUBA.

If HLD = on then nothing is computed.

The error �ag E is set to on if:

• the prediction horizon np < 1 or control horizon nc < 1, or nc > np,

• the reference ux0 is not de�ned or the element type of the array it references is not
Double (F64),

• the internal variable bStateConstr = on and at least one of the references uxmin,
uxmax is not de�ned, or the element type of at least one of the arrays they reference
is not Double (F64),

568 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

• the internal variable bOutputConstr = on and the reference uymin is de�ned and
the element type of the array it references is not Double (F64),

• the internal variable bOutputConstr = on and the reference uymax is de�ned and
the element type of the array it references is not Double (F64),

• the reference uV is de�ned and the element type of the array it references is not
Double (F64),

• the reference uG is de�ned and at least one of the references uGx, uGv, uSuL, uSv
or uT is not de�ned,

• the reference uG is de�ned and the element type of the array it references is not
Double (F64), or the reference uGx is de�ned and the element type of the array
it references is not Double (F64), or the reference uGv is de�ned and the element
type of the array it references is not Double (F64), or the reference uGw is de�ned
and the element type of the array it references is not Double (F64),

• the reference uSuL is de�ned and the element type of the array it references is not
Double (F64), or the reference uSv is de�ned and the element type of the array
it references is not Double (F64), or the reference uT is de�ned and the element
type of the array it references is not Double (F64),

• the reference uScuL is de�ned and the element type of the array it references is not
Double (F64), or the reference uScv is de�ned and the element type of the array
it references is not Double (F64), or the reference uTc is de�ned and the element
type of the array it references is not Double (F64),

• the reference uCA or uLBA or uUBA or the element type of at least one of the arrays
they reference is not Double (F64),

• the arrays referenced by de�ned references are too small or have incompatible
dimensions.

If E = on, see the system log for details.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

np Prediction horizon ↓1 ↑1000000 Long (I32)

nc Control horizon ↓1 ↑1000000 Long (I32)

ux0 Input reference to initial condition vector x0 of the state vector
x

Reference

uxmin Input reference to vector of low limits of the state vector elements Reference

uxmax Input reference to vector of high limits of the state vector
elements

Reference

569

uymin Input reference to vector of low limits of the output inequalities Reference

uymax Input reference to vector of high limits of the output inequalities Reference

uV Input reference to vector predicted disturbances Reference

uGx Input reference to part of gradient vector G corresponding to
state vector x

Reference

uGv Input reference to part of gradient vector G corresponding to
disturbance vector v

Reference

uGw Input reference to part of gradient vector G corresponding to
vector W

Reference

uSuL Input reference to work matrix Su*L Reference

uSv Input reference to work matrix Sv Reference

uT Input reference to work matrix T Reference

uScuL Input reference to work matrix Scu*L Reference

uScv Input reference to work matrix Scv Reference

uTc Input reference to work matrix Tc Reference

uG Input reference to gradient vector G Reference

uCA Input reference to QP constraints matrix CA Reference

uLBA Input reference to lower constraints' bound vector LB Reference

uUBA Input reference to upper constraints' bound vector LB Reference

HLD Hold Bool

Output

yx0 Output reference to initial condition vector x0 of the state vector
x

Reference

yxmin Output reference to vector of low limits of the state vector
elements

Reference

yxmax Output reference to vector of high limits of the state vector
elements

Reference

yymin Output reference to vector of low limits of the output inequalities Reference

yymax Output reference to vector of high limits of the output
inequalities

Reference

yV Output reference to vector predicted disturbances Reference

yGx Output reference to part of gradient vector G corresponding to
state vector x

Reference

yGv Output reference to part of gradient vector G corresponding to
disturbance vector v

Reference

yGw Output reference to part of gradient vector G corresponding to
vector W

Reference

ySuL Output reference to work matrix Su*L Reference

ySv Output reference to work matrix Sv Reference

yT Output reference to work matrix T Reference

570 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

yScuL Output reference to work matrix Scu*L Reference

yScv Output reference to work matrix Scv Reference

yTc Output reference to work matrix Tc Reference

yG Output reference to gradient vector G Reference

yCA Output reference to QP constraints matrix CA Reference

yLBA Output reference to lower constraints' bound vector LB Reference

yUBA Output reference to upper constraints' bound vector LB Reference

E Error indicator Bool

571

SOLNP � Nonlinear optimization solver

Block Symbol Licence: MATRIX

uBlk
uXb
uIb
uHes
HLD

cmd
yX
yF
E
iE

SOLNP

Function Description

The SOLNP block is designed to solve a general Nonlinear Programming Problem (NLP)
in the form

min f(x)

subject to

g(x) = 0,

lh ≤ h(x) ≤ uh,

lx ≤ x ≤ ux,

where

• x ∈ Rn is a vector of decision variables to be optimized,

• f(x) is a cost function (objective function),

• g(x) is a vector of equality constraints,

• h(x) is a vector of inequality constraints,

• lh is a vector of lower bounds on inequality constraints,

• uh is a vector of upper bounds on inequality constraints,

• lx is a vector of lower bounds on decision variables,

• ux is a vector of upper bounds on decision variables.

The SOLNP solver tries to �nd optimal solution x∗ = argmin
x

f(x) with the use of Aug-

mented Lagrangian Method and Sequential Quadratic Programming (SQP).
For technical details, refer to [16] and [17]. In general, f , g, and h are any nonlinear

smooth functions.
Regarding implementation, the objective function, equality, and inequality constraints

can be de�ned separately, for example, via the REXLANG block which allows the de�nition
of custom functions. Its output y0 is then propagated back to SOLNP's input uBlk.

The following auxiliary variables may be used in the formulation of the optimization
problem to be solved by SOLNP block:

572 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

• Vector of initial estimates: x0.

• Matrix xb de�ning range of decision variables, referred to as simple bounds: xb =
[lx, ux].

• Matrix uIb de�ning inequality constraints: uIb = [lh, uh] (optional, only used if
the optimization problem includes inequality constraints).

The block can be con�gured in one of three ways depending on how the input vector
uXb is constructed:

1. uXb = [x0, xb]: The solver will use the given initial estimate and simple bounds.

2. uXb = x0: The solver will only use the given initial estimate.

3. uXb = xb: The solver only uses the given simple bounds. Initial estimate is con-
structed automatically as x0 = lx+ux

2 .

The vector uXbmay have one, two, or three columns; and the number of rows corresponds
to the number of decision variables (dimension of x).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uBlk Associated REXLANG block reference Reference

uXb Initial estimate and simple bounds Reference

uIb Bounds on inequality constraints (optional) Reference

uHes User-supplied Hessian matrix (optional) Reference

HLD Hold Bool

Parameter

rho Penalty parameter for the augmented Lagrangian objective
function ⊙1.0

Double (F64)

MaxIterMajor Maximum number of major iterations ↓0 ⊙400 Long (I32)

MaxIterMinor Maximum number of minor iterations ↓0 ⊙200 Long (I32)

delta Perturbation parameter for numerical gradient calculation
↓1.79769e+308 ↑double

Long (I32)

tolerance Tolerance parameter for feasibility and optimality
↓1.79769e+308 ↑double

Long (I32)

nmax Allocated size of array ↓10 ↑100000 ⊙100 Long (I32)

Output

cmd Phase identi�cation for the associated REXLANG block Long (I32)

yX Input vector for the associated REXLANG block Reference

573

yF Output vector for the associated REXLANG block Reference

E Error indicator Bool

iE Error code Long (I32)

574 CHAPTER 15. OPTIM � OPTIMIZATION BLOCKS

Chapter 16

SPEC � Special blocks

Contents

EPC � External program call . 576

HTTP � Block for generating HTTP GET or POST requests (ob-
solete) . 579

HTTP2 � Block for generating HTTP requests 581

RDC � Remote data connection . 583

REXLANG � User programmable block 587

SMTP � Block for sending e-mail alerts via SMTP 607

STEAM � Steam and water properties 609

UART � UART communication block 614

The SPEC library encompasses a diverse set of functional blocks designed to integrate
a wide range of functionalities into automation, control systems, and communication
protocols. From facilitating precise thermodynamic calculations with the STEAM block
to enabling seamless data communication through UART and SMTP, the library serves as
a comprehensive toolkit for engineers and developers. It includes specialized blocks for
executing external programs (EPC), handling web-based requests (HTTP2). Additionally,
it o�ers unique input-output solutions (RDC) and a versatile programming environment
with REXLANG.

575

576 CHAPTER 16. SPEC � SPECIAL BLOCKS

EPC � External program call

Block Symbol Licence: ADVANCED

uVec1

uVec2

uVec3

uVec4

uVec5

uVec6

uVec7

uVec8

EXEC

RESET

DSI

DSO

yVec1
yVec2
yVec3
yVec4
yVec5
yVec6
yVec7
yVec8
DONE
BUSY
ERR
errID
res
icnt
ocnt

EPC

Function Description

The EPC block executes an external program when a rising edge (off→on) is detected at
the EXEC input. The program's name and parameters are speci�ed in the cmd parameter,
formatted exactly as they would be in the operating system's command line.

Data can be passed between the REXYGEN system and the external program via �les.
The �le format, speci�ed by the format parameter, is text-based to ensure compatibility
and ease of use with various software tools. For instance, data can be loaded in MATLAB
with the command:

values = load('-ASCII', 'epc_inputVec1');

and in SCILAB with:

values = read('epc_inputVec1', -1, 32);

Adjust the �le name and number of columns according to your speci�c project needs.
Data can also be retrieved back into the REXYGEN system using the same �le format.

The EPC block operates in two modes:

Basic Mode: Triggered by a rising edge on EXEC, this mode reads the current input
data and stores it in designated �les speci�ed by the ifns parameter. Each i-th
input vector uVec<i> is saved to its corresponding i-th �le.

Sampling Mode: In this mode, data from the input vectors are continually saved to
�les at each algorithm cycle, facilitating real-time data logging.

In both modes, data from one time instant are saved in one line in the �le. Similarly,
data from output �les are retrieved and mapped to the block outputs (yVec<i>), with
each line from the i-th output �le going to the i-th output vector.

577

The inputs working in the sampling mode are de�ned by the sl list1. The outputs
work always in the sampling mode � the last values are kept when the end of �le is
reached. The copying of data to input �les can be blocked by the DSI input, the same
holds for output data and the DSO input.

To merge multiple signals into one vector, use the RTOV block. To split a vector into
individual signals, use the VTOR block. These blocks can be chained for processing vectors
of any size, increasing the block's �exibility in handling complex data structures.

Notes:

• The called external program has the same priority as the calling task. This priority
is high, in some cases higher than operating-system-kernel tasks. On Linux based
systems, it is possible to lower the priority by using the chrt command:
chrt -o 0 extprg.sh,
where extprg.sh is the original external program.

• The size of signals is limited by parameter nmax. Bigger parameter means bigger
memory consumption, so choose this parameter as small as possible.

• The �lenames must respect the naming conventions of the target platform operating
system. It is recommended to use only alphanumeric characters and an underscore
to avoid problems. Also respect the capitalization, e.g. Linux is case-sensitive.

• The block also creates copies of the ifns and ofns �les for implementation reasons.
The names of these �les are extended by the underscore character.

• The ifns and ofns paths are relative to the folder where the archives of the
REXYGEN system are stored. It is recommended to de�ne a symbolic link to a
RAM-drive inside this folder for improved performance. On the other hand, for
long series of data it is better to store the data on a permanent storage medium
because the data can be appended e.g. after a power-failure recovery.

• The OSCALL block can be also used for execution of some operating system func-
tions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uVec1..uVec8 Input vector signal Reference

EXEC External program is called on rising edge Bool

RESET Block reset Bool

DSI Disable inputs sampling Bool

DSO Disable outputs sampling Bool

1E.g. 1,3..5,8. Third-party programs (Simulink, OPC clients etc.) work with an integer number,
which is a binary mask, i.e. 157 (binary 10011101) in the mentioned case.

578 CHAPTER 16. SPEC � SPECIAL BLOCKS

Parameter

cmd Operating system command to execute String

ifns Input �lenames (separated by semicolon)
⊙epc_uVec1;epc_uVec2

String

ofns Output �lenames (separated by semicolon)
⊙epc_yVec1;epc_yVec2

String

sl List of sampled inputs (comma-separated) ↓0 ↑255 ⊙85 Long (I32)

ifm Maximum number of input samples ⊙10000 Long (I32)

format Format of input and output �les ⊙1 Long (I32)

1 Space-delimited values
2 CSV (decimal point and commas)
3 CSV (decimal comma and semicolons)

nmax Maximum output vector length ↓2 ↑1000000 ⊙100 Long (I32)

Output

yVec1..yVec8 Output vector signal Reference

DONE External program �nished Bool

BUSY External program running Bool

ERR Error indicator Bool

errID Error code Error

res External program return code Long (I32)

icnt Current input sample Long (I32)

ocnt Current output sample Long (I32)

579

HTTP � Block for generating HTTP GET or POST requests
(obsolete)

Block Symbol Licence: ADVANCED

postdata

urldata

TRG

data
BUSY
DONE
ERROR
errId

hterror

HTTP

Function Description

The HTTP block is obsolete, replace it by the HTTP2 block.
The HTTP block performs a single shot HTTP request. Target address (URL) is de�ned

by url parameter and urldata input. A �nal URL is formed in the way so that urldata
input is simply added to url parameter.

A HTTP request is started by the rising edge (off→on) on the TRG input. Then the
BUSY output is set to on until a request is �nished, which is signaled by the DONE=on
output. In case of an error, the ERROR output is set. The errId output carries last error
identi�ed by REXYGEN system error code. The hterror output carries a HTTP status
code. All data sent back by server to client is stored in the data output.

The block may be run in blocking or non-blocking mode which is speci�ed by the
BLOCKING parameter. In blocking mode, execution of a task is suspended until a request
is �nished. In non-blocking mode, the block performs only single operation depending
on available data and execution of a task is not blocked. It is advised to always run HTTP

block in non-blocking mode. It is however necessary to mention that on various operating
systems some operations can not be performed in the non-blocking mode, so be careful
and do not use this block in quick tasks (QTASK) or in tasks with short execution period.
The non-blocking operation is best supported on GNU/Linux operating system. The
maximal duration of a request performed by the HTTP block is speci�ed by the timeout
parameter.

The block supports user authentication using basic HTTP authentication method.
User name and password may be speci�ed by user and password parameters. The block
also supports secure HTTP (HTTPS). It is also possible to let the block verify server's
certi�cate by setting the VERIFY parameter. SSL certi�cate of a server or server's trusted
certi�cate authority must be stored in the certificate parameter in a PEM format.
The block does not support any certi�cate storage.

Parameters postmime and acceptmime specify MIME encoding of data being sent to
server or expected encoding of a HTTP response.

Parameters nmax, postmax, and datamax specify maximum sizes of bu�ers allocated
by the block. The nmax parameter is maximal size of any string parameter. The postmax
parameter speci�es a maximal size of postdata. The datamax parameter speci�es a

580 CHAPTER 16. SPEC � SPECIAL BLOCKS

maximal size of data.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

postdata Data to put in HTTP POST request String

urldata Data to append to URL address String

TRG Trigger of the selected action Bool

Parameter

url URL address to send the HTTP request to String

method HTTP request type ⊙1 Long (I32)

1 GET
2 POST
3 PUT
4 DELETE
5 HEAD
6 TRACE
7 PATCH
8 OPTIONS
9 CONNECT

user User name String

password Password String

certificate Authentication certi�cate String

VERIFY Enable server veri�cation (valid certi�cate) Bool

postmime MIME encoding for POST request ⊙application/json String

acceptmime MIME encoding for GET request ⊙application/json String

timeout Timeout interval ⊙5.0 Double (F64)

BLOCKING Wait for the operation to �nish Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

postmax Allocated memory for POST request data ↓128 ↑65520 ⊙256 Long (I32)

datamax Allocated memory for HTTP response ↓128 ↑10000000 ⊙1024 Long (I32)

Output

data Response data String

BUSY Sending HTTP request Bool

DONE HTTP request processed Bool

ERROR Error indicator Bool

errId Error code Error

hterror HTTP response Long (I32)

581

HTTP2 � Block for generating HTTP requests

Block Symbol Licence: ADVANCED

postdata

urldata

header

TRG

data
BUSY
DONE
ERROR
errId

hterror

HTTP2

Function Description

The HTTP2 block performs a single shot HTTP request. Target address (URL) is de�ned
by url parameter and urldata input. A �nal URL is formed in the way so that urldata
input is appended to the url parameter. The header input can be used for declaration
of additional header �elds.

A HTTP request is started by the rising edge (off→on) on the TRG input. Then the
BUSY output is set to on until a request is �nished, which is signaled by the DONE=on
output. In case of an error, the ERROR output is set to on. The errId output carries last
error identi�ed by REXYGEN system error code. The hterror output carries a HTTP
status code. All data sent back by server to client is stored in the data output. All error
outputs are reset when a new HTTP request is triggered by the TRG input.

The block may be run in blocking or non-blocking mode which is speci�ed by the
BLOCKING parameter. In blocking mode, execution of a task is suspended until the request
is �nished. In non-blocking mode, the block performs only single operation depending
on available data and execution of a task is not blocked. It is advised to always run HTTP

block in non-blocking mode. It is however necessary to mention that on various operating
systems some operations cannot be performed in the non-blocking mode, so be careful
and do not use this block in quick tasks (QTASK) or in tasks with short execution period.
The non-blocking operation is best supported on GNU/Linux operating system. The
maximal duration of a request performed by the HTTP block is speci�ed by the timeout
parameter.

The block supports user authentication using basic HTTP authentication method.
User name and password may be speci�ed by user and password parameters. The block
also supports secure HTTP (HTTPS). It is also possible to let the block verify server's
certi�cate by setting the VERIFY parameter. SSL certi�cate of a server or server's trusted
certi�cate authority must be stored in the certificate parameter in a PEM format.
The block does not support any certi�cate storage.

Parameters postmime and acceptmime specify MIME encoding of data being sent to
server and expected encoding of the HTTP response.

Parameters nmax, postmax, and datamax specify maximum sizes of bu�ers allocated
by the block. The nmax parameter is maximal size of any string parameter. The postmax
parameter speci�es a maximal size of postdata. The datamax parameter speci�es a

582 CHAPTER 16. SPEC � SPECIAL BLOCKS

maximal size of data.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

postdata Data to put in HTTP POST request String

urldata Data to append to URL address String

header Additional header �elds String

TRG Trigger of the selected action Bool

Parameter

url URL address to send the HTTP request to String

method HTTP request type ⊙1 Long (I32)

1 GET
2 POST
3 PUT
4 DELETE
5 HEAD
6 TRACE
7 PATCH
8 OPTIONS
9 CONNECT

user User name String

password Password String

certificate Authentication certi�cate String

VERIFY Enable server veri�cation (valid certi�cate) Bool

postmime MIME encoding for POST request ⊙application/json String

acceptmime MIME encoding for GET request ⊙application/json String

timeout Timeout interval ⊙5.0 Double (F64)

BLOCKING Wait for the operation to �nish Bool

nmax Allocated size of string ↓0 ↑65520 Long (I32)

postmax Allocated memory for POST request data ↓128 ↑65520 ⊙4096 Long (I32)

datamax Allocated memory for HTTP response
↓128 ↑10000000 ⊙64000

Long (I32)

Output

data Response data String

BUSY Sending HTTP request Bool

DONE HTTP request processed Bool

ERROR Error indicator Bool

errId Error code Error

hterror HTTP response Long (I32)

583

RDC � Remote data connection

Block Symbol Licence: ADVANCED

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

RDC

Function Description

The RDC block is a special input-output block. The values are passed between two blocks
with the same number, but on di�erent computers (or between two Simulinks or between
Simulink and the REXYGEN system). Values are passed using the UDP/IP protocol.
Communication works on all local LAN networks and on Internet links. The algorithm
performs the following operations at each step:

• If HLD=on, the block execution is terminated.

• If the period parameter is a positive number, the di�erence between the system
timer and the time of the last packet sending is evaluated. The block execution
is stopped if the di�erence does not exceed the period parameter. If the period

parameter is zero or negative, the time di�erence is not checked.

• A data packet is created. The packet includes block number, the so-called invoke

number (serial number of the packet) and the values u0 to u15. All values are stored
in the commonly used so-called network byte order, therefore the application is
computer and/or processor independent.

• The packet is sent to the speci�ed IP address and port.

• The invoke number is increased by 1.

• It is checked whether any incoming packets have been received.

• If so, the packet validity is checked (size, id number, invoke number).

• If the data is valid, all outputs y0 to y15 are set to the values contained in the
packet received.

584 CHAPTER 16. SPEC � SPECIAL BLOCKS

• The fresh output is updated. In case of error, the error code is displayed by the
err output.

There are 16 values transmitted in each direction periodically between two blocks with
the same id number. The u(i) input of the �rst block is transmitted the y(i) output of
the other block. Unlike the TCP/IP protocol, the UDP/IP protocol does not have any
mechanism for dealing with lost or duplicate packets, so it must be handled by the algo-
rithm itself. The invoke number is used for this purpose. This state variable is increased
by 1 each time a packet is sent. The block stores also the invoke number of the last
received packet. It is possible to distinguish between various events by comparing these
two invoke numbers. The packets with invoke numbers lower than the invoke number of
the last received packet are denied unless the di�erence is grater than 10. This solves the
situation when one of the RDC blocks is restarted and with it its invoke number.

Note: All RDC blocks in the same application must have the same local port and
the count of RDC blocks is limited to 64 for implementation reasons. If there are two
applications using the RDC block running on the same machine, then each of them must
use a di�erent local port.

Examples

The constants 3 and 5 are sent from Computer1 to Computer2, where they appear at the
y0 and y1 outputs of the RDC2 block. The constants are then summed and multiplied
and sent back to Computer1 via the u11 and u12 inputs of the RDC2 block. The displays
connected to the y11 and y12 outputs of the RDC1 block show the results of mathematical
operations 3+5 and (3+5) ∗ 5. The signal from the SG generator running on Computer2

is transmitted to the y0 output of the RDC1 block, where it can be easily displayed.

target computer name = "Computer2"

Block ID = 1

Computer1 Computer 2

target computer name = "Computer1"

Block ID = 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Scope2

SLEEPSLEEP

y

SG

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC2

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC1

u1
u2

y

MUL

0

Display1

0

Display

5

CNI1

3

CNI

u1
u2

y

ADD

The simplicity of the example is intentional. The goal is to demonstrate the func-
tionality of the block, not the complexity of the system. In reality, the RDC block is used
in more complex tasks, e.g. for remote tuning of the PID controller as shown below. The
PID control algorithm is running on Computer1 while the tuning algorithm is executed
by Computer2. See the PIDU, PIDMA and SSW blocks for more details.

585

target computer name = "Computer2"

Block ID = 1

Computer1 Computer 2

target computer name = "Computer1"

Block ID = 1

Scope1

Scope

u1
u2
SW

y

SSW

SLEEP1

SLEEP

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC2

HLD
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
fresh

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12
y13
y14
y15

RDC1

dv
sp
pv
tv
hv
MAN
IH

mv

dmv

de

SAT

PIDU
dv

sp

pv

tv

hv

MAN

IH

TUNE

TBRK

TAFF

ips

mv
dmv

de
SAT

TBSY
TE
ite

trem
pk
pti

ptd
pnd
pb
pc

PIDMA

u y

MDL

tv
UP
DN
rv
LOC

y

MCU

[proces_pv]

[proces_mv]

[proces_mv]

[proces_pv]

0

Display

1

CNB

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

u0..u15 Signal to send to the remote RDC block Double (F64)

Parameter

target Remote computer name/IP address String

rport Remote port number ⊙1288 Word (U16)

lport Local port number ⊙1288 Word (U16)

id Block ID ↓1 ↑32767 ⊙1 Long (I32)

period Minimum communication period [s] Double (F64)

Output

iE Error code Long (I32)

0 No error
-1 Maximum number of blocks exceeded (>64)
-2 Local ports mismatch
-3 Error opening socket
-4 Error assigning local port
-5 Error setting the so-called non-blocking socket mode
-6 Error resolving IP address
-10 . . . Error initializing the socket library
1 Initialization successful, no data received
2 Packet consistency error or service/application

con�ict
4 Error receiving packet
8 Error sending packet

fresh Elapsed time since the last received packet [s] Double (F64)

586 CHAPTER 16. SPEC � SPECIAL BLOCKS

y0..y15 Signal received from remote RDC block Double (F64)

587

REXLANG � User programmable block

Block Symbol Licence: REXLANG

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

REXLANG

Function Description

The REXYGEN system includes a variety of standard function blocks to meet the common
requirements of control applications. However, speci�c scenarios might require or bene�t
from a custom-de�ned function. For such cases, the REXLANG block is ideally suited.
This block facilitates the creation of user-de�ned algorithms, with the method of coding
speci�ed by the srctype parameter. Available options include:

• 1: C-like � This scripting language is similar to C (or Java). The code is stored
in a text �le with the extension .c. The language follows the C-like syntax below.

• 2: STL � The code is saved in a text �le with the extension .stl. The code follows
the IEC61131-3 standard, which is implemented with some restrictions similar to
those in a C-like script, such as no structures and limited data types (INT, REAL,
and STRING). Variables for function blocks are declared as global variables in
VAR_INPUT, outputs as VAR_OUTPUT, and parameters as VAR_PARAMETER.
It includes standard functions as speci�ed, with system and communication func-
tions identical to those in the C-like option.

• 3: RLB � A binary �le generated from the compilation of C-like or STL scripts.
This option is suitable for users who prefer not to disclose their block's source code.

• 4: ILL � A text �le containing mnemocodes akin to assembler instructions. This
option is currently unsupported.

Scripting Language (C-like)

The scripting language employed in REXLANG is akin to C, but there are notable di�erences
and limitations:

588 CHAPTER 16. SPEC � SPECIAL BLOCKS

• Supported data types include double, long and string. Types like int, short,
and bool are internally converted to long. The float type is converted to double.
The typedef type is not available.

• Pointers and structures are not implemented. Arrays can be de�ned and indexing
is possible using the [] operator. Inputs, outputs, and parameters of the block
cannot be arrays.

• The ',' operator is not implemented.

• The preprocessor supports commands like #include, #define, #ifdef .. [#else ..]
#endif, and #ifndef .. [#else ..] #endif. However, #pragma and #if .. [#else ..]
#endif are not supported.

• While standard ANSI C libraries are not implemented, many mathematical func-
tions from math.h and other functions are available (detailed below).

• Keywords input, output, and parameter are used to reference the REXLANG block's
inputs, outputs, and parameters. System functions for execution control and diag-
nostics are implemented.

• The main() function is executed periodically during runtime. Other functions like
init() (executed once at startup), exit() (executed upon control algorithm stop),
and parchange() (executed upon parameter changes) are also available.

• Functions and procedures without parameters must declare void explicitly.

• Overloading of identi�ers is not allowed, i.e., keywords and built-in functions cannot
share names with identi�ers. Local and global variables must have distinct names.

• User-de�ned return values from main(), init(), and exit() are written to the iE
output. Values < -99 will stop algorithm execution (requiring a RESET input for
further execution). Return values are categorized as follows:
iE >= 0 indicates no errors.
0 > iE >= -99 signi�es a warning, without a�ecting function block execu-

tion.
iE < -99 implies an error, halting the function block execution.

Scripting Language Syntax

The syntax of the scripting language is rooted in C, but with some modi�cations:

• <type> input(<input number>) <variable name>; for input variables.

• <type> output(<output number>) <variable name>; for output variables.

• <type> parameter(<parameter number>) <variable name>; for parameter vari-
ables.

589

The input and parameter variables are read-only, while output variables can be read
from and written to.
Example:

double input (1) input_signal; // Declaration of a variable - type double ,

which corresponds with the u1 input of the block.

long output (2) output_signal; // Declaration of a variable - type long ,

which corresponds with the y2 output of the block.

input_signal = 3; // not allowed , inputs are read -only

if (input_signal > 1) output_signal = 3 + input_signal; // correct

Available Functions

The scripting language encompasses a broad spectrum of functions, including those for
mathematical calculations, vector operations, string handling, and system-level com-
mands. The functions are categorized and described in detail as follows:

• Mathematical Functions (aligned with ANSI C's math.h library):
This category includes functions like atan, sin, cos, exp, log, sqrt, tan, asin,
acos, fabs, fmod, sinh, cosh, tanh, pow, atan2, ceil, floor, and abs. Note that
abs is speci�cally designed for integer values, while the rest operate with double

type variables. The fabs function is used to calculate the absolute value of a decimal
number.

• Vector Functions (not part of ANSI C):
This set includes specialized functions for vector manipulation. Vectors are repre-
sented as arrays of values. Examples of array initializations can be found at the
end of the block description. Functions in this category include:

double max([n,] val1, ..., valn)

Returns the maximum value among the provided elements. The �rst pa-
rameter, indicating the number of items, is optional.

double max(n, vec)

Finds the maximum value in the vec vector.
double min([n,] val1, ..., valn)

Similar to max, but returns the minimum value.
double min(n, vec)

Finds the minimum value in the vec vector.
double poly([n,] x, an, ..., a1, a0)

Calculates the value of a polynomial y = an ∗ xn + . . .+ a1 ∗ x+ a0. The
�rst parameter is optional.

double poly(n, x, vec)

Computes the polynomial value y = vec[n]∗xn+. . .+vec[1]∗x+vec[0].
double scal(n, vec1, vec2)

Calculates the scalar product of two vectors: y = vec1[0] ∗ vec2[0] +
. . .+ vec1[n-1] ∗ vec2[n-1].

590 CHAPTER 16. SPEC � SPECIAL BLOCKS

double scal(n, vec1, vec2, skip1, skip2)

A variant of scal that allows skipping elements: y = vec1[0]∗vec2[0]+
vec1[skip1]∗vec2[skip2]+. . .+vec1[(n-1)*skip1]∗vec2[(n-1)*skip2].
This is well suited for multiplication of matrices, which are stored as vec-
tors (line by line or column by column).

double conv(n, vec1, vec2)

Computes the convolution of two vectors: y = vec1[0] ∗ vec2[n-1] +
vec1[1] ∗ vec2[n-2]+ . . .+ vec1[n-1] ∗ vec2[0].

double sum(n, vec)

Sums the elements of a vector: y = vec[0]+ vec[1]+ . . .+ vec[n-1].
double sum([n,] val1, ..., valn)

Sums the provided values. The count parameter is optional.
[] subarray(idx, vec)

Returns a subarray of vec starting from index idx. The type of the re-
turned value is chosen automatically according to the vec array.

copyarray(count, vecSource, idxSource, vecTarget, idxTarget)

Copies count items of the vecSource array, starting at idxSource index,
to the vecTarget array, starting at idxTarget index. Both arrays must
be of the same type.

void fillarray(vector, value, count)

Copies value to count items of the vector array (always starting from
index 0).

Note: The functions max, min, poly, scal, conv, and sum are overloaded, meaning
they have multiple variants based on the parameters. Parameters are strictly type-
checked, requiring casting for non-double types. For instance:
double res = max(dVal, (double)iVal, 1.0, (double)2);

casts iVal to double. If a parameter is not a double, an error stating "no function
of this prototype was found" is reported.

• String Functions (This section covers functions analogous to those found in ANSI
C's string.h library, providing a range of operations for string manipulation and
analysis:)

string strsub(str, idx, len)

Extracts a substring from str, starting at index idx and spanning len

characters.
long strlen(str)

Returns the length of the string str, measured in characters.
long strfind(str, substr[, offset])

Finds the �rst occurrence of substr within str and returns its position.
The search starts from the character with index offset (if not speci�ed,
then from the beginning). The parameter substr can also be a character.

long strrfind(str, substr)

Identi�es the last occurrence of substr within str and provides its index.

591

strreplace(str, pattern, substr)

Replaces all instances of pattern in str with substr. This modi�cation
is done in-place, directly altering str.

strupr(str)

Converts all characters in str to uppercase.
strlwr(str)

Transforms str to all lowercase characters.
strtrim(str)

Removes leading and trailing whitespace from str.
long str2long(str[, default])

Converts str to an integer. If conversion fails, the optional second param-
eter (default value) is returned, or 0 if not provided.

double str2double(str[, default])

Turns str into a decimal number. Similar to str2long, it returns an op-
tional default value or 0 on failure.

string long2str(num[, radix])

Converts an integer num to a string, with an optional radix parameter
specifying the base (default is 10). The output string does not indicate the
numeral system (no pre�xes like 0x for hexadecimal).

string double2str(num[, precision])

Converts the decimal number num to its string representation with an
optional parameter precision, which speci�es the maximum number of
signi�cant digits.

strcpy(dest, src)

Copies the content of src into dest. For ANSI C compatibility, dest =

src achieves the same result.
strcat(dest, src)

Appends src to the end of dest. As in ANSI C, dest = dest + src

performs the same operation.
strcmp(str1, str2)

Compares two strings str1 and str2. The construction str1 == str2 can
be used for the same purpose, providing ANSI C compatibility.

float2buf(buf, x[,endian])

Converts the real number x into an array buf of four elements, each repre-
senting an octet of the number in IEEE 754 single precision format (known
as �oat). The function is useful for �lling communication bu�ers. Optional
3rd parameter has the following meaning:
0 processor native endian (default),
1 little endian,
2 big endian.

double2buf(buf, x[,endian])

Similar to float2buf, but for double precision, storing eight elements
(double type).

592 CHAPTER 16. SPEC � SPECIAL BLOCKS

double buf2float(buf[, endian])

The inverse of float2buf.
double buf2double(buf[, endian])

The inverse of double2buf.
long RegExp(str, regexp, capture[])

Matches str against the regular expression regexp, storing captured groups
in capture. Returns the number of captures or a negative error code. The
regular expression syntax includes standard constructs like:
(?i) Must be at the beginning of the regular expression. Makes

the matching case-insensitive.
� Match beginning of a string
$ Match end of a string
() Grouping and substring capturing
\s Match whitespace
\S Match non-whitespace
\d Match decimal digit
\n Match new line character
\r Match line feed character
\f Match vertical tab character
\v Match horizontal tab character
\t Match horizontal tab character
\b Match backspace character
+ Match one or more times (greedy)
+? Match one or more times (non-greedy)
* Match zero or more times (greedy)
*? Match zero or more times (non-greedy)
? Match zero or once (non-greedy)
x|y Match x or y (alternation operator)
\meta Match one of the meta characters: �$().[]*+?|\
\xHH Match byte with hex value 0xHH, e.g. \x4a.
[...] Match any character from the set. Ranges like [a-z] are

supported.
[�...] Match any character but the ones from the set.

Example:
RegExp("48,string1,string2","�(\\d+),([�,]+),",capture);

Result: capture=["48,string1","48","string1"]

long ParseJson(json, cnt, names[], values[])

This function processes a json string, extracting the values of speci�ed
objects. The names array should list the properties of interest (access
subitems with . and array indices with [], for instance, "cars[1].model").
Corresponding values are then populated in the values array. The cnt

parameter determines the number of objects to be parsed, which should
match the length of both the names and values arrays. This function re-
turns the total number of successfully parsed values, or a negative value

593

if an error occurs during parsing.

Note: String variables are declared as in ANSI C (char <variable name>[<max

chars>];). For function arguments, use char <variable name>[] or string
<variable name>.

• System functions (not part of ANSI C)

Archive(arc, type, id, lvl_cnt, value)

This function archives a value into the system's archival subsystem. arc
serves as a bitmask to specify the target archives (e.g., for archives 3
and 5, set arc = 20, which is 10100 in binary or 20 in decimal). Archive
numbering starts from 1, with a maximum of 15 archives (archive 0 is
reserved for internal system logs). The type parameter de�nes the data
type, with options:

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
17 Bool Group
18 Byte Group (U8)
19 Short Group (I16)
20 Long Group (I32)
21 Word Group (U16)
22 DWord Group (U32)
23 Float Group (F32)
24 Double Group (F64)
25 Time Group
26 Large Group (I64)
27 Error Group

id represents a unique archive item ID, lvl_cnt denotes an alarm level
or the number of elements for Group types, and value is the data to be
archived.

Trace(id, val)

Displays both the id and val values, mainly used for debugging purposes.
id is a user-de�ned constant ranging from 0 to 9999 for easy message iden-
ti�cation. val can be any data type, including strings. Output appears in
the system log of REXYGEN.. In order to view these debugging messages

594 CHAPTER 16. SPEC � SPECIAL BLOCKS

in System log it is necessary to enable them. Go to the menu
Target→Diagnostic messages and tick the Information checkbox in the
Function block messages box. Logging has to be also enabled for the par-
ticular block by ticking the Enable logging checkbox in the Runtime tab of
the block parameters dialog. By default, this is enabled after placing a new
block from library. Only then are the messages displayed in the System

log.
TraceError(id, val) TraceWarning(id, val) TraceVerbose(id, val)

Similar to Trace, these commands categorize the output into Error, Warn-
ing, or Verbose logging groups. Error messages are always logged. For
Warning and Verbose messages, enable the respective message groups in
the Diagnostic messages menu.

Suspend(sec)

Suspends script execution if it exceeds the speci�ed time in sec during a
sampling period. The script resumes from the suspension point upon the
next block execution. Use Suspend(0) to pause the script immediately.

double GetPeriod()

Returns the block's sampling period in seconds.
double CurrentTime()

Function provides the current time in an internal format, often used with
ElapsedTime().

double ElapsedTime(new_time, old_time)

Calculates elapsed time between new_time and old_time in seconds. Func-
tion CurrentTime() is typically used for new_time.

double Random()

Generates a pseudo-random number from the ⟨0, 1) interval. The generator
is initialized before the init() function, ensuring a consistent sequence.

long QGet(var)

Returns the quality of the var variable (see the QFC, QFD, VIN, VOUT blocks).
The function is intended for use with the inputs, outputs and parameters.
It always returns 0 for internal variables.

void QSet(var, value)

Sets the quality of the var variable (see the QFC, QFD, VIN, VOUT blocks).
The function is intended for use with the inputs, outputs and parameters.
It has no meaning for internal variables.

long QPropag([n,]val1, ..., valn)

Returns the quality resulting from merging of qualities of val1,...,valn.
The basic rule for merging is that the resulting quality correspond with
the worst quality of val1,...,valn. To obtain the same behavior as in
other blocks of the REXYGEN system, use this function to set the quality
of output, use all the signals in�uencing the output as parameters.

double LoadValue(fileid, idx)

Reads a value from a �le. Supports both binary �les (with double values)
and text �les (values on separate lines). The �le is identi�ed by fileid,

595

and idx indicates the index (for binary �les) or line number (for text �les).
At present the following values are supported:

0 �le on a disk identi�ed by the p0 parameter,
1 �le on disk identi�ed by name of the REXLANG block and

extension .dat,
2 �le on a disk identi�ed by the srcname parameter, but the

extension is changed to .dat,
3 rexlang.dat �le in the current directory,

4-7 same like 0-3, but format is text �le. Each line contains one
number. The index idx is the line number and starts at zero.
Value idx=-1 means next line (e.g. sequential writing).

void SaveValue(fileid, idx, value)

Stores a value in a �le, with parameters functioning similarly to LoadValue.
void GetSystemTime(time)

Returns the system time in UTC (modi�able via OS settings). The time

parameter must be an array of at least 8 long items. The function �lls the
array with the following values in the given order: year, month, day (in
the month), day of week, hours, minutes, seconds, milliseconds. On some
platforms the milliseconds value has a limited precision or is not available
at all (the function returns 0 ms).

void Sleep(seconds)

Halts the block's algorithm (and whole task) for the de�ned time. Use
this block with extreme caution and only if there is no other possibil-
ity to achieve the desired behavior of your algorithm. The sleep interval
should not exceed 900 milliseconds. The shortest interval is about 0.01s,
the precise value depends on the target platform.

long GetExtInt(ItemID)

Returns the value of input/output/parameter of arbitrary block in REXY-

GEN algorithm. Such an external data item is referenced by the ItemID

parameter. The structure of the string parameter ItemID is the same as
in e.g. the sc parameter of the GETPI function block. If the value cannot
be obtained (e.g. invalid or non-existing ItemID, data type con�ict, etc.),
the REXLANG block issues an error and must be reset.

long GetExtLong(ItemID)

See GetExtInt(ItemID).
double GetExtReal(ItemID)

Similar to GetExtInt(ItemID) but for decimal numbers.
double GetExtDouble(ItemID)

See GetExtReal(ItemID).
string GetExtString(ItemID)

Similar to GetExtInt(ItemID) but for strings.
void SetExt(ItemID, value)

Sets the input/output/parameter of arbitrary block in REXYGEN algo-
rithm to value. Such an external data item is referenced by the ItemID

596 CHAPTER 16. SPEC � SPECIAL BLOCKS

parameter. The structure of the string parameter ItemID is the same as in
e.g. the sc parameter of the SETPI function block. The type of the exter-
nal data item (long/double/string) must correspond with the type of the
value parameter. If the value cannot be set (e.g. invalid or non-existing
ItemID, data type con�ict, etc.), the REXLANG block issues an error and
must be reset.

int BrowseExt(ItemID, first_subitem_index, max_count, subitems, kinds)

Function browses task address space. If ItemID is a block identi�er (block
path), subitems string array will contain names of all inputs, outputs,
parameters and internal states. Function returns number of subitems or
negative error code. kinds values: executive = 0, module = 1, driver = 2,
archive = 3, level = 4, task = 5, quicktask = 6, subsystem = 7, block =
8, input = 9, output = 10, internal state = 11, parameter or state array
= 12, special = 13.

long CallExt(ItemID)

Executes a single step of any block within the REXYGEN algorithm, iden-
ti�ed by ItemID. The structure of the string parameter ItemID is the
same as in e.g. the sc parameter of the GETPI function block. It's rec-
ommended to call only halted blocks2, which should be in the same task
as the REXLANG block. The function returns result code of the calling
block (see REXYGEN error codes).

long GetInArrRows(input)

Returns the number of rows of the array that is attached to the input with
index input of the REXLANG block.

long GetInArrCols(input)

Returns the number of columns of the array that is attached to the input
with index input of the REXLANG block.

long GetInArrMax(input)

Returns the maximum (allocated) size of the array that is attached to the
input with index input of the REXLANG block.

double GetInArrDouble(input, row, col)

Returns the member of the array that is attached to the input with index
input of the REXLANG block.

long GetInArrLong(input, row, col)

Similar to GetInArrDouble(...), but the value is of type long.
Void SetInArrValue(input, row, col, value)

Sets the member of the array that is attached to the input with index
input of the REXLANG block.

Void SetInArrDim(input, row, col)

Sets the dimension of the array that is attached to the input with index
input of the REXLANG block.

2set checkbox Halt on the property page Runtime in the parameters dialog of the block

597

long memrd32(hMem, offset)

Reading physical memory. Get the handle by
Open(72,"/dev/mem",<physical address>,<area size>).

long memwr32(hMem, offset, value)

Writing to physical memory. Get the handle by
OpenMemory("/dev/mem",<physical address>,<area size>).

• Communication Functions (not part of ANSI C)

This suite of functions facilitates communication over various channels including
TCP/IP, UDP/IP, serial lines (RS-232 or RS-485), SPI bus, and I2C bus. Below
is a concise list of these functions. For comprehensive details, refer to the example
projects in the REXYGEN system.

long OpenFile(string filename)

This function opens a �le and returns an identi�cation number (handle)
of the �le. If the function returns a negative value, the �le opening was
unsuccessful.

long OpenCom(string comname, long baudrate, long parity)

Opens a serial line and returns its handle. From REXYGEN version 3.0 on-
wards, virtual ports can be speci�ed as comname. For detailed information
about virtual ports, see the UART block description. If a negative value is
returned, the opening failed. The parity setting options are 0 for none, 1
for odd, and 2 for even.

long OpenUDP(string localname, long lclPort, string remotename, long remPort)

Opens a UDP socket and returns its handle. If the function returns a
negative value, the socket opening was unsuccessful. The function can
open either an IPv4 or IPv6 socket based on the remotename, localname,
or operating system settings if a DNS name is used. Optional settings
include an empty localname (any interface), an empty remotename or 0
for remPort (unused), and 0 for lclPort (assigned by the UDP/IP stack).

long OpenTCPsvr(string localname, long lclPort)

This function opens a TCP socket in server (listening) mode. It returns a
handle for the socket, and a negative return value indicates an unsuccessful
opening. The function can open either IPv4 or IPv6 sockets depending on
remotename, localname, or operating system settings if a DNS name is
used. You can set an empty localname to mean any interface.

long OpenTCPcli(string remotename, long remPort)

Opens a TCP socket in client mode and returns its handle. A negative re-
turn value indicates failure to open the socket. The function opens either
an IPv4 or IPv6 socket based on remotename, localname, or operating
system settings if a DNS name is used. Note that this function does not
wait for the connection to be established, which might take a few millisec-
onds on a local network or a few seconds for remote locations. If Write()
or Read() are called before the connection is established, an error code
-307 (�le open error) is returned.

598 CHAPTER 16. SPEC � SPECIAL BLOCKS

long OpenI2C(string devicename)

Opens the I2C bus and returns its handle. If the function returns a negative
value, the opening was not successful.

long OpenSPI(string devicename)

Opens the SPI bus and returns its handle. A negative return value indicates
an unsuccessful opening.

long OpenDevice(string filename)

Similar to OpenFile(), but the functions Write() and Read() are non-
blocking. If data cannot be read or written, the function immediately
returns a -1 error code.

long OpenMemory(string devicename, long baseaddr, long size)

Maps physical memory and returns the associated handle. If a negative
value is returned, the operation was unsuccessful.

long OpenSHM(string devicename, long deviceid, long size, long flags)

Maps shared memory (Linux only, using ftok() and shmget()) and re-
turns the associated handle. The �rst and second parameters serve to
identify the memory area (they must be the same for all cooperating enti-
ties). The size parameter speci�es the size of the shared memory area in
bytes. The flags parameter represents standard Linux �ags and permis-
sions (if set to 0, which is the default value, the following rights are set:
create the area if it does not exist, and allow everyone to read and write).

void Close(long handle)

Closes a socket, serial line, �le, or any device opened with the Open...

functions.
void SetOptions(long handle, long params[])

Con�gures the parameters of a socket or serial line. The array size must
be at least:

22 for serial line (on Windows parameters for SetCommState()
and SetCommTimeouts() in following order: BaudRate,
fParity, Parity, StopBits, ByteSize, fDtrControl, fRtsCon-
trol, fAbortOnError, fBinary, fErrorChar, fNull, fDsrSen-
sitivity, fInX, fOutX, fOutxCtsFlow, fOutxDsrFlow, fTX-
ContinueOnXo�, ReadIntervalTimeout, ReadTotalTimeout-
Constant, ReadTotalTimeoutMultiplier, WriteTotalTime-
outConstant, WriteTotalTimeoutMultiplier; linux use di�er-
ent function, but meaning of the parameters is as same as
possible),

2 for �le (1st item is mode: 1=seek begin, 2=seek current,
3=seek end, 4=set �le end, 2nd item is o�set for seek),

3 for SPI (1st item is SPI mode, 2nd item is bits per word, 3rd
item is max speed in Hz),

5 for I2C (1st item is slave address, 2nd item is 10-bit ad-
dress �ag, 3rd item is Packet Error Checking �ag, 4th item
is number of retries, 5th item is timeout),

other handle types are not supported

599

void GetOptions(long handle, long params[])

Reads the parameters of a socket or serial line and stores them in the
params array. The array size must accommodate the speci�c device re-
quirements (see SetOptions).

long Accept(long hListen)

Accepts a connection on a listening socket, returning a communication
socket handle or an error code.

long Read(long handle, long buffer[], long count[, offset])

Receives data from a serial line or socket, returning the number of bytes
read or an error code. The count parameter de�nes the maximum num-
ber of bytes to read. Each byte of incoming data is put to the buffer

array of type long in the corresponding order. The function has one more
(optional) offset parameter that can be used when reading data from
memory when the handle is created using the OpenSHM() or OpenMemory().
It is also possible to use the form
long Read(long handle, string data[], long count) (i.e. a string is
used instead of a data array; one byte in the input �le corresponds to one
character; not applicable to binary �les).
The error codes are:

-1 it is necessary to wait for the operation to �nish (the function
is "non-blocking")

-309 reading failed; the operating system error code appears in
the log (when function block logging is enabled)

-307 �le/socket is not open

long Write(long handle, long buffer[], long count[, offset])

Sends data over a serial line or socket. The count parameter de�nes the
number of bytes to send. The count of bytes or en error code sent is
returned. Each byte of outgoing data is read from the buffer array of type
long in the corresponding order. The function has one more (optional)
offset parameter that can be used to write data to memory when the
handle is created using the OpenSHM() or OpenMemory().
It is also possible to use the form
long Write(long handle, string data) (i.e. a string is used instead of
a data array; one byte in the output �le corresponds to one character; not
applicable to binary �les).
The error codes are:

-1 it is necessary to wait for the operation to �nish (the function
is "non-blocking")

-310 write failed; the operating system error code appears in the
log (when function block logging is enabled)

-307 �le/socket is not open

long ReadLine(long handle, string data)

Reads a line from a (text) �le, serial line, or socket, storing the characters
in data up to its allocated size. The function returns the actual size of the

600 CHAPTER 16. SPEC � SPECIAL BLOCKS

line or an error code.
long DeleteFile(string filename)

Deletes a �le, returning 0 on success or a negative error code on failure.
long RenameFile(string filename, string newfilename)

Renames a �le, returning 0 on success or a negative error code on failure.
bool ExistFile(string filename)

Checks if a �le or device exists (can be opened for reading), returning true
or false.

long I2C(long handle, long addr, long bufW[], long cntW, long bufR[], long cntR)

Handles communication over the I2C bus, particularly on Linux systems
with I2C capabilities (e.g., Raspberry Pi). The function sends and receives
data to/from a slave device using addr. The parameter handle is returned
by the OpenI2C function, whose parameter de�nes the device name (ac-
cording to the operating system). The parameter bufW is a bu�er (an
array) for the data which is sent out, cntW is the number of bytes to send
out, bufR is a bu�er (an array) for the data which comes in and cntR is
the number of bytes to receive. The function returns 0 or an error code.

long SPI(long handle, 0, long bufW[], long cntW, long bufR[], long cntR)

Executes a transaction over the SPI bus, particularly on Linux systems
with SPI capabilities. The parameter handle is returned by the OpenSPI

function, whose parameter de�nes the device name (according to the op-
erating system). The second parameter is always 0 (reserved for internal
use). The parameter bufW is a bu�er (an array) for the data which is sent
out, cntW is the number of bytes to send out, bufR is a bu�er (an array) for
the data which comes in and cntR is the number of bytes to receive. Note
that SPI communication is full-duplex, therefore the resulting length of the
SPI transaction is given by maximum of the cntW and cntR parameters,
not their sum. The function returns 0 or an error code.

long Seek(long handle, long mode[], long offset)

Sets the position for Read/Write commands. Parameter mode means:
1 o�set from begin of the �le,
2 o�set from current position,
3 o�set from end of the �le.

long Recv(long handle, long buffer[], long count)

Obsolete function. Use Read instead.

long Send(long handle, long buffer[], long count)

Obsolete function. Use Write instead.

long crc16(data, length, init, poly, flags, offset)

Computes a 16-bit Cyclic Redundancy Code (CRC), commonly used as a
checksum or hash in various communication protocols.

data A byte array (represented by a long array) or a string for which the
hash is computed.

length The number of bytes in the input array or text. Use -1 to process
the entire string.

601

init The initial vector for the CRC computation.
poly The control polynomial used in the computation.
flags Con�guration �ags

1 Reverses the bit order in both the input bytes and the re-
sulting CRC.

2 The resulting CRC is XORed with 0xFFFF.
4 If data is a long array, all 4 bytes in a long are processed

(LSB �rst).
8 Similar to �ag 4, but processes MSB �rst.

offset The index of the �rst byte to be processed in the data array (usu-
ally 0).

Note: Similar functions exist for computing 32-bit and 8-bit CRCs: long
crc32(data, length, init, poly, flags, offset) and long crc8(data,

length, init, poly, flags, offset). The initial vector, control poly-
nomial, and �ags for various protocols can be found at https://crccalc.
com/

Examples:

� MODBUS: crc16("123456789", -1, 0xFFFF, 0x8005, 1, 0)

� DECT-X: crc16("123456789", -1, 0, 0x0589, 0, 0)

Additional Note: The crc8(...) and crc32(...) functions also exist,
supporting 8-bit and 32-bit CRC calculations with the same parameter
structure.

Remarks

• Data types of inputs u0..u15, outputs y0..y15, and parameters p0..p15 are de-
termined during the source code compilation.

• Error codes < -99 require a RESET input for restarting the REXLANG block after
addressing the cause of the error.

• ATTENTION!!! It is possible to read inputs in the init() function, but since other
blocks usually do not set outputs in the init phase, there will always be 0. Outputs
can be set, but usually this is not done.

• The srcname parameter can be speci�ed with an absolute path. Otherwise, the
�le is searched for in the current directory and the speci�ed directories (see the
LibraryPath parameter of the PARAM block).

• Vector function parameters are primarily of type double, with the exception of
the n parameter, which is of type long. Note that the functions with one vector
parameter exist in three variants:

https://crccalc.com/
https://crccalc.com/

602 CHAPTER 16. SPEC � SPECIAL BLOCKS

double function(val1,...,valn)

Vector is de�ned as a sequence of values of type double.
double function(n,val1,...,valn)

Vector is de�ned as in the �rst case, only the �rst parameter de�nes the
number of values � the size of the vector. This variant is compatible with
the C compiler. The n3 parameter must be a number, not the so-called
const variable and it must correspond with the number of the following
elements de�ning the vector.

double function(n,vec)

The n parameter is an arbitrary expression of type long and de�nes the
number of elements the function takes into account.

• It's crucial to remember that arrays in the scripting language behave similarly to
arrays in C: indexing begins at 0 and there is no automatic boundary checking.
For instance, if you declare double vec[10], x;, the array vec will have elements
indexed from 0 to 9. Accessing vec[10] does not trigger a syntax or runtime error,
but the returned value is unde�ned since it's beyond the array bounds. Additionally,
assigning a value to vec[11] (e.g., vec[11] = x;) can be particularly dangerous,
as it may inadvertently overwrite adjacent memory locations. This could lead to
unpredictable behavior or cause the program to crash.

• During the compilation process, if there are syntax errors, the compiler reports a
parser error along with the line number where the error occurred. These reports
speci�cally indicate issues with syntax. However, if the syntax appears correct and
an error is still reported, it's advisable to check for con�icts involving identi�ers,
keywords, or function names, as these can also cause errors not immediately evident
as syntax-related.

• All jumps are translated as relative, i.e. the corresponding code is restricted to
32767 instructions (in portable format for various platforms).

• All valid variables and the results of temporary computations are stored in the
stack, which includes:

� Global and local static variables are permanently located at the stack's base.

� Return addresses for function calls.

� Function parameters.

� Variables local to functions.

� The return value of a function.

� Temporary computational results. For example, in the expression a = b +

c;, b and c are �rst pushed onto the stack. Their sum is then calculated, the
operands are popped o� the stack, and the result is pushed onto the stack.

3The optional parameter n of the vector functions must be speci�ed if the compatibility with C/C++
compiler is required. In such a case all the nonstandard functions must be implemented as well and the
functions with variable number of parameters need to know the parameter count.

603

Simple variables such as long or double occupy one stack slot each. For arrays,
the total occupied size matters, irrespective of the element type.

• When arrays are passed to functions, they are referenced rather than copied. This
means only one stack slot is used for the reference, and the function operates
directly on the original array.

• If the allocated stack size is insu�cient (less than the space needed for global
variables plus 10), it is automatically doubled, with an additional 100 slots for
computational needs, function parameters, and local variables, especially when
few global variables are de�ned.

• With basic debug level, various checks are conducted during script execution. These
include the initialization of read values and array index boundary checks. Addi-
tionally, a few uninitialized values are inserted at both the start and end of each
declared array for boundary checking, and NOP instructions with source �le line
numbers are added to the *.ill �le.

• At full debug level, an additional check for invalid data range accesses (such as
stack over�ows) is enabled.

• In this context, an 'instruction' refers to a processor-independent mnemonic code.
These codes are stored in the *.ill �le.

• The OpenCom() function sets binary non-blocking mode without timeouts, 8 data
bits, 1 stop bit, no parity, 19200 Baud. Optionally, the baudrate and parity

parameters can be adjusted in the OpenCom() function.

• Accessing text �les is signi�cantly slower than binary �les. However, text �les o�er
the advantage of being viewable and editable without specialized software.

• The block does not automatically invoke the parchange() function. This function
must be manually called within the init() function if needed.

• The OpenFile() function opens �les in the data directory of the REXYGEN system
(i.e., in Linux by default in \rex\data, on Windows
C:\ProgramData\REX Controls\REX_<version>\RexCore). Subdirectories are al-
lowed, but .. is not permitted. Links are followed.

Debugging the code

Use the Trace command mentioned above.

Examples of array initialization

Below are several examples of array initialization in a C-like language. Arrays can be
used in vector functions.

604 CHAPTER 16. SPEC � SPECIAL BLOCKS

double vec0 [20]; // Uninitialized array/vector. Global variables

including arrays are automatically initialized to 0.

double vec1 [20] = {0, 1.1, 2.2, 3, 4}; // Partially initialized array/

vector.

double vec2[] = {10, 11.1, 12.2, sqrt (2), 14}; // Initialized array with

automatically determined size (5 elements).

char str0 [30]; // Uninitialized text string with a capacity for 29

characters plus a null terminator.

char str1 [30] = "hello"; // Initialized text string.

int mat0 [5][10]; // Uninitialized matrix with 5 rows and 10 columns.

int mat1 [5][6] = {{100, 101, 102}, {110, 111, 112, 113}, {120, 121, 122,

123, 124}}; // Partially initialized matrix.

int mat2 [5][6] = {{200, 201, 102}, {210, 211, 212, 213}, {220, 221, 222,

223, 224, 225}, {230} , {240 ,241}};

char strV0 [4][30]; // Uninitialized vector of four text strings.

char strV1 [4][30] = {"name", "surname", "address"}; // Partially

initialized vector of text strings.

Example C-like

The following example shows a simple code to sum two input signals and also sum two
user-de�ned parameters.

double input (0) input_u0;

double input (2) input_u2;

double parameter (0) param_p0;

double parameter (1) param_p1;

double output (0) output_y0;

double output (1) output_y1;

double my_value;

long init(void)

{

my_value = 3.14;

return 0;

}

long main(void)

{

output_y0 = input_u0 + input_u2;

output_y1 = param_p0 + param_p1 + my_value;

return 0;

}

long exit(void)

{

return 0;

}

605

Example STL

And here is the same example in Structured Text.

VAR_INPUT

input_u0:REAL;

input_u1:REAL;

input_u2:REAL;

END_VAR

VAR_OUTPUT

output_y0:REAL;

output_y1:REAL;

END_VAR

VAR_PARAMETER

param_p0:REAL;

param_p1:REAL;

END_VAR

VAR

my_value: REAL;

END_VAR

FUNCTION init : INT;

my_value := 3.14;

init := 0;

END_FUNCTION

FUNCTION main : INT;

output_y0 := input_u0 + input_u2;

output_y1 := param_p0 + param_p1 + my_value;

main := 0;

END_FUNCTION

FUNCTION exit : INT;

exit := 0;

END_FUNCTION

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

RESET Block reset Bool

u0..u15 Input signal Any

Parameter

srcname Source �le name ⊙srcfile.c String

606 CHAPTER 16. SPEC � SPECIAL BLOCKS

srctype Coding of source �le ⊙1 Long (I32)

1 C-like
2 STL
3 RLB
4 ILL

debug Debug level ⊙3 Long (I32)

1 No check
2 Basic check
3 Full check

stack Stack size in bytes (0=automatic) Long (I32)

strs Total size of bu�er for strings (number of characters,
0=automatic)

Long (I32)

p0..p15 Parameter Any

Output

iE Error code Error

i REXYGEN error code

y0..y15 Output signal Any

607

SMTP � Block for sending e-mail alerts via SMTP

Block Symbol Licence: ADVANCED

subj

body

TRG

BUSY
DONE
ERROR

errId

SMTP

Function Description

The SMTP block sends a single e-mail message via standard SMTP protocol. The block
acts as a simple e-mail client. It does not implement a mail server.

The content of the message is de�ned by the subj and body inputs. The from and
to parameters specify the sender and recipient of the message. The message is sent
when a rising edge (off→on) is detected at the TRG input. The BUSY output is set to
on until the request is completed, which is signaled by the DONE output. In case of an
error, the ERROR output is set to on. The errId output carries the last error identi�ed by
the REXYGEN system error code. The domain parameter must always be set to identify
the target device. The default value should work in most cases. There may be multiple
message recipients. In such a case, individual e-mail addresses must be separated by a
comma and no space character should be present.

The block may be run in non-blocking or blocking mode, which is speci�ed by the
BLOCKING parameter:

• In the blocking mode, the execution of a task is suspended until the sending of e-
mail is completed. This mode is typically used in tasks with long execution period,
TS ≥ 10s. If the e-mail is not successfully sent until timeout expires, an error is
indicated and the execution of the task is resumed.

• In the non-blocking mode, the SMTP block performs only a single operation in each
execution of the block and the execution of a task is not suspended. This mode
is typically used in tasks with short execution period, TS ≤ 0.1s. In this mode,
the timeout parameter should be set to at least 50 · TS , where TS is the execution
period in seconds.

It is recommended to run the SMTP block in the non-blocking mode. It is however neces-
sary to mention that on various operating systems some operations may not be performed
in the non-blocking mode, so be careful and do not use this block in quick tasks (see
QTASK) or in tasks with extremely short execution period (few milliseconds). The non-
blocking mode is best supported on GNU/Linux operating system.

The block supports user authentication using standard SMTP authentication method.
User name and password may be speci�ed by the user and password parameters. The
block also supports secure connection. The encryption method is selected by the tls

608 CHAPTER 16. SPEC � SPECIAL BLOCKS

parameter. It is also possible to let the block verify server's certi�cate by setting the
VERIFY parameter. SSL certi�cate of a server or server's trusted certi�cate authority
must be stored in the certificate parameter in a PEM format. The block does not
support any certi�cate storage.

The length of the whole message (subject, body and headers) is limited to a maximum
of 1024 characters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

subj Subject of the e-mail message String

body Body of the e-mail message String

TRG Trigger of the selected action Bool

Parameter

server SMTP server address String

to E-mail of the recipient String

from E-mail of the sender String

tls Encryption method ⊙1 Long (I32)

1 None
2 StartTLS
3 TLS

user User name String

password Password String

domain domain String

auth Authentication method ⊙1 Long (I32)

1 Login
2 Plain

certificate Authentication certi�cate String

VERIFY Enable server veri�cation (valid certi�cate) Bool

timeout Timeout interval Double (F64)

BLOCKING Wait for the operation to �nish Bool

Output

BUSY Sending e-mail Bool

DONE E-mail has been sent Bool

ERROR Error indicator Bool

errId Error code Error

609

STEAM � Steam and water properties

Block Symbol Licence: STANDARD

u1
u2

y
E

STEAM

Function Description

The STEAM blok can be used to calculate various thermodynamic properties of water
and steam, such as enthalpy, entropy, saturation temperature and pressure, density, vis-
cosity, and others. The inputs of the block are typically temperature and pressure, but
calculations can be done in the opposite direction, for example, determining the temper-
ature from the enthalpy. The calculations are based on the international standard IAPWS

IF-97, details of which can be found at http://www.iapws.org/relguide/IF97-Rev.
pdf.

The units for temperature can be set by the tunit parameter, for pressure by the
punit parameter. Energy units are in kilojoules [kJ], for example, enthalpy is expressed
in kJ/kg, heat capacity in kJ/kg/K, which corresponds to the de�nitions in IF-97. Other
quantities are given in SI units, such as density in kg/m3.

The block function has a name in the format <output property>_<1st input property><2nd

input property>, where the properties include:

• T - Temperature

• p - Pressure

• h - Enthalpy [kJ/kg]

• v - Speci�c volume [m3/kg]

• rho - Density [kg/m3]

• s - Speci�c entropy

• u - Speci�c internal energy [kJ/kg]

• Cp - Speci�c isobaric heat capacity [kJ/kg/K]

• Cv - Speci�c isochoric heat capacity [kJ/kg/K]

• w - Speed of sound [m/s]

• my - Viscosity

• tc - Thermal Conductivity

http://www.iapws.org/relguide/IF97-Rev.pdf
http://www.iapws.org/relguide/IF97-Rev.pdf

610 CHAPTER 16. SPEC � SPECIAL BLOCKS

• st - Surface Tension

• x - Vapour fraction

• vx - Vapour Volume Fraction

The output property can have attribute:

• sat - Saturated value, i.e. for situation when water (liquid) is changed into steam
(vapour)

• V - Steam (vapour) for saturated conditions

• L - Water (liquid) for saturated conditions

Examples

• h_pT output is enthalpy for given pressure (1st input) and temperature (2nd
input); for example, for pressure 100 kPa and temperature 120 ◦C, the enthalpy is
2716 kJ/kg.

• Tsat_p saturated temperature (i.e. boiling temperature) for given pressure (1st
input); for example, for pressure 100 kPa, the boiling temperature is 100 ◦C.

• hL_p enthalpy of (liquid) water for saturated conditions given by pressure (1st
input); for example, at 100 kPa (and temperature 100 ◦C, to be at saturated
conditions), the medium can contain any ratio of water and steam, the function
(block output) will be the enthalpy for the situation when the medium is water
(without steam), i.e. 417 kJ/kg.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u1 First analog input of the block Double (F64)

u2 Second analog input of the block Double (F64)

611

612 CHAPTER 16. SPEC � SPECIAL BLOCKS

Parameter

func Function type ⊙1 Long (I32)

1 Tsat_p
2 T_ph
3 T_ps
4 T_hs
5 psat_T
6 p_hs
7 p_hrho
8 hV_p
9 hL_p
10 hV_T
11 hL_T
12 h_pT
13 h_ps
14 h_px
15 h_prho
16 h_Tx
17 vV_p
18 vL_p
19 vV_T
20 vL_T
21 v_pT
22 v_ph
23 v_ps
24 sV_p
25 sL_p
26 sV_T
27 sL_T
28 s_pT
29 s_ph
30 CpV_p
31 CpL_p
32 CpV_T
33 CpL_T
34 Cp_pT
35 Cp_ph
36 Cp_ps
37 CvV_p
38 CvL_p
39 CvV_T
40 CvL_T
41 Cv_pT
42 Cv_ph
43 Cv_ps
44 wV_p
45 wL_p
46 wV_T
47 wL_T
48 w_pT
49 w_ph
50 w_ps
51 my_pT
52 my_ph
53 my_ps
54 tcL_p
55 tcV_p
56 tcL_T
57 tcV_T
58 tc_pT
59 tc_ph
60 tc_hs
61 st_T
62 st_p
63 x_ph
64 x_ps
65 vx_ph
66 vx_ps
67 rhoV_p
68 rhoL_p
69 rhoV_T
70 rhoL_T
71 rho_pT
72 rho_ph
73 rho_ps
74 uV_p
75 uL_p
76 uV_T
77 uL_T
78 u_pT
79 u_ph
80 u_ps

613

punit Used unit for pressure ⊙1 Long (I32)

1 MPa
2 bar
3 kPa

tunit Used unit for temperature ⊙1 Long (I32)

1 K
2 ◦C

Output

y Analog output of the block Double (F64)

E Error indicator Bool

614 CHAPTER 16. SPEC � SPECIAL BLOCKS

UART � UART communication block

Block Symbol Licence: STANDARD

dataTx

lenTx

idTx

idRxAck

WAIT

R1

dataRx

lenRx

idRx

idTxAck

MORE

status

UART

Function Description

The UART block allows you to read and write data via the Universal Asynchronous
Receiver-Transmitter. The port parameter speci�es device name. There it is possible
to use two name types:

• the address of the physical device � Usually /dev/ttyS* for Linux target or COM*
for Windows. Replace "*" symbol according to the chosen serial port!

• the virtual address � REXYGEN enables the creation of a virtual UART with which
you can communicate inside REXYGEN with other blocks supporting UART such
as REXLANG, PYTHON, another UART block or Modbus driver. On Linux devices, the
virtual port is marked with the pre�x pty: (pseudo terminal) and it is possible
to connect to it from another application running on the device. On Windows
devices, it is possible to use the pre�x vcom, which enables communication within
REXYGEN. Virtual port examples: pty:/tmp/vslave, vcom:vmaster.

UART communication has several general properties that are set using parameters such
as baudrate, parity, databits and stopbits. Each packet that is received or trans-
mitted is assigned a unique ID. The ID of the next packet is always one higher than the
ID of the previous packet. Once the maximum ID is reached, the next ID assigned will
be 0. The maximum ID value is determined by the maxId parameter. Data is sent with
the rising edge of the idTx input. If there is still data in the bu�er to be sent, the WAIT
output is set to on.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

dataTx Vector reference to transmitted data Reference

lenTx Transmitted data length (0 = whole vector) ↓0 Long (I32)

idTx ID of the transmitted data packet ↓0 Long (I32)

idRxAck ID of the last processed received data packet ↓0 Long (I32)

WAIT Transmission suspended �ag (data is bu�ered) Bool

R1 Block reset Bool

615

dataRx Vector reference to received data Reference

lenRx Received data length ↓0 Long (I32)

idRx ID of the received data packet ↓0 Long (I32)

idTxAck ID of the last processed transmitted data packet ↓0 Long (I32)

MORE Additional data in the receive bu�er �ag Bool

status Internal status indicator Long (I32)

0 No Error
-1 Failed to open port
1 Transmit bu�er over�ow
2 Transmit data error
256 . . . Received data error

Parameter

port Communication device name String

baudrate Baudrate [bit/s] (0 = not set) ↓0 ↑4000000 Long (I32)

parity Parity Long (I32)

0 Not set
1 NoParity
2 OddParity
3 EvenParity

databits Number of data bits (0 = not set) ↓0 ↑3 Long (I32)

stopbits Number of stop bits (0 = not set) ↓0 ↑2 Long (I32)

maxId Max value used as ID of a packet ↓2 ↑10000000 ⊙4 Long (I32)

maxLen Maximum length of the received data ↓1 ↑10000000 ⊙64 Long (I32)

nmax Allocated size of array ↓8 ↑10000000 ⊙256 Long (I32)

616 CHAPTER 16. SPEC � SPECIAL BLOCKS

Chapter 17

LANG � Language blocks

Contents

LUA, LUAQUAD, LUAOCT, LUAHEXD � User programmable blocks in Lua 618

PYTHON � User programmable block in Python 622

The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-de�ned function. For these purposes, the blocks from
the LANG library, or the REXLANG block, can be used.

617

618 CHAPTER 17. LANG � LANGUAGE BLOCKS

LUA, LUAQUAD, LUAOCT, LUAHEXD � User programmable blocks in
Lua

Block Symbols Licence: REXLANG

HLD
RESET
u0
u1

iE
iRes
y0
y1

LUA

HLD
RESET
u0
u1
u2
u3

iE
iRes
y0
y1
y2
y3

LUAQUAD

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7

iE
iRes
y0
y1
y2
y3
y4
y5
y6
y7

LUAOCT

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
iRes
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

LUAHEXD

Function Description

The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-de�ned function. The REXLANG block covers this case
for application where real-time behavior is strictly demanded. In the rest of the cases
the LUA block can be used.

The LUA block implements an user-de�ned algorithm written in a Lua scripting lan-
guage and in comparison to the REXLANG block it provides a better user experience in
the stage of development of the algorithm and can extend the feature set of REXYGEN
system through various 3rd party libraries that are available in the Lua environment.

There are four variants of the LUA block with di�erent number of inputs and outputs.
The inputs and outputs of the block are indexed from 0 to 15. The inputs and outputs
of the block can be of any data type supported by the REXYGEN system.

Scripting language

The scripting language is a standard Lua v5.4 language (see [18]). Every block references
a script stored in a *.lua source �le or it directly contains the script in a parameter
of the block. The script can optionally contain functions with a reserved name that are
then executed by REXYGEN.

The main() function is executed periodically during runtime. Alongside the main()

function the init() function is executed once at startup and after reset of the block,
the exit() function is executed once when the control algorithm is stopped and before
reset of the block and the parchange() function is executed on parameters change in
REXYGEN.

Additionally, the compile() function is executed once during the compilation process
of the REXYGEN con�guration. This function can be used to modify the table REX.ctx

619

that then after the compilation gets serialized and stored in the con�guration and is
later deserialized during the initialization of the block on the target device. This way the
script can create a shared context between the compilation environment and the target
device. Since the script is to some extend executed both on the host and target device,
the items REX.host and REX.target are available to the script to distinguish between
the two environments.

Scripts on the target device

Lua interpreter can load a script from speci�ed �le or directly from a string. If the
parameter embedded is set to on the script referenced by the block in the parameter
src gets embedded in the REXYGEN con�guration during compilation process and will
be loaded during initialization of the block once the con�guration is downloaded and
executed on the target device. Otherwise the script is loaded from a �le on the target
device that is again speci�ed by the parameter src.

Data exchange API

For the purpose of data exchange between a Lua interpreter and REXYGEN system an
object REX containing the data exchange API was developed and is injected into every
instance of a LUA block interpreter.

I/O objects

The range of input and output objects depends on the used block. The most compact
LUA block contains 2 inputs and 2 outputs, LUAQUAD 4 inputs and 4 outputs, LUAOCT 8
inputs and 8 outputs and the largest LUAHEXD 16 inputs and 16 outputs.

REX.u0 - REX.u15

� objects representing block inputs in Lua environment

REX.p0 - REX.p15

� objects representing block parameters in Lua environment

REX.y0 - REX.y15

� objects representing block outputs in Lua environment

Access to values

The I/O objects must have its data type speci�ed during compilation of the REXYGEN
con�guration. Default data type is double but it can be changed using the function
type().
Example of setting the data type of the block IOs:

REX.u0.type(" int32 ")

REX.y0.type(" string ")

All I/O objects contain a function v(). That performs a conversion from REXYGEN

data types to Lua data types. The value then can be stored in variables and used in the
block algorithm.
Example of reading a value of the block input:

620 CHAPTER 17. LANG � LANGUAGE BLOCKS

local x = REX.u0.v()

local myU0 = REX.u(0)

local x = myU0.v()

Setting the REXYGEN value from the Lua script can be achieved with function setV()

that performs a conversion from Lua data types to REXYGEN data types and exports
the value to the corresponding block output/parameter.
Example of writing a value to the block output:

REX.y0.setV (42)

local myY0 = REX.y(0)

myY0.setV (42)

Arrays

Arrays can be manipulated through function v() but direct conversions between REXY-

GEN arrays and Lua tables are not very memory e�cient. In addition input objects
support direct access to the values of the REXYGEN array connected to the block input
using functions arr() and setArr().
Example of reading and writing a value of the block input for matrix:

local x = REX.u0.arr(0, 0)

REX.u0.setArr(0, 0, 42)

External items

The object REX contains a function Item() that returns a handle to an external REXYGEN
item based on a connection string speci�ed in a parameter of the function.
Example of creating a handle to an external item and setting its value:

local cns = REX.Item(" myproject_task.CNS:scv")

cns.setV("abc")

Tracing

The object REX contains functions Trace, TraceError, TraceWarning, TraceVerbose
and TraceInfo that can be used to write messages into REXYGEN system log.
Example of logging a message:

REX.Trace ("abc")

Additional features

REX.RexDataPath() � RexDataPath() is a function that returns a path to a data folder
of the REXYGEN system on the given platform. That can come handy for writing a
platform independent code that requires access to the �le system using absolute paths.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

621

Input

HLD Hold Bool

RESET Block reset Bool

u0..u15 Input signal Any

Parameter

src Source �le name or source ⊙program.lua String

embedded Embedding of the script in the REXYGEN executive program
⊙on

Bool

limit Limit of the Lua interpreter execution per period ↓0 Long (I32)

p0..p15 Parameter Any

Output

iE Error code Error

i REXYGEN error code

iRes Execution result code Long (I32)

y0..y15 Output signal Any

622 CHAPTER 17. LANG � LANGUAGE BLOCKS

PYTHON � User programmable block in Python

Block Symbol Licence: REXLANG

HLD
RESET
u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15

iE
iRes
y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

PYTHON

Function Description

The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-de�ned function. The REXLANG block covers this case
for application where real-time behavior is strictly demanded. In the rest of the cases
the PYTHON block can be used.

The PYTHON block implements an user-de�ned algorithm written in a Python scripting
language and in comparison to the REXLANG block it provides a better user experience in
the stage of development of the algorithm and can extend the feature set of REXYGEN
system through various 3rd party libraries that are available in the Python environment.

Warning: the PYTHON block is intended for prototyping and experiments so please
consider using the block in your application very carefully. It is an experimental block
and always will be. There are many corner cases that may lead to unexpected behavior or
even block the runtime. Packages may be poorly written or provide incorrect �nalization
and reinitialization which may even lead to a crash. Only a very limited support is
provided for this block.

Scripting language

The scripting language is a standard Python v.3 language (see [19]). Every block refer-
ences a script written in a *.py source �le. The �le can optionally contain functions with
a reserved name that are then executed by REXYGEN.

The main() function is executed periodically during runtime. Alongside the main()

function the init() function is executed once at startup and after reset of the block,
the exit() function is executed once when the control algorithm is stopped and before
reset of the block and the parchange() function is executed on parameters change in
REXYGEN.

623

Scripts on the target device

Standard python interpreter can load modules/scripts from various locations on the tar-
get device. The PYTHON block can reference any python script available for the stan-
dard interpreter and in addition the block can access scripts located in a directory
/rex/scripts/python. User scripts can be directly uploaded to this directory or if the
parameter embedded is set to on the script referenced by the block gets embedded in
the REXYGEN con�guration during compilation process and will be temporarily stored
in the directory /rex/scripts/python/embedded during initialization of the block once
the con�guration is downloaded and executed on the target device.

Data exchange API

For the purpose of data exchange between a Python interpreter and REXYGEN system
a module PyRexExt was developed as a native extension to the interpreter. The module
contains an object REX that handles the data exchange operations. Use the following
snippet at the start of the script to setup the data exchange API.

from PyRexExt import REX

I/O objects

REX.u0 - REX.u15

� objects representing block inputs in Python environment

REX.p0 - REX.p15

� objects representing block parameters in Python environment

REX.y0 - REX.y15

� objects representing block outputs in Python environment

Access to values

All I/O objects contain a property v. Reading of the property v performs a conversion
from REXYGEN data types to Python data types. The value then can be stored in
variables and used in the block algorithm. A REXYGEN array type converts into a list of
values in case of one-dimensional array or into a list of lists in case of multidimensional
array.
Example of reading a value of the block input:

x = REX.u0.v

Writing to the property v, on the other hand, performs a conversion from Python data
types to REXYGEN data types and exports the value to the corresponding block out-
put/parameter.
Example of writing a value to the block output:

REX.y0.v = 5

624 CHAPTER 17. LANG � LANGUAGE BLOCKS

Arrays

Input and output objects have a readonly property size. It is a tuple with number of
rows and columns. Arrays can be manipulated through property v but direct conversions
between REXYGEN arrays and Python lists are not very memory e�cient. However, input
and output objects support indexing operator [] that restricts the conversion overhead
only on the speci�ed item.
Example of reading a value of the block input for one-dimensional array:

x = REX.u0[0]

Example of writing a value to the block output for multidimensional array:

REX.u0[1, 3] = 5

External items

The object REX contains a method Item that returns a handle to an external REXYGEN
item based on a connection string speci�ed in a parameter of the method.
Example of creating a handle to an external item and setting its value:

cns = REX.Item("myproject_task.CNS:scv")

cns.v = "abc"

Tracing

The object REXYGEN contains methods Trace, TraceError, TraceWarning, TraceVerbose
and TraceInfo can be used to write messages into REXYGEN system log. Every message
has a stacktrace attached.
Example of logging a message:

REX.Trace("abc")

Additional features

REX.RexDataPath � RexDataPath is a string constant that contains a path to a data
folder of the REXYGEN system on the given platform. That can come handy for writing
a platform independent code that requires access to the �le system using absolute paths.

Data types de�nition

For data exchange between REXYGEN system and Python environment the data types of
block inputs signals u0..u15, outputs signals y0..y15 and parameters p0..p15 must be
explicitly speci�ed. For that purpose a con�guration �le must be created for every python
script with the same name plus a su�x .cfg (e.g. program.py.cfg). If the �le is missing
during the compilation process it is created with all signal types set to double. It is not
expected this �le to be edited directly. User should use a build-in editor speci�c to the
PYTHON block instead. Available types for inputs outputs and parameters are boolean,
uint8, int16, uint16, int32, uint32, int64, float, double, string and in addition
the inputs and outputs support array, numpy and image data types.

625

For types numpy and image the numpy python package must be installed on the target
device. Inputs of the type numpy expect the connected signal to be of the type array that
gets converted in the runtime to a native numpy representation. Inputs of the type image
expects the connected signal to be of the type image data type from the RexVision

module that also gets converted in the runtime to a native numpy representation and can
therefore be directly used with the OpenCV Python package.

Outputs of the type numpy expect to be set in the script from a numpy array object
that gets converted to a regular array. Outputs of the type image expect to be set in
the script from a numpy array object that gets converted to image data type de�ned in
the RexVision module.

Example data types de�nition

The following example shows a shortened JSON �le describing the data types of the
program inputs and outputs.

{

"types": {

"in": [

{

"idx": 0,

"type": "double"

},

. . .

{

"idx": 15,

"type": "double"

}

],

"param": [

{

"idx": 0,

"type": "double"

},

. . .

{

"idx": 15,

"type": "double"

}

],

"out": [

{

"idx": 0,

"type": "double"

},

. . .

{

"idx": 15,

"type": "double"

}

]

}

626 CHAPTER 17. LANG � LANGUAGE BLOCKS

}

Example Python script

The following example shows a simple code to sum two input signals and also sum two
user-de�ned parameters.

from PyRexExt import REX

def main():

REX.y0.v = REX.u0.v + REX.u1.v

REX.y1.v = REX.p0.v + REX.p1.v

return

Installation - Debian

The Python environment should be correctly installed and con�gured just by installing
the PythonBlk_T debian package. To install the package with optional numpy and OpenCV

packages execute these commands from the terminal.

sudo apt install rex -pythonblkt

sudo apt install python3 -numpy python3 -opencv

Installation - Windows

To install the correct version of Python the recommended way is to download and install
the 64-bit version from o�cial repository (https://www.python.org/ftp/python/3.9.6/).
During the installation make sure to enable installation of the pip program and adding
of the python binaries to the system variable PATH.

To install numpy and OpenCV as optional dependencies execute following commands
from the command line.

pip install numpy

pip install opencv -python

Limitations

Due to the limitations of the standard Python interpreter implementation it is not rec-
ommended to use multiple PYTHON block instances at the di�erent levels of executive.
Doing so can lead to an unpredictable behavior and instability of the RexCore program.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

RESET Block reset Bool

u0..u15 Input signal Any

https://www.python.org/ftp/python/3.9.6/python-3.9.6-amd64.exe

627

Parameter

srcname Source �le name ⊙program.py String

embedded Embedding of the script in the REXYGEN executive program
⊙on

Bool

limit Limit of the Python interpreter execution per period
↓1 ⊙10000

Long (I32)

limitMode Python interpreter limit mode Long (I32)

0 no limit
1 instructions per period, continue after interrupt
2 instructions per period, start from scratch after

interrupt
3 milliseconds per period, continue after interrupt
4 milliseconds per period, start from scratch after

interrupt

p0..p15 Parameter Any

Output

iE Error code Error

i REXYGEN error code

iRes Execution result code Long (I32)

DONE Script execution �nished Bool

y0..y15 Output signal Any

628 CHAPTER 17. LANG � LANGUAGE BLOCKS

Chapter 18

DSP � Digital Signal Processing

blocks

Contents

BSFIFO � Binary Structure - Queueing serialize and deserialize . 630

BSGET, BSGETOCT � Binary Structure - Get a single value of given
type . 632

BSGETV, BSGETOCTV � Binary Structure - Get matrix (all values of
same given type) . 634

BSSET, BSSETOCT � Binary Structure - Set a single value of given
type . 636

BSSETV, BSSETOCTV � Binary Structure - Set matrix (all values of
same given type) . 637

FFT � Fast Fourier Transform . 638

MOSS � Motion smart senzor . 640

PCI � PCI Bus Memory Access . 642

PSD � Power Spectral Density . 643

RAWCOPY � Raw vector copy: 1, 2, or 4 Bytes per Copy 649

The DSP library is tailored for advanced digital signal processing. It includes blocks
like FFT for Fast Fourier Transform operations and PSD for Power Spectral Density anal-
ysis. The library also features BSFIFO, BSGET, BSGETV, BSSET, and BSSETV for bu�er
storage and retrieval, enabling e�cient data handling in signal processing tasks. In ad-
dition, the library contains a MOSS block - an advanced �lter for incremental sensors.
This collection of blocks is essential for sophisticated signal analysis and manipulation
in digital systems.

629

630 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSFIFO � Binary Structure - Queueing serialize and deserialize

Block Symbol Licence: ADVANCED

uBuff
uMatIn
uMatOut
PUSH
POP
R1

yBuff
yMatIn

yMatOut
iused
ifree
iE

BSFIFO

Function Description

This block sequentially adds or removes data to/from the bu�er (passed to the uBuff

input). The elementary unit in a bu�er is a column. All matrices (ie matrices or vectors
fed to the inputs uBuff, uMatIn, uMatOut) must have the same column size in bytes.
Data is organized as either a queue (if REV=off) or a stack (if REV=on). The behavior of
the block depends on the inputs in this way:

• If PUSH=on, the content of the uMatIn matrix (all de�ned columns) is inserted into
the bu�er.

• If POP=on, the number of columns determined by the col parameter is removed
from the bu�er and this data is inserted into the uMatOut matrix (it must be of
su�cient size).

• If R1=on, the data is reloaded (mainly the number of valid columns) into the block
bu�er. Own data is transmitted by reference and is therefore shared. This signal
has priority and blocks PUSH, POP signals.

Error states (e.g. mismatched matrix dimensions, insu�cient space in some matrices, lack
of data in the bu�er) are indicated on the iE output and by a message in the SystemLog.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uBuff Input reference to a binary structure Reference

uMatIn Input reference to a matrix or vector Reference

uMatOut Input reference to a matrix or vector Reference

PUSH Enable push data Bool

POP Enable pop data Bool

R1 Block reset Bool

631

Parameter

OW Overwrite oldest items in bu�er Bool

REV Pop last pushed item �rst Bool

col Number of output (pop) columns ⊙1 Long (I32)

Output

yBuff Output reference to a binary structure Reference

yMatIn Output reference to a matrix or vector Reference

yMatOut Output reference to a matrix or vector Reference

iused Used bytes in bu�er Long (I32)

ifree Free bytes in bu�er Long (I32)

iE Error code Error

632 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSGET, BSGETOCT � Binary Structure - Get a single value of
given type

Block Symbols Licence: ADVANCED

uVec

uOffset

yVec
yOffset

y

BSGET

uVec

uOffset

yVec
yOffset

y1
y2
y3
y4
y5
y6
y7
y8

BSGETOCT

Function Description

This group of blocks is used for obtaining values from a binary structure (byte array).
The BSSET and BSSETOCT blocks can be used to write to the binary structure.
If binary structures are received using communication, it is possible to process them
directly in the block mediating communication. Typically this is a REXLANG or PYTHON
programmable block. Using structures, however, it is possible to transfer data within
the REXYGEN application as well. The binary structure is fed in the form of an array
(vector) of bytes to the uVec input. The uOffset input speci�es the o�set (in bytes) of
the desired value from the beginning of the structure. The value type is speci�ed by the
type parameter.
The yOffset output is the start of the next element in the structure. This is advantageous
for chaining: if the structure contains several elements in a row, it is possible to connect
the input uOffset to the output yOffset of the previous block and it is not necessary
to calculate the o�set.
The only di�erence between the blocks is that BSGET gets a single value. The BSGETOCT
block is able to receive up to 8 values (the number is determined by the m parameter).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uVec Input reference to a binary structure Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

Parameter

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

m Number of active items ↓1 ↑8 ⊙8 Long (I32)

type1..type8 Data type of item ↓2 ↑10 ⊙2 Long (I32)

633

Output

yVec Output reference to a binary structure Reference

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

y1..y8 Scalar value output (scalar type de�ned by parameter) Double (F64)

634 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSGETV, BSGETOCTV � Binary Structure - Get matrix (all values
of same given type)

Block Symbols Licence: ADVANCED

uVec
uMat
uOffset
n
m

yVec

yMat

yOffset

BSGETV

uVec
uOffset
n

yVec
yOffset
yMat

BSGETOCTV

Function Description

This group of blocks is used for obtaining values from a binary structure (byte array).
The BSSETV and BSSETOCTV blocks can be used to write to the binary structure.
The meaning of most of the parameters is the same as the BSGET block, but these blocks
retrieve several values of the same type and store them in an array (matrix). A matrix
always has m rows and n columns. For the BSGETV block, all elements are of the same
type (determined by the type parameter) and the data is �lled into the matrix fed to
the uMat input. The BSGETOCTV block loads up to 8 vectors. Each row of the matrix can
be of a di�erent type. The block allocates the matrix itself. The matrix is available at
the yMat output.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uVec Input reference to a binary structure Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

n Number of matrix columns Long (I32)

Parameter

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

m Number of active items ↓1 ↑8 ⊙8 Long (I32)

nmax Allocated size of output matrix (total number of items)
↓1 ⊙32

Long (I32)

type Data type of item ↓2 ↑10 ⊙2 Long (I32)

type1..type8 Data type of item ↓2 ↑10 ⊙2 Long (I32)

Output

yVec Output reference to a binary structure Reference

yMat Matrix value output Reference

635

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

636 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

BSSET, BSSETOCT � Binary Structure - Set a single value of
given type

Block Symbols Licence: ADVANCED

HLD
uVec
uOffset
u

yVec

yOffset

BSSET

HLD
uVec
uOffset
u1
u2
u3
u4
u5
u6
u7
u8

yVec

yOffset

BSSETOCT

Function Description

This group of blocks is used for setting values into a binary structure (byte array). The
function is the inverse of the BSGET and BSGETOCT blocks, i.e. all signals have the same
meaning, only the data is copied in the opposite direction - from the u input to the
binary structure represented by the byte array connected to the uVec input. The block
modi�es the binary structure only if HLD=off.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

uVec Input reference to a binary structure Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

u1..u8 Scalar value input (scalar type de�ned by parameter) Double (F64)

Parameter

m Number of active items ↓1 ↑8 ⊙8 Long (I32)

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

type1..type8 Data type of item ↓2 ↑10 ⊙2 Long (I32)

Output

yVec Output reference to a binary structure Reference

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

637

BSSETV, BSSETOCTV � Binary Structure - Set matrix (all values
of same given type)

Block Symbols Licence: ADVANCED

HLD
uVec
uOffset
uMat

yVec

yOffset

BSSETV

HLD
uVec
uOffset
uMat

yVec

yOffset

BSSETOCTV

Function Description

This group of blocks is used to set the matrix of values into a binary structure (byte
array). The function is the inverse of the BSGETV and BSGETOCTV blocks, i.e. all signals
have the same meaning, only the data is copied in the opposite direction - from the uMat
input to the binary structure represented by the byte array connected to the uVec input.
The block modi�es the binary structure only if HLD=off.
Unlike the BSGETV block, the numbers of rows and columns are not speci�ed, but are
determined from the actual size of the matrix connected to the uMat input.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uVec Input reference to a binary structure Reference

HLD Hold Bool

uMat Reference of matrix for input values Reference

uOffset O�set to start in the input Binary Structure (in bytes) Long (I32)

Parameter

m Number of active items ↓1 ↑8 ⊙8 Long (I32)

BE Big-Endian byte order (default is Little-Endian, e.g. Intel) Bool

type1..type8 Data type of item ↓2 ↑10 ⊙2 Long (I32)

Output

yVec Output reference to a binary structure Reference

yOffset O�set after the last processed byte of the input Binary Structure
(in bytes), for easy chaining

Long (I32)

638 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

FFT � Fast Fourier Transform

Block Symbol Licence: ADVANCED

uc

uf

HLD

yc

yf

E

FFT

Function Description

The function block FFT computes Fast Fourier Transform using the PocketFFT pack-
age [20]. The PocketFFT C99 implementation is based on FFTPack (in Fortran) [21],
which is based on the chapter in [22].

Input data (a vector or a matrix) of the block are referenced by the uc input. If
the input uc refers to a column vector (number of columns m = 1) with the number of
elements n, the FFT will be calculated from a single signal with n elements. If uc refers
to a matrix with n rows and m columns, the FFT will be computed m times (once for
each column).

Input data is processed according to the mode parameter (see below), which de-
termines whether the calculation will be performed for real or complex data and for-
ward or backward FFT. More precisely, one of the rfft_forward(), rfft_backward(),
cfft_forward() or cfft_backward() functions of the PocketFFT package is called ac-
cording to the mode parameter.

Output data are referenced by the uf input. The data has the same number of n rows
and m columns as the data referenced by uc. If the uf input is connected to preallocated
vector/matrix then the FFT algorithm output data are referenced by the yf output. If
the uf input is not connected, the FFT is calculated in place and the output data is
stored in the array referenced by the yc output and the original data referenced by uc

is overwritten.
The uc reference is copied to the yc output, the uf reference is copied to the yf

output.
The HLD input allows the user to temporarily stop the FFT calculation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uc Input reference to input/output data Reference

uf Input reference to optional output data Reference

HLD Hold Bool

639

Parameter

mode FFT computation mode ⊙1 Long (I32)

1 Real forward
2 Real backward
3 Complex forward
4 Complex backward

Output

yc Output reference to input/output data Reference

yf Output reference to optional output data Reference

E Error indicator Bool

640 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

MOSS � Motion smart senzor

Block Symbol Licence: ADVANCED

tsPulse
cntPulse
tsSync
cntCorr
flags
R1

pos
vel
acc

status
iE

MOSS

Function Description

The MOSS block implements an advanced �lter for incremental (quadrature) position
sensors. The block requires special hardware, as correct operation necessitates knowledge
not only of the current value from the sensor but also the timestamp of the last pulse,
the direction of movement at the last pulse, and the timestamp of the reference moment
(from the same source as the pulse timestamp). The output of the block is not only
the �ltered position but also the velocity and acceleration. For proper operation, it is
necessary to appropriately select the alpha parameter. A smaller value reduces noise but
increases the signal delay.

If no pulse is received in the stalled time interval, sensor is considered stopped and the
outputs (pos, vel, acc) are set to 0. If pos is greater then maxpos, the internal position
processed by the Kalman �lter is decremented by an integer multiple of maxpos and
incremented back for output. This causes the �lter algorithm to calculate small enough
numbers and not reduce accuracy due to rounding errors. The default value should not
normally be changed. If no pulse is received for a long time, the predictor output will
drift. To overcome this drift, if no pulse is detected for longer then mindivert time, the
output position is clamped to ±1 pulse from input (measured) position.

Note 1: It may seem impossible to determine the position more accurately than the
quantization error (±1 pulse) of the measurement, but knowing the velocity allows for
a more accurate estimation of the position. Furthermore, it may appear that velocity
cannot be determined more accurately than as a ratio of the number of pulses and the
di�erence in timestamps, but by plotting both signals, it is evident that the MOSS sig-
nal improves. Determining acceleration through di�erentiation leads to utterly unusable
values.

Note 2: Internally, the block implements a Kalman �lter for a system with 2 inte-
grators (i.e., input acceleration, output position). The �lter is discretized anew in each
period, where the discretization period is the current di�erence in timestamps. To derive
the �lter, it is necessary to know the input and output disturbances. If white (Gaus-
sian) noise is assumed, it is su�cient to know their ratio, leading to the parameter
α = ln(Q/R), where Q is the variance at the input and R is the variance of the output
measurement.

Note 3: In this case, the Kalman �lter results in a low-pass �lter (3rd order, but only

641

6 dB/octave with a resonance peak) with a cut-o� frequency ωR, where α = 6 · ln(ωR).
Note 4: The �lter in this block is the same as in the KDER block, with the di�erence

that in MOSS, the parameter norder is �xed at 3. Only second derivatives are computed
(whereas KDER computes up to �ve derivatives), but the calculation correctly handles
non-equidistant sampling (as values arrive from a quadrature encoder or tooth counter).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

tsPulse Time stamp of last pulse DWord (U32)

cntPulse Last state of pulse counter DWord (U32)

tsSync Time stamp of synchronization pulse DWord (U32)

cntCorr Last pulse correction Double (F64)

flags Input status �ags (1: POS, 2: NEG, 4: RUN) DWord (U32)

R1 Block reset DWord (U32)

Parameter

freq Frequency of source time stamp [Hz] ↓0.0 ⊙100000000.0 Double (F64)

stall Time for activation of halt state [s] ↓0.0 ⊙0.08 Double (F64)

alpha Design parameter of Kalman �lter ↓0.0 ↑200.0 ⊙26.0 Double (F64)

maxpos Rounding error optimization of Kalman �lter ↓0.0 ⊙1e+10 Double (F64)

mindivert Time for activation of predictor diversion limiter [s]
↓0.0 ⊙0.003

Double (F64)

Output

pos Filtered position Double (F64)

vel Filtered velocity Double (F64)

acc Filtered acceleration Double (F64)

status Output status �ags (1: POS, 2: NEG, 4: RUN, 8: INIT, 16:
PULSE, 32: STALLED, 64: DIVERT)

Long (I32)

iE Error code Error

642 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

PCI � PCI Bus Memory Access

Block Symbol Licence: ADVANCED

y

PCI

Function Description

The PCI block provides access to PCI device resources de�ned by the path:
/sys/bus/pci/devices/<device>/resource<resource>

The data is presented at the output y of the block as a reference to a byte array. The
device is speci�ed using the pci_device parameter, which accepts two formats:

• The device slot, as displayed in lspci command output, formatted as:

<domain>:<bus>:<slot>.<func>.

• A combination of the vendor and device IDs with an optional index, formatted as:

[vendor]:[device][#index].

Both vendor and device IDs are hexadecimal numbers that can be retrieved from
the lspci -nn command output, without the leading "0x". You can omit either
the vendor or device ID. If the index is not speci�ed, the �rst device matching the
provided vendor and device IDs is selected.

The default setting for the size parameter is 0, which uses the entire resource.
However, this can lead to the allocation of a large virtual memory area.
Note: Block is supported only on Linux platforms.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

pci_device PCI device: <domain>:<bus>:<slot>.<func> or id
[<vendor>]:[<device>][#<index>]

String

resource PCI resource number Long (I32)

offset O�set in pci resource Large (I64)

size Size of data to open (0 for whole resource) Large (I64)

Output

y Reference to byte array Reference

643

PSD � Power Spectral Density

Block Symbol Licence: ADVANCED

uc

uf

upsd

urem

uwnd

uwrk

n

fs

START

HLD

yc

yf

ypsd

yrem

ywnd

ywrk

E

DONE

iavg

lcomp

PSD

Function Description

The function block PSD computes a power spectral density (PSD, periodogram) using
the PocketFFT package [20]. The PocketFFT C99 implementation is based on FFTPack
(in Fortran) [21], which is based on the chapter in [22].

PSD is most often calculated from segments of length N samples of the input signal.
The data of these segments is multiplied by a window function (e.g. Hamming window),
the FFT is calculated from them, and the PSD of each segment is calculated from its
result. Finally, the navg of such results is averaged (the navg parameter). The input signal
can be divided into segments either sequentially or with a half-overlap (Welch method
[23], [24]). The resulting PSD can be calculated in decibels (dB) if the parameter DB =
on.

Input data (a vector or a matrix) of the block are referenced by the uc input. If
the input uc refers to a column vector (number of columns m = 1) with the number of
elements n, the PSD will be calculated from a single signal. If uc refers to a matrix with
n rows and m columns, the PSD will be computed m times (for each column). If the input
n > 0 then the number of samples per segment N = n else N is set to the number of rows
of the array referenced by uc.

The input uf references the internal vector of dimension ≥ N for FFT computing.
The resulting PSD with npsd rows and m columns is referenced by upsd. Number of PSD
frequencies npsd = N/2 + 1 for even N or npsd = (N + 1)/2 for odd N. Working array
referenced by uwrk has the same dimension as the array referenced by upsd. If the input
data contains more elements than can be processed in one execution of the PSD block,
the remaining data is copied into an array referenced by urem that has N rows and m

columns.
Input data is processed according to the mode and mtrig parameters (see below).

The mode parameter speci�es the way the PDS is calculated, whether the data in the
input vector referenced by uc is real or complex, and whether segment overlapped by
half will be used. The input data sampled with the frequency connected to the input fs
may be acquired in a di�erent task (e.g. with a signi�cantly shorter sampling period)

644 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

than the one in which the PSD is calculated. The method of synchronizing the start of
the calculation is provided by the mtrig trigger mode. The calculation can be triggered
every PSD block execution period or when a su�cient number of samples are available
(at least equal to N) or by the rising edge of the START input.

A vector of dimension N is connected to the uwnd input to store the window function
selected by the iwin parameter. Window functions have (optionally) an integer parameter
lwnd and/or a real parameter rwnd. Some window functions are used in two variants:

Symmetric (for lwnd=0). The window of length L = N samples is computed, the �rst
and last elements are equal. This variant is suitable for FIR �lter design.

Periodic (for lwnd=1). The window of length L = N + 1 is computed but only the
�rst N samples is stored. The periodic version is the preferred method for spectral
analysis because the discrete Fourier transform assumes periodic extension of the
input vector.

Window functions are de�ned by the following expressions:

iwin=1 Bartlett-Hahn Window

w(n) = 0.62− 0.48

∣∣∣∣(n

N − 1
− 0.5

)∣∣∣∣+ 0.38 cos

[
2π

(
n

N − 1
− 0.5

)]
, 0 ≤ n ≤ N − 1.

iwin=2 Bartlett Window

w(n) =

2n

N
, 0 ≤ n ≤ N

2
,

2− 2n

N
,

N

2
≤ n ≤ N.

iwin=3 Blackman Window

w(n) = 0.42− 0.5 cos

(
2πn

L− 1

)
+ 0.08 cos

(
4πn

L− 1

)
, 0 ≤ n ≤ M − 1,

where M is N/2 when N is even and (N + 1)/2 when N is odd.

iwin=4 Blackman-Harris Window

w(n) = a0 − a1 cos

(
2πn

L− 1

)
+ a2 cos

(
4πn

L− 1

)
− a3 cos

(
6πn

L− 1

)
, 0 ≤ n ≤ N − 1

where a0 = 0.35875, a1 = 0.48829, a2 = 0.14128 and a3 = 0.01168.

iwin=5 Bohman Window

w(x) = (1− |x|) cos (π |x|) + 1

π
sin (π |x|) , − 1 ≤ x ≤ 1

645

iwin=6 Chebyshev Window

Using Chebyshev polynomials of n-th order

Tn(x) ≜
{
cos

[
n cos−1(x)

]
, |x| ≤ 1,

cosh
[
n cosh−1(x)

]
, |x| > 1,

the Fourier transform of the Chebyshev window is

W (k) =
TN−1 [x0 cos(πk/N)]

TN−1(x0)

where

x0 = cosh

[
cosh−1

(
10r/20

)
N − 1

]
.

iwin=7 Flat Top Window

w(n) = a0 − a1 cos

(
2πn

L− 1

)
+ a2 cos

(
4πn

L− 1

)
− a3 cos

(
6πn

L− 1

)
+ a4 cos

(
8πn

L− 1

)
,

where 0 ≤ n ≤ N − 1 and a0 = 0.21557895, a1 = 0.41663158, a2 = 0.277263158,
a3 = 0.083578947 and a4 = 0.006947368.

iwin=8 Gauss Window

w(n) = e
− 1

2

[
α n

(N−1)/2

]2
= e−n2/(2σ2)

where −(N−1)/2 ≤ n ≤ (N−1)/2 and σ = (N−1)/(2α) is the standard deviation
of a Gaussian probability density function.

iwin=9 Hamming Window

w(n) = 0.54− 0.46 cos

(
2π

n

L− 1

)
, 0 ≤ n ≤ N − 1,

iwin=10 Hann Window

w(n) = 0.5

[
1− cos

(
2π

n

L− 1

)]
, 0 ≤ n ≤ N − 1,

iwin=12 Nuttall's Blackman-Harris Window

w(n) = a0 − a1 cos

(
2πn

L− 1

)
+ a2 cos

(
4πn

L− 1

)
− a3 cos

(
6πn

L− 1

)
, 0 ≤ n ≤ N − 1

where a0 = 0.3635819, a1 = 0.4891775, a2 = 0.1365995 and a3 = 0.0106411.

646 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

iwin=13 Parzen Window

w(n) =

1− 6

(
|n|
N/2

)2

+ 6

(
|n|
N/2

)3

, 0 ≤ |n| ≤ (N − 1)/4,

2

(
1− |n|

N/2

)3

, (N − 1)/4 < |n| ≤ (N − 1)/2.

iwin=14 Rectangular Window

w(n) = 1, 0 ≤ n ≤ N − 1.

Multiplication of all input data elements by 1 is not performed in this block, there-
fore the uwnd input may not be connected in this case.

iwin=16 Triangular Window

For N odd:

w(n) =

2n+ 2

N + 1
, 0 ≤ n ≤ (N − 1)/2,

2− 2n+ 2

N + 1
, (N − 1)/2 < n ≤ (N − 1).

For N even:

w(n) =

2n+ 1

N
, 0 ≤ n ≤ N/2− 1,

2− 2n+ 1

N
, N/2 ≤ n ≤ (N − 1).

iwin=17 Tukey Window

w(x) =

1

2

{
1 + cos

(
2π

r
[x− r/2]

)}
, 0 ≤ x <

r

2
,

1,
r

2
≤ x < 1− r

2
,

1

2

{
1 + cos

(
2π

r
[x− 1 + r/2]

)}
, 1− r

2
≤ x < 1,

where r is so called cosine fraction (set in the parameter rwnd, default value 0.5).

iwin=18 Exponential Window

w(x) = e−
|x|
τ , − 1 ≤ x ≤ 1,

where τ is a window parameter (set in the parameter rwnd).

iwin=19 Welch Window

w(x) = 1− x2, − 1 ≤ x ≤ 1.

647

iwin=20 Externally De�ned Window

If the user is not satis�ed with any of the prede�ned windows, he/she can set
his own window consisting of N samples in the vector referenced by uwnd before
executing the PSD block.

The HLD input allows the user to temporarily stop the PSD calculation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uc Input reference to input data Reference

uf Input reference to internal FFT vector Reference

upsd Input reference to output PSD vector/matrix Reference

urem Input reference to remaining (not processed) data Reference

uwnd Input reference to window function vector Reference

uwrk Input reference to working vector/matrix Reference

n Number of signal samples for FFT segment Long (I32)

fs Sampling frequency in [Hz] Double (F64)

START Starting signal (rising edge) Bool

HLD Hold Bool

Parameter

mode PSD computation mode ⊙1 Long (I32)

1 Real
2 Real overlap
3 Complex
4 Complex overlap

mtrig Computation trigger mode ⊙1 Long (I32)

1 Each period
2 Enough samples
3 START rising edge

648 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

iwnd Window function ⊙1 Long (I32)

1 Bartlett-Hann
2 Bartlett
3 Blackman
4 Blackman-Harris
5 Bohman
6 Chebyshev
7 Flat top
8 Gaussian
9 Hamming
10 Hann
11 �
12 Nuttall
13 Parzen
14 Rectangular
15 �
16 Triangular
17 Tukey
18 Exponential
19 Welch
20 External

lwnd Parameter lwnd of some window functions ↓1 ↑9 ⊙1 Long (I32)

rwnd Parameter rwnd of some window functions ↓1 ↑9 ⊙1 Long (I32)

navg Number of FFT segments for averaging ↓1 ⊙10 Long (I32)

DB Computed PSD is converted do decibels [dB] Bool

Output

yc Output reference to input data Reference

yf Output reference to internal FFT vector Reference

ypsd Output reference to output PSD vector/matrix Reference

yrem Output reference to remaining (not processed) data Reference

ywnd Output reference to external window function Reference

ywrk Output reference to working vector/matrix Reference

E Error indicator Bool

DONE Averaging Completion Flag Bool

iavg Current index of segment for averaging Long (I32)

lcomp Number of successfully computed PSDs Large (I64)

649

RAWCOPY � Raw vector copy: 1, 2, or 4 Bytes per Copy

Block Symbol Licence: ADVANCED

uA
uB
uOffsetA
uOffsetB
n

yA
yB

yOffsetA
yOffsetB

E

RAWCOPY

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uA Source vector Reference

uB Destination vector Reference

uOffsetA Byte o�set in source vector DWord (U32)

uOffsetB Byte o�set in destination vector DWord (U32)

n Number of bytes to copy DWord (U32)

Parameter

wrapA Source address wrap after x Bytes (0 for no wrap) DWord (U32)

wrapB Destination address wrap after x Bytes (0 for no wrap) DWord (U32)

bytes Number of bytes to copy ⊙XXX DWord (U32)

1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Output

yA Output reference to source vector Reference

yB Output reference to destination vector Reference

yOffsetA Byte o�set in source vector after copy DWord (U32)

yOffsetB Byte o�set in destination vector after copy DWord (U32)

E Error indicator Bool

650 CHAPTER 18. DSP � DIGITAL SIGNAL PROCESSING BLOCKS

Chapter 19

MQTTDrv � Communication via

MQTT protocol

Contents

MqttPublish � Publish MQTT message 652

MqttSubscribe � Subscribe to MQTT topic 654

The MQTTDrv library is designed for IoT (Internet of Things) communication using
the MQTT (Message Queuing Telemetry Transport) protocol. It consists of two primary
blocks: MqttPublish and MqttSubscribe. The MqttPublish block is used for sending
messages to an MQTT broker, enabling the publication of data to MQTT topics. Con-
versely, the MqttSubscribe block is designed for subscribing to topics and receiving
messages from a broker. This library facilitates e�cient and e�ective data communica-
tion in IoT applications, leveraging the lightweight and widely-used MQTT protocol for
message exchange.

651

652 CHAPTER 19. MQTTDRV � COMMUNICATION VIA MQTT PROTOCOL

MqttPublish � Publish MQTT message

Block Symbol Licence: MQTT

value

RUN

BUSY

DONE

errId

MqttPublish

Function Description

This function block depends on the MQTT driver. Please read the MQTTDrv manual [25]
before use.

The MqttPublish block publishes messages to an MQTT broker through the connec-
tion established by the MQTTDrv driver.

The �rst parameter is the topic the block will publish the messages to. MQTT
delivers Application Messages according to the Quality of Service (QoS) levels. Use the
QoS parameter to set a di�erent Quality of Service level. See the MQTT speci�cation [26]

for more details.

If the RETAIN parameter is set a RETAIN �ag will be set on the outgoing PUBLISH
Control Packet. See the MQTT speci�cation [26] for more details.

The defBuffSize parameter can be used to optimize the memory usage of the block.
It states the amount of the statically allocated memory for the inner bu�er for the
outgoing messages. If the value is unnecessarily large the memory is being wasted. On
the other hand if the value of the parameter is too small it leads to frequent dynamic
memory allocations which can be time consuming.

The message to be published is constructed from the value input signal. The value
input signal is expected to be a string. If it is not a string it will be converted automati-
cally. To request a message to be published in the current period set the RUN �ag to on.
The BUSY �ag is on if the block has a pending request and waits for a response from a
broker. When the response is received in the current cycle the DONE �ag is set to on.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

value Input signal String

RUN Enable execution Bool

Parameter

topic MQTT topic String

653

QoS Quality of Service ⊙1 Long (I32)

1 QoS0 (At most once)
2 QoS1 (At least once)
3 QoS2 (Exactly once)

RETAIN Retain last message ⊙on Bool

defBuffSize Default bu�er size ↓1 ⊙2048 Long (I32)

Output

BUSY Busy �ag Bool

DONE Indicator of �nished transaction Bool

errId Error code Error

654 CHAPTER 19. MQTTDRV � COMMUNICATION VIA MQTT PROTOCOL

MqttSubscribe � Subscribe to MQTT topic

Block Symbol Licence: MQTT

RUN

value

nDRDY

RETAIN

errId

MqttSubscribe

Function Description

This function block depends on the MQTT driver. Please read the MQTTDrv manual [25]
before use.

The MqttSubscribe block subscribes to a topic on an MQTT broker and receives
Publish messages on that topic through the connection established by the MQTTDrv driver.

The �rst parameter is the topic the block will subscribe to. MQTT protocol delivers
Application Messages according to the Quality of Service (QoS) levels. Use the QoS

parameter to set a di�erent Quality of Service level. See the MQTT speci�cation [26] for

more details.

By setting the type parameter of the block it can be speci�ed the expected data type
of the incoming message. The block converts the incoming message to the speci�ed type
and sets the value output signal in case of success or it sets the errId to the resulting
error code.

The mode parameter has two available options: Last value and Buffered values.
If Last value mode is used the block will always output only the last message received
even if multiple messages were received in the last period. If the mode is set to Buffered

values than the block bu�ers the incoming messages and outputs one by one in consec-
utive ticks of the task.

The defBuffSize parameter can be used to optimize the memory usage of the block.
It states the amount of the statically allocated memory in the inner bu�er for the in-
coming messages. If the value is unnecessarily large the memory is being wasted. On
the other hand if the value of the parameter is too small it leads to frequent dynamic
memory allocations which can be time consuming.

A Subscribe action is performed upon a rising edge (off→on) and an Unsubscribe
action is performed upon a falling edge (on→off) at the RUN input.

The nDRDY output speci�es how many messages were received and are available in
the inner bu�er. If the mode of the block is set to Last value the nDRDY output can only
have value 0 or 1.

The RETAIN output �ag is set if the received Publish packet had the RETAIN �ag set.
See the MQTT speci�cation [26] for more details.

Note that subscribing to topics containing wildcards is not supported.

655

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

RUN Enable execution Bool

Parameter

topic MQTT topic String

QoS Quality of Service ⊙1 Long (I32)

1 QoS0 (At most once)
2 QoS1 (At least once)
3 QoS2 (Exactly once)

type Expected type of incoming data ⊙1 Long (I32)

1 string
2 double
3 long
4 bool
5 byte vector/blob

mode Incoming messages bu�ering mode ⊙1 Long (I32)

1 Last value
2 Bu�ered values

defBuffSize Default bu�er size ↓1 ⊙2048 Long (I32)

Output

value Output signal Any

nDRDY Number of received messages ↓0 ↑10 Long (I32)

RETAIN Retain last message ⊙on Bool

errId Error code Error

656 CHAPTER 19. MQTTDRV � COMMUNICATION VIA MQTT PROTOCOL

Chapter 20

MC_SINGLE � Motion control -

single axis blocks

Contents

MCP_AccelerationProfile � ∗ Acceleration pro�le 659

MCP_Halt � ∗ Stopping a movement (interruptible) 661

MCP_HaltSuperimposed � ∗ Stopping a movement (superimposed
and interruptible) . 662

MCP_Home � ∗ Homing . 663

MCP_MoveAbsolute � ∗ Move to position (absolute coordinate) . . 665

MCP_MoveAdditive � ∗ Move to position (relative to previous motion)667

MCP_MoveContinuousAbsolute � ∗ Move to position (absolute coor-
dinate) . 669

MCP_MoveContinuousRelative � ∗ Move to position (relative to pre-
vious motion) . 671

MCP_MoveRelative � ∗ Move to position (relative to execution point)673

MCP_MoveSuperimposed � ∗ Superimposed move 675

MCP_MoveVelocity � ∗ Move with constant velocity 676

MCP_PositionProfile � ∗ Position pro�le 678

MCP_SetOverride � ∗ Set override factors 680

MCP_Stop � ∗ Stopping a movement 681

MCP_TorqueControl � ∗ Torque/force control 682

MCP_VelocityProfile � ∗ Velocity pro�le 684

MC_AccelerationProfile, MCP_AccelerationProfile � Acceleration
pro�le . 686

MC_Halt, MCP_Halt � Stopping a movement (interruptible) 690

MC_HaltSuperimposed, MCP_HaltSuperimposed � Stopping a move-
ment (superimposed and interruptible) 691

MC_Home, MCP_Home � Homing . 692

657

658 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveAbsolute, MCP_MoveAbsolute � Move to position (absolute
coordinate) . 694

MC_MoveAdditive, MCP_MoveAdditive � Move to position (relative
to previous motion) . 698

MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute � Move
to position (absolute coordinate) 701

MC_MoveContinuousRelative, MCP_MoveContinuousRelative � Move
to position (relative to previous motion) 704

MC_MoveRelative, MCP_MoveRelative � Move to position (relative
to execution point) . 708

MC_MoveSuperimposed, MCP_MoveSuperimposed � Superimposed move 711

MC_MoveVelocity, MCP_MoveVelocity � Move with constant velocity 714

MC_PositionProfile, MCP_PositionProfile � Position pro�le 718

MC_Power � Axis activation (power on/o�) 722

MC_ReadActualPosition � Read actual position 723

MC_ReadAxisError � Read axis error 724

MC_ReadBoolParameter � Read axis parameter (bool) 725

MC_ReadParameter � Read axis parameter 726

MC_ReadStatus � Read axis status 728

MC_Reset � Reset axis errors . 730

MC_SetOverride, MCP_SetOverride � Set override factors 731

MC_Stop, MCP_Stop � Stopping a movement 733

MC_TorqueControl, MCP_TorqueControl � Torque/force control . . . 735

MC_VelocityProfile, MCP_VelocityProfile � Velocity pro�le 738

MC_WriteBoolParameter � Write axis parameter (bool) 742

MC_WriteParameter � Write axis parameter 743

RM_Axis � Motion control axis . 744

RM_AxisOut � Axis output . 751

RM_AxisSpline � Commanded values interpolation 752

RM_HomeOffset � ∗ Homing by setting o�set 757

RM_Track � Tracking and inching . 758

The MC_SINGLE library is designed for motion control in single-axis systems. It
features blocks like MC_MoveAbsolute, MC_MoveRelative, and MC_MoveVelocity for pre-
cise positioning and speed control. The library includes MC_Home for homing operations,
and MC_Power for controlling the power state of the axis. Advanced functionalities are
provided by MC_AccelerationProfile, MC_PositionProfile, and MC_VelocityProfile
for customizing motion pro�les. It also o�ers monitoring and parameter adjustment capa-
bilities through MC_ReadActualPosition, MC_ReadAxisError, MC_ReadParameter, and
MC_WriteParameter. Additionally, the library contains blocks like MC_Halt, MC_Reset,
and MC_Stop for emergency and control operations. This library is essential for applica-
tions requiring precise and controlled motion in single-axis con�gurations.

659

MCP_AccelerationProfile � ∗ Acceleration pro�le

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_AccelerationProfile

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

alg Algorithm for interpolation ⊙1 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline
5 Sequence of time/value pairs (+border)
6 Sequence of equidistant values (+border)
7 cubic aproximation (B-spline)
8 quintic aproximation (B-spline)
9 all linear

nmax Number of pro�le segments ⊙3 Long (I32)

TimeScale Overall scale factor in time ⊙1.0 Double (F64)

AccelerationScale Overall scale factor in value ⊙1.0 Double (F64)

Offset Overall pro�le o�set in value Double (F64)

660 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

times Times when segments are switched ⊙[0 30] Double (F64)

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...)
⊙[0 100 100 50]

Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

661

MCP_Halt � ∗ Stopping a movement (interruptible)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Halt

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

662 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MCP_HaltSuperimposed � ∗ Stopping a movement (superim-
posed and interruptible)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_HaltSuperimposed

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

663

MCP_Home � ∗ Homing

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Home

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

TorqueLimit Maximal allowed torque/force Double (F64)

TimeLimit Maximal allowed time for the whole algorithm [s] Double (F64)

DistanceLimit Maximal allowed distance for the whole algorithm [unit] Double (F64)

LagLimit Maximal allowed lag for the whole algorithm [unit] Double (F64)

Direction Direction of movement (cyclic axis or special case only) ⊙3 Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

Position_ Requested target position (absolute) [unit] Double (F64)

664 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

HomingMode Homing mode algorithm ⊙1 Long (I32)

1 Absolute switch
2 Limit switch
3 Reference pulse
4 Direct (user reference)
5 Absolute encoder
6 Block
7 reserved1
8 reserved2

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

665

MCP_MoveAbsolute � ∗ Move to position (absolute coordinate)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Position_ Requested target position (absolute) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] ↓0.0 Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] ↓0.0 Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] ↓0.0 Double (F64)

Jerk Maximal allowed jerk [unit/s^3] ↓0.0 Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Direction Direction of movement (cyclic axis or special case only) ⊙1 Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

666 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

667

MCP_MoveAdditive � ∗ Move to position (relative to previous
motion)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveAdditive

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Distance Requested target distance (relative to start point) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] ↓0.0 Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] ↓0.0 Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] ↓0.0 Double (F64)

Jerk Maximal allowed jerk [unit/s^3] ↓0.0 Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

668 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

669

MCP_MoveContinuousAbsolute � ∗ Move to position (absolute
coordinate)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveContinuousAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Position_ Requested target position (absolute) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] ↓0.0 Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] ↓0.0 Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] ↓0.0 Double (F64)

Jerk Maximal allowed jerk [unit/s^3] ↓0.0 Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Direction Direction of movement (cyclic axis or special case only) ⊙1 Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

EndVelocity End velocity Double (F64)

670 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

InEndVelocity Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

671

MCP_MoveContinuousRelative � ∗ Move to position (relative to
previous motion)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveContinuousRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Distance Requested target distance (relative to execution point) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] ↓0.0 Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] ↓0.0 Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] ↓0.0 Double (F64)

Jerk Maximal allowed jerk [unit/s^3] ↓0.0 Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

EndVelocity End velocity Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

672 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

InEndVelocity Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

673

MCP_MoveRelative � ∗ Move to position (relative to execution
point)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Distance Requested target distance (relative to execution point) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] ↓0.0 Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] ↓0.0 Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] ↓0.0 Double (F64)

Jerk Maximal allowed jerk [unit/s^3] ↓0.0 Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

674 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

675

MCP_MoveSuperimposed � ∗ Superimposed move

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveSuperimposed

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Distance Requested target distance (relative to execution point) [unit] Double (F64)

VelocityDiff Maximal allowed velocity [unit/s] ↓0.0 Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] ↓0.0 Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] ↓0.0 Double (F64)

Jerk Maximal allowed jerk [unit/s^3] ↓0.0 Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

676 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MCP_MoveVelocity � ∗ Move with constant velocity

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
InVelocity

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveVelocity

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

Direction Direction of movement (cyclic axis or special case only) ⊙1 Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

677

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

InVelocity Requested velocity reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

678 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MCP_PositionProfile � ∗ Position pro�le

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_PositionProfile

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline
5 Sequence of time/value pairs (+border)
6 Sequence of equidistant values (+border)
7 cubic aproximation (B-spline)
8 quintic aproximation (B-spline)
9 all linear

nmax Number of pro�le segments ⊙3 Long (I32)

TimeScale Overall scale factor in time ⊙1.0 Double (F64)

PositionScale Overall scale factor in value ⊙1.0 Double (F64)

Offset Overall pro�le o�set in value Double (F64)

679

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

BeginVelocity trajectory begin velocity Double (F64)

EndVelocity trajectory end velocity Double (F64)

times Times when segments are switched ⊙[0 30] Double (F64)

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...)
⊙[0 100 100 50]

Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

680 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MCP_SetOverride � ∗ Set override factors

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Enabled

Busy
Error

ErrorID

MCP_SetOverride

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Parameter

diff Minimal allowed di�erence of override factor ↓0.0 ↑1.0 Double (F64)

VelFactor Velocity multiplication factor ⊙1.0 Double (F64)

AccFactor Acceleration/deceleration multiplication factor ⊙1.0 Double (F64)

JerkFactor Jerk multiplication factor ⊙1.0 Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Enabled Block function is enabled Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

681

MCP_Stop � ∗ Stopping a movement

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Stop

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

682 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MCP_TorqueControl � ∗ Torque/force control

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
InTorque

CommandAborted
Busy
Active
Error

ErrorID

MCP_TorqueControl

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

kma Torque/force to acceleration ratio Double (F64)

Torque Maximal allowed torque/force Double (F64)

TorqueRamp Maximal allowed torque/force ramp Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

Direction Direction of movement (cyclic axis or special case only) ⊙1 Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

683

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

InTorque Requested torque/force is reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

684 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MCP_VelocityProfile � ∗ Velocity pro�le

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_VelocityProfile

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

alg Algorithm for interpolation ⊙1 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline
5 Sequence of time/value pairs (+border)
6 Sequence of equidistant values (+border)
7 cubic aproximation (B-spline)
8 quintic aproximation (B-spline)
9 all linear

nmax Number of pro�le segments ⊙3 Long (I32)

TimeScale Overall scale factor in time ⊙1.0 Double (F64)

VelocityScale Overall scale factor in value ⊙1.0 Double (F64)

Offset Overall pro�le o�set in value Double (F64)

685

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

BeginAcceleration trajectory begin aceleration Double (F64)

EndAcceleration trajectory end acceleration Double (F64)

times Times when segments are switched ⊙[0 15 25 30] Double (F64)

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...)
⊙[0 100 100 50]

Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

686 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_AccelerationProfile, MCP_AccelerationProfile � Acceler-
ation pro�le

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

alg

TimeScale

AccelerationScale

Offset

BufferMode

uTimes

uValues

BeginJerk

EndJerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_AccelerationProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_AccelerationProfile

Function Description

The MC_AccelerationProfile and MCP_AccelerationProfile blocks o�er the same

functionality, the only di�erence is that some of the inputs are available as parameters

in the MCP_ version of the block.

The MC_PositionProfile block commands a time-position locked motion pro�le.
Block implements two possibilities for de�nition of time-acceleration function:

1. sequence of values: the user de�nes a sequence of time-acceleration pairs. In each
time interval, the values of velocity are interpolated. Times sequence is in array times,
position sequence is in array values. Time sequence must be increasing and must start
with zero or zero must be between the �rst and last point. Execution always starts
from zero time, so if the sequence start with negative time, part of the pro�le is not
executed (could be used for debugging or time shift). For MC_VelocityProfile and
MC_AccelerationProfile interpolation is linear, but for MC_PositionProfile, 3rd order
polynomial is used in order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolated
by 5th order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where beginning of

the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the �rst (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.

687

Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or
values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position
(also for sibling block MC_PositionProfile and MC_VelocityProfile) and it couldn't
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
pro�le is di�erent from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

TimeScale Overall scale factor in time Double (F64)

AccelerationScale Overall scale factor in value Double (F64)

Offset Overall pro�le o�set in value Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

688 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

times Times when segments are switched Reference

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...) Reference

689

Example

timeScale

1.0

posScale

1.0

offset

0

mode1

2

MC_AccelerationProfile

uAxis

Execute

TimeScale

AccelerationScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

b
o
o

l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

b
o

o
l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

b
o
o
l

0 0.5 1 1.5 2 2.5 3
�200

0

200
Commanded acceleration

a
c
c
e
le

ra
ti
o

n

0 0.5 1 1.5 2 2.5 3
�10

0

10
Commanded velocity

v
e
lo

c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

p
o
s
it
io

n

690 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Halt, MCP_Halt � Stopping a movement (interruptible)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Deceleration

Jerk

BufferMode

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_Halt

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Halt

Function Description

The MC_Halt and MCP_Halt blocks o�er the same functionality, the only di�erence is

that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Halt block commands a controlled motion stop and transfers the axis to the
state DiscreteMotion. After the axis has reached zero velocity, the Done output is set
to true immediately and the axis state is changed to Standstill.

Note 1: Block MC_Halt is intended for temporary stop of an axis under normal work-
ing conditions. Any next motion command which cancels the MC_Halt can be executed
in nonbu�ered mode (opposite to MC_Stop, which cannot be interrupted). The new com-
mand can start even before the stopping sequence was �nished.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

691

MC_HaltSuperimposed, MCP_HaltSuperimposed � Stopping a move-
ment (superimposed and interruptible)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Deceleration

Jerk

BufferMode

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_HaltSuperimposed

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_HaltSuperimposed

Function Description

The MC_HaltSuperimposed and MCP_HaltSuperimposed blocks o�er the same func-

tionality, the only di�erence is that some of the inputs are available as parameters in the

MCP_ version of the block.

Block MC_HaltSuperimposed commands a halt to all superimposed motions of the
axis. The underlying motion is not interrupted.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

692 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Home, MCP_Home � Homing

Block Symbols Licence: MOTION CONTROL

uAxis
Execute
Velocity
Acceleration
TorqueLimit
TimeLimit
DistanceLimit
LagLimit
Position
Direction
HomingMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_Home

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Home

Function Description

The MC_Home and MCP_Home blocks o�er the same functionality, the only di�erence is

that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Home block commands the axis to perform the "search home" sequence. The
details of this sequence are described in PLCopen and can be set by parameters of the
block. The "Position" input is used to set the absolute position when reference signal is
detected. This Function Bock completes at "StandStill".

Note 1: Parameter/input BufferMode is not supported. Mode is always Aborting. It
is not limitation, because homing is typically done once in initialization sequence before
some regular movement is proceeded.

Note 2: Homing procedure requires some of RM_Axis block input connected. Depend-
ing on homing mode, ActualPos, ActualTorque, LimP, LimZ, LimN can be required. It is
expected that only one method is used. Therefore, there are no separate inputs for zero
switch and encoder reference pulse (both must be connected to LimZ).

Note 3: HomingMode=4(Direct) only sets the actual position. Therefore, the MC_SetPosition
block is not implemented. HomingMode=5(Absolute) only switches the axis from state
Homing to state StandStill.

Note 4: Motion trajectory for homing procedure is implemented in simpler way than
for regular motion commands - acceleration and deceleration is same (only one parame-
ter) and jerk is not used. For extremely precise homing (position set), it is recommended
to run homing procedure twice. First, homing procedure is run with "high" velocity to
move near zero switch, then small movement (out of zero switch) follows and �nally
second homing procedure with "small" velocity is performed.

Note 5: HomingMode=6(Block) detect home-position when the actual torque reach
value in parameter TorqueLimit or position lag reach value in parameter MaxPositionLag
in attached RM_Axis block (only if the parameter has positive value).

693

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

TorqueLimit Maximal allowed torque/force Double (F64)

TimeLimit Maximal allowed time for the whole algorithm [s] Double (F64)

DistanceLimit Maximal allowed distance for the whole algorithm [unit] Double (F64)

Position Requested target position (absolute) [unit] Double (F64)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

HomingMode Homing mode algorithm Long (I32)

1 Absolute switch
2 Limit switch
3 Reference pulse
4 Direct (user reference)
5 Absolute encoder
6 Block

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

694 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveAbsolute, MCP_MoveAbsolute � Move to position (ab-
solute coordinate)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveAbsolute

Function Description

The MC_MoveAbsolute and MCP_MoveAbsolute blocks o�er the same functionality, the

only di�erence is that some of the inputs are available as parameters in the MCP_ version

of the block.

The MC_MoveAbsolute block moves an axis to speci�ed position as fast as possible.
If no further action is pending, �nal velocity is zero (axis moves to position and stops)
otherwise it depends on blending mode. For blending purposes, start and stop velocity
of this block is maximum velocity with direction respecting current and �nal position.
If start velocity of next pending block is in opposite direction, then blending velocity is
always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

The MC_MoveRelative block act almost same as MC_MoveAbsolute. The only di�er-
ence is the �nal position is computed adding input Distance to current (when rising
edge on input Execute occurred) position.

The MC_MoveAdditive block act almost same as MC_MoveRelative. The only di�er-
ence is the �nal position is computed adding input Distance to �nal position of the
previous block.

The MC_MoveSuperimposed block acts almost the same as the MC_MoveRelative

695

block. The only di�erence is the current move is not aborted and superimposed move is
executed immediately and added to current move. Original move act like superimposed
move is not run.

The following table describes all inputs, parameters and outputs which are used in
some of the blocks in the described block suite.

Inputs

uAxis AAxis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Position Requested target position (absolute) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

696 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

ErrorID Result of the last operation Error

i REXYGEN general error

697

Example

velocity2

15
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

direction2

1
direction1

1

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o
o

l

0 5 10 15

0

0.5

1

Active � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o
o
l

0 5 10 15
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 5 10 15
0

100

200
Commanded position

Time [s]

p
o

s
it
io

n

698 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveAdditive, MCP_MoveAdditive � Move to position (rela-
tive to previous motion)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAdditive

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveAdditive

Function Description

The MC_MoveAdditive and MCP_MoveAdditive blocks o�er the same functionality,

the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveAdditive block moves an axis to speci�ed position as fast as possible.
The �nal position is determined by adding the value of Distance parameter to �nal
position of previous motion block which was controlling the axis. If no further action is
pending, �nal velocity is zero (axis moves to position and stops) otherwise it depends on
blending mode. For blending purposes, start and stop velocity of this block is maximum
velocity with direction respecting current and �nal position. If start velocity of next
pending block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to start point) [unit] Double (F64)

699

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

700 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveAdditive1 � block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAdditive � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Execute � block 1

b
o
o

l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Active � block 1

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Done � block 1

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Execute � block 2

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Active � block 2

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Done � block 2

b
o
o
l

0 2 4 6 8 10 12 14 16 18 20
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

701

MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute � Move
to position (absolute coordinate)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousAbsolute

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveContinuousAbsolute

Function Description

The MC_MoveContinuousAbsolute and MCP_MoveContinuousAbsolute blocks o�er the

same functionality, the only di�erence is that some of the inputs are available as param-

eters in the MCP_ version of the block.

The MC_MoveContinuousAbsolute block moves an axis to speci�ed position as fast
as possible. If no further action is pending, �nal velocity is speci�ed by parameter
EndVelocity. For blending purposes, start and stop velocity of this block is maximum
velocity with direction respecting current and �nal position. If start velocity of next
pending block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Note 1: If the EndVelocity is set to zero value, the block behaves in the same way
as MC_MoveAbsolute.

Note 2: If next motion command is executed before the �nal position is reached, the
block behaves in the same way as MC_MoveAbsolute.

702 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Position Requested target position (absolute) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

EndVelocity End velocity Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InEndVelocity Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

703

Example

velocity2

20
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

end_velocity

10

direction2

1
direction1

1

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveContinuousAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[Axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o

o
l

0 5 10 15
0

50
Commanded velocity

v
e

lo
c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

704 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveContinuousRelative, MCP_MoveContinuousRelative � Move
to position (relative to previous motion)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousRelative

uAxis

Execute

yAxis
InEndVelocity

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveContinuousRelative

Function Description

The MC_MoveContinuousRelative and MCP_MoveContinuousRelative blocks o�er the

same functionality, the only di�erence is that some of the inputs are available as param-

eters in the MCP_ version of the block.

The MC_MoveContinuousRelative block moves an axis to speci�ed position as fast
as possible. The �nal position is determined by adding the value of Distance parameter
to the actual position at the moment of triggering the Execute input. If no further action
is pending, �nal velocity is speci�ed by parameter EndVelocity. For blending purposes,
start and stop velocity of this block is maximum velocity with direction respecting current
and �nal position. If start velocity of next pending block is in opposite direction, then
blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Note 1: If the EndVelocity is set to zero value, the block behaves in the same way
as MC_MoveRelative.

Note 2: If next motion command is executed before the �nal position is reached, the
block behaves in the same way as MC_MoveRelative.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk

705

is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to execution point) [unit] Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

706 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

EndVelocity End velocity Long (I32)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InEndVelocity PLCopen Done (algorithm �nished) Bool

CommandAborted PLCopen CommandAborted (algorithm was aborted) Bool

Busy PLCopen Busy (algorithm not �nished yet) Bool

Active PLCopen Active (the block is controlling the axis) Bool

Error PLCopen Error (error occurred) Bool

ErrorID Result of the last operation Error

i REXYGEN general error

707

Example

velocity2

20
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

end_velocity

10

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveRelative � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveContinuousRelative � block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

EndVelocity

yAxis

InEndVelocity

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o

o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o

o
l

0 5 10 15
0

50
Commanded velocity

v
e

lo
c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

708 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveRelative, MCP_MoveRelative � Move to position (rela-
tive to execution point)

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveRelative

Function Description

The MC_MoveRelative and MCP_MoveRelative blocks o�er the same functionality,

the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveRelative block moves an axis to speci�ed position as fast as possible.
The �nal position is determined by adding the value of Distance parameter to the actual
position at the moment of triggering the Execute input. If no further action is pending,
�nal velocity is zero (axis moves to position and stops) otherwise it depends on blending
mode. For blending purposes, start and stop velocity of this block is maximum velocity
with direction respecting current and �nal position. If start velocity of next pending
block is in opposite direction, then blending velocity is always zero.

If next pending block is executed too late in order to reach requested velocity the
generated output depends on jerk setting. If no limit for jerk is used (block input Jerk
is zero or unconnected) block uses maximum acceleration or deceleration to reach the
desired velocity as near as possible. If jerk is limited it is not possible to say what is
the nearest velocity because also acceleration is important. For this reason, the axis is
stopped and moved backward and blending velocity is always reached. Although this
seems to be correct solution, it might look confusing in a real situation. Therefore, it is
recommended to reorganize execution order of the motion blocks and avoid this situation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to execution point) [unit] Double (F64)

709

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [[unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [[unit/s2] Double (F64)

Jerk Maximal allowed jerk [[unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

710 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30

position2

150
position1

100

mode2

2
mode1

2

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveRelative � block 2

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o

o
l

0 5 10 15

0

0.5

1

Active � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o
o
l

0 5 10 15
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

711

MC_MoveSuperimposed, MCP_MoveSuperimposed � Superimposed
move

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveSuperimposed

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveSuperimposed

Function Description

The MC_MoveSuperimposed and MCP_MoveSuperimposed blocks o�er the same func-

tionality, the only di�erence is that some of the inputs are available as parameters in the

MCP_ version of the block.

The MC_MoveSuperimposed block moves an axis to speci�ed position as fast as pos-
sible (with respect to set limitations). Final position is speci�ed by input parameter
Distance. In case that the axis is already in motion at the moment of execution of the
MC_MoveSuperimposed block, the generated values of position, velocity and acceleration
are added to the values provided by the previous motion block. If there is no previous
motion, the block behaves in the same way as the MC_MoveRelative command.

Note:There is no BufferMode parameter which is irrelevant in the superimposed
mode. If there is already an superimposed motion running at the moment of execution,
the new block is started immediately (analogous to aborting mode).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Distance Requested target distance (relative to execution point) [unit] Double (F64)

VelocityDiff Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

712 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

713

Example

velocity_diff2

15
velocity1

30

position2

150
position1

100

mode1

2

deceleration2

10
deceleration1

20

acceleration2

25
acceleration1

50

MC_MoveSuperimposed � block 2

uAxis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative � block 1

uAxis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

Axis

[axis]

0 5 10 15

0

0.5

1

Execute � block 1

b
o
o

l

0 5 10 15

0

0.5

1

Active � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 1

b
o
o
l

0 5 10 15

0

0.5

1

Execute � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Active � block 2

b
o
o
l

0 5 10 15

0

0.5

1

Done � block 2

b
o
o
l

0 5 10 15
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 5 10 15
0

100

200

300
Commanded position

Time [s]

p
o

s
it
io

n

714 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_MoveVelocity, MCP_MoveVelocity � Move with constant ve-
locity

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveVelocity

uAxis

Execute

yAxis
InVelocity

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveVelocity

Function Description

The MC_MoveVelocity and MCP_MoveVelocity blocks o�er the same functionality,

the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MC_MoveVelocity block changes axis velocity to speci�ed value as fast as possible
and keeps the speci�ed velocity until the command is aborted by another block or event.

Note: parameter Direction enumerate also shortest_way although for this block it
is not valid value.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

715

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InVelocity Requested velocity reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

716 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Example

velocity2

15
velocity1

30

mode2

1
mode1

1

direction2

1
direction1

1

deceleration2

10
deceleration1

20

axis

[axis]

acceleration2

25
acceleration1

50

MC_MoveVelocity � block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveVelocity � block 1

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

Execute2

[execute2]

Execute1

[execute1]

717

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute � block 1

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active � block 1

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done � block 1

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute � block 2

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active � block 2

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done � block 2

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10
0

50
Commanded velocity

v
e
lo

c
it
y

velocity2

velocity1

0 1 2 3 4 5 6 7 8 9 10
0

100

200
Commanded position

Time [s]

p
o
s
it
io

n

718 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_PositionProfile, MCP_PositionProfile � Position pro�le

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

alg

TimeScale

PositionScale

Offset

BufferMode

uTimes

uValues

BeginVelocity

EndVelocity

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_PositionProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_PositionProfile

Function Description

The MC_PositionProfile and MCP_PositionProfile blocks o�er the same func-

tionality, the only di�erence is that some of the inputs are available as parameters in the

MCP_ version of the block.

The MC_PositionProfile block commands a time-position locked motion pro�le.
Block implements two possibilities for de�nition of time-position function:

1. sequence of values: the user de�nes a sequence of time-position pairs. In each
time interval, the values of position are interpolated. Times sequence is in array times,
position sequence is in array values. Time sequence must be increasing and must start
with zero or zero must be between the �rst and last point. Execution always starts
from zero time, so if the sequence start with negative time, part of the pro�le is not
executed (could be used for debugging or time shift). For MC_VelocityProfile and
MC_AccelerationProfile interpolation is linear, but for MC_PositionProfile, 3rd order
polynomial is used in order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolate
byd 5th order polynomial p(x) = a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 where beginning

of the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the �rst (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.

719

Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or
values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

Note 4: in the spline mode, polynomial is always 5th order and always in position (also
for sibling block MC_VelocityProfile and MC_AccelerationProfile) and it couldn't
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
pro�le is di�erent from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

TimeScale Overall scale factor in time Double (F64)

PositionScale Overall scale factor in value Double (F64)

Offset Overall pro�le o�set in value Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

720 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

times Times when segments are switched Reference

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...) Reference

721

Example

timeScale

1.0

posScale

1.0

offset

0

mode1

2

MC_PositionProfile

uAxis

Execute

TimeScale

PositionScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

b
o
o

l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

b
o

o
l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

b
o
o
l

0 0.5 1 1.5 2 2.5 3
�200

0

200
Commanded acceleration

a
c
c
e
le

ra
ti
o

n

0 0.5 1 1.5 2 2.5 3
�10

0

10
Commanded velocity

v
e
lo

c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

p
o
s
it
io

n

722 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Power � Axis activation (power on/o�)

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Status
Busy
Active
Error

ErrorID

MC_Power

Function Description

The MC_Power block must be used with all axes. It is the only way to switch an axis
from disable state to standstill (e.g. operation) state. The Enable input must be set (non
zero value) for whole time the axis is active. The Status output can be used for switch
on and switch o� of the motor driver (logical signal for enabling the power stage of the
drive).

The block does not implement optional parameters/inputs Enable_Positive,
Enable_Negative. The same functionality can be implemented by throwing the limit
switches (inputs limP and limN of block RM_Axis).

If the associated axis is turned o� (by setting the Enable input to zero) while a motion
is processed (commanded velocity is not zero), error stoping sequence is activated and
the status is switched to o�/diabled when the motion stops (commanded velocity reaches
zero value).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Status E�ective state of the power stage Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

723

MC_ReadActualPosition � Read actual position

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
Position

MC_ReadActualPosition

Function Description

The block MC_ReadActualPosition displays actual value of position of a connected
axis on the output Position. The output is valid only while the block is enabled by the
logical input signal Enable.

The block displays logical position value which is entered into all of the motion
blocks as position input. In case that no absolute position encoder is used or the internal
position is set in other way (e.g. via MC_Home block), the CommandedPosition output of
the corresponding RM_Axis may display di�erent value.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Position Actual absolute position Double (F64)

724 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadAxisError � Read axis error

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
AxisErrorID

MC_ReadAxisError

Function Description

The block MC_ReadAxisError displays actual error code of a connected axis on the
output AxisErrorID. In case of no error, the output is set to zero. The error value is
valid only while the block is enabled by the logical input signal Enable. This block is
implemented for sake of compatibility with PLCOpen speci�cation as it displays duplicit
information about an error which is also accessible on the ErrorID output of the RM_Axis
block.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

AxisErrorID Result of the last operation read from axis Error

i REXYGEN general error

725

MC_ReadBoolParameter � Read axis parameter (bool)

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

ParameterNumber

yAxis
Valid
Busy
Error

ErrorID
Value

MC_ReadBoolParameter

Function Description

The block MC_ReadBoolParameter displays actual value of various signals related to
the connected axis on its Value output. The user chooses from a set of accessible logical
variables by setting the ParameterNumber input. The output value is valid only while
the block is activated by the logical Enable input.

The block displays the parameters and outputs of RM_Axis block and is implemented
for sake of compatibility with the PLCOpen speci�cation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

ParameterNumber Parameter ID Long (I32)

4 Enable sw positive limit
5 Enable sw negative limit
6 Enable position lag monitoring

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Value Parameter value Bool

726 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadParameter � Read axis parameter

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

ParameterNumber

yAxis
Valid
Busy
Error

ErrorID
Value

MC_ReadParameter

Function Description

The block MC_ReadParameter displays actual value of various system variables of the
connected axis on its Value output. The user chooses from a set of accessible variables
by setting the ParameterNumber input. The output value is valid only while the block is
activated by the logical Enable input.

The block displays the parameters and outputs of RM_Axis block and is implemented
for sake of compatibility with the PLCOpen speci�cation.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

ParameterNumber Parameter ID Long (I32)

1 Commanded position
2 Positive sw limit switch
3 Negative sw limit switch
7 Maximal position lag
8 Maximal velocity (system)
9 Maximal velocity (appl)
10 Actual velocity
11 Commanded velocity
12 Maximal acceleration (system)
13 Maximal acceleration (appl.)
14 Maximal deceleration (system)
15 Maximal deceleration (appl.)
16 Maximal jerk
1000 . . Actual position
1001 . . Maximal torque/force
1003 . . Actual torque/force
1004 . . Commanded torque/force

727

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Value Parameter value Double (F64)

728 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_ReadStatus � Read axis status

Block Symbol Licence: MOTION CONTROL

uAxis

Enable

yAxis
Valid
Busy
Error

ErrorID
ErrorStop
Disabled
Stopping
StandStill

DiscreteMotion
ContinuousMotion

SynchronizedMotion
Homing

ConstantVelocity
Accelerating
Decelerating

MC_ReadStatus

Function Description

The block MC_ReadStatus indicates the state of the connected axis on its logical
output signals. The values of the states are valid only while the Enable input is set to
nonzero value. This state is indicated by Valid output.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

ErrorStop Axis is in the ErrorStop state Bool

Disabled Axis is in the Disabled state Bool

Stopping Axis is in the Stoping state Bool

StandStill Axis is in the StandStill state Bool

DiscreteMotion Axis is in the DiscreteMotion state Bool

ContinuousMotion Axis is in the ContinuousMotion state Bool

SynchronizedMotion Axis is in the SynchronizedMotion state Bool

Homing Axis is in the Homing state Bool

729

ConstantVelocity Axis is moving with constant velocity Bool

Accelerating Axis is accelerating Bool

Decelerating Axis is decelerating Bool

730 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_Reset � Reset axis errors

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

yAxis
Done
Busy
Error

ErrorID

MC_Reset

Function Description

The MC_Reset block makes the transition from the state ErrorStop to StandStill by
resetting all internal axis-related errors.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

731

MC_SetOverride, MCP_SetOverride � Set override factors

Block Symbols Licence: MOTION CONTROL

uAxis

Enable

VelFactor

AccFactor

JerkFactor

yAxis

Enabled

Busy

Error

ErrorID

MC_SetOverride

uAxis

Enable

yAxis
Enabled

Busy
Error

ErrorID

MCP_SetOverride

Function Description

The MC_SetOverride and MCP_SetOverride blocks o�er the same functionality, the

only di�erence is that some of the inputs are available as parameters in the MCP_ version

of the block.

The MC_SetOverride block sets the values of override for the whole axis, and all
functions that are working on that axis. The override parameters act as a factor that is
multiplied to the commanded velocity, acceleration, deceleration and jerk of the move
function block.

This block is level-sensitive (not edge-sensitive like other motion control blocks). So
factors are update in each step while input Enable is not zero. It leads to reacalcu-
lation of movement's path if a block like MC_MoveAbsolute commands the axis. This
recalculation needs lot of CPU time and also numerical problem could appear. For this
reasons, a deadband (parameter diff) is established. The movement's path recalculation
is proceeded only if one of the factors is changed more then the deadband.

Note: all factor must be positive. Factor greater then 1.0 are possible, but often lead
to overshooting of axis limits and failure of movement (with errorID=-700 - invalid
parameter; if factor is set before start of block) or error stop of axis (with errorID=

-701 - out of range; if factor is changed within movement and actual value overshoot
limit).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enable Block function is enabled Bool

VelFactor Velocity multiplication factor Double (F64)

AccFactor Acceleration/deceleration multiplication factor Double (F64)

JerkFactor Jerk multiplication factor Double (F64)

732 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Enabled Block function is enabled Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Parameter

diff Deadband (di�erence for recalculation) ↓0.0 ↑1.0 ⊙0.1 Double (F64)

733

MC_Stop, MCP_Stop � Stopping a movement

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_Stop

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_Stop

Function Description

The MC_Stop and MCP_Stop blocks o�er the same functionality, the only di�erence is

that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_Stop block commands a controlled motion stop and transfers the axis to the
state Stopping. It aborts any ongoing Function Block execution. While the axis is in
state Stopping, no other FB can perform any motion on the same axis. After the axis
has reached velocity zero, the Done output is set to true immediately. The axis remains
in the state Stopping as long as Execute is still true or velocity zero is not yet reached.
As soon as Done=true and Execute=false the axis goes to state StandStill.

Note 1: parameter/input BufferMode is not supported. Mode is always Aborting.
Note 2: Failing stop-command could be dangerous. This block does not generate

invalid-parameter-error but tries to stop the axis anyway (e.g. uses parameteres from
RM_Axis or generates error-stop-sequence).

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed

Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

734 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

ErrorID Result of the last operation Error

i REXYGEN general error

735

MC_TorqueControl, MCP_TorqueControl � Torque/force control

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

Torque

TorqueRamp

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InTorque

CommandAborted

Busy

Active

Error

ErrorID

MC_TorqueControl

uAxis

Execute

yAxis
InTorque

CommandAborted
Busy
Active
Error

ErrorID

MCP_TorqueControl

Function Description

The MC_TorqueControl and MCP_TorqueControl blocks o�er the same functionality,

the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The MCP_TorqueControl block generates constant slope torque/force ramp until max-
imum requested value has been reached. Similar pro�le is generated for velocity. The
motion trajectory is limited by maximum velocity, acceleration / deceleration, and jerk,
or by the value of the torque, depending on the mechanical circumstances.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Torque Maximal allowed torque/force Double (F64)

TorqueRamp Maximal allowed torque/force ramp Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [uunit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Direction Direction of movement (cyclic axis or special case only) Long (I32)

1 Positive
2 Shortest
3 Negative
4 Current

736 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InTorque Requested torque/force is reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Parameter

kma Torque/force to acceleration ratio Double (F64)

737

Example

velocity

30

torque_ramp

50

torque

100

mode

1

direction

1

deceleration

20

acceleration

50

MC_TorqueControl

uAxis

Execute

Torque

TorqueRamp

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InTorque

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

b
o

o
l

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Done

b
o
o
l

0 1 2 3 4 5 6 7 8 9 10
0

20

40
Commanded velocity

v
e
lo

c
it
y

0 1 2 3 4 5 6 7 8 9 10
0

200

400
Commanded position

p
o
s
it
io

n

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Commanded torque

Time [s]

to
rq

u
e

738 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_VelocityProfile, MCP_VelocityProfile � Velocity pro�le

Block Symbols Licence: MOTION CONTROL

uAxis

Execute

alg

TimeScale

VelocityScale

Offset

BufferMode

uTimes

uValues

BeginAcceleration

EndAcceleration

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_VelocityProfile

uAxis

Execute

yAxis
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_VelocityProfile

Function Description

The MC_PositionProfile block commands a time-position locked motion pro�le.
Block implements two possibilities for de�nition of time-velocity function:

1. sequence of values: the user de�nes a sequence of time-velocity pairs. In each time
interval, the values of velocity are interpolated. Times sequence is in array times, position
sequence is in array values. Time sequence must be increasing and must start with zero or
zero must be between the �rst and last point. Execution always starts from zero time, so if
the sequence start with negative time, part of the pro�le is not executed (could be used
for debugging or time shift). For MC_VelocityProfile and MC_AccelerationProfile

interpolation is linear, but for MC_PositionProfile, 3rd order polynomial is used in
order to avoid steps in velocity.

2. spline: time sequence is the same as in previous case. Each interval is interpolated
by 5th order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where beginning of

the time-interval is for x = 0, end of time-interval is for x = 1 and factors ai are put in
array values in ascending order (e.g. array values contains 6 values for each interval).
This method allows smaller number of intervals and there is special editor for synthesis
of the interpolating spline function.

For both case, the time sequence could be equally spaced and then array times

includes only the �rst (usually zero) and last point.
Note 1: input TimePosition is missing, because all path data are in parameters of

the block.
Note 2: parameter values must be set as vector in all cases, e.g. text string must not

include semicolon.
Note 3: incorrect parameter cSeg (higher then real size of arrays times and/or

values) leads to unpredictable result and in some cases crashes whole runtime execution
(The problem is platform dependent and currently it is known only for SIMULINK -
crash of whole MATLAB).

739

Note 4: in the spline mode, polynomial is always 5th order and always in position (also
for sibling block MC_PositionProfile and MC_AccelerationProfile) and it couldn't
be changed. As the special editor exists, this is not important limitation.

Note 5: The block does not include ramp-in mode. If start position and/or velocity of
pro�le is di�erent from actual (commanded) position of axis, block fails with error -707
(step). It is recommended to use BufferMode=BlendingNext to eliminate the problem
with start velocity.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

TimeScale Overall scale factor in time Double (F64)

VelocityScale Overall scale factor in value Double (F64)

Offset Overall pro�le o�set in value Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

740 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

times Times when segments are switched Reference

values Values or interpolating polynomial coe�cients (a0, a1, a2, ...) Reference

741

Example

timeScale

1.0

posScale

1.0

offset

0

mode

2

MC_VelocityProfile

uAxis

Execute

TimeScale

VelocityScale

Offset

BufferMode

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

Execute

[execute]

Axis

[axis]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Execute

b
o
o

l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Active

b
o

o
l

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Done

b
o
o
l

0 0.5 1 1.5 2 2.5 3
�200

0

200
Commanded acceleration

a
c
c
e
le

ra
ti
o

n

0 0.5 1 1.5 2 2.5 3
�10

0

10
Commanded velocity

v
e
lo

c
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Commanded position

Time [s]

p
o
s
it
io

n

742 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MC_WriteBoolParameter � Write axis parameter (bool)

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

ParameterNumber

Value

yAxis

Done

Busy

Error

ErrorID

MC_WriteBoolParameter

Function Description

The block MC_WriteBoolParameter writes desired value of various system parameters
entered on its Value input to the connected axis. The user chooses from a set of accessible
logical variables by setting the ParameterNumber input.

The block is implemented for sake of compatibility with the PLCOpen speci�cation as
the parameters can be written by the SETPB block.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

ParameterNumber Parameter ID Long (I32)

4 Enable sw positive limit
5 Enable sw negative limit
6 Enable position lag monitoring

Value Parameter value Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

743

MC_WriteParameter � Write axis parameter

Block Symbol Licence: MOTION CONTROL

uAxis

Execute

ParameterNumber

Value

yAxis

Done

Busy

Error

ErrorID

MC_WriteParameter

Function Description

The block MC_WriteParameter writes desired value of various system parameters
entered on its Value input to the connected axis. The user chooses from a set of accessible
variables by setting the ParameterNumber input.

The block is implemented for sake of compatibility with the PLCOpen speci�cation as
the parameters can be written by the SETPR block.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

ParameterNumber Parameter ID Long (I32)

2 Positive sw limit switch
3 Negative sw limit switch
7 Maximal position lag
8 Maximal velocity (system)
9 Maximal velocity (appl)
13 Maximal acceleration (appl.)
15 Maximal deceleration (appl.)
16 Maximal jerk
1001 . . Maximal torque/force

Value Parameter value Double (F64)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

744 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

RM_Axis � Motion control axis

Block Symbol Licence: MOTION CONTROL

uChain

axisRef

CommandedPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

State

ErrorID

PhysicalPosition

RM_Axis

Function Description

The RM_AXIS block is a cornerstone of the motion control solution within the REXYGEN
system. This base block keeps all status values and implements basic algorithm for one
motion control axis (one motor), which includes limits checking, emergency stop, etc. The
block is used for both real and virtual axes. The real axis must have a position feedback
controller, which is out of this block's scope. The key status values are commanded
position, velocity, acceleration and torque, as well as state of the axis, axis error code
and a reference to the block, which controls the axis.

This block (like all blocks in the motion control library) does not implement a feed-
back controller which would keep the actual position as near to the commanded position
as possible. Such a controller must be provided by using other blocks (e.g. PIDU) or
external (hardware) controller. The feedback signals are used for lag checking, homing
and could be used in special motion control blocks. The feedback signals are connected
throw the RM_AxisSpline block.

The parameters of this block correspond with the requirements of the PLCopen stan-
dard for an axis. If improper parameters are set, the errorID output is set to -700

(invalid parameter) and all motion blocks fail with -703 error code (invalid state).
The parameters for limit velocity, acceleration and deceleration are twofold. One for

application, e.g. limit value which could be set into movtion blocks. This value could be
exceeded in some cases. Second limit is for system. The system limits must be higher
then application limits and it is never exceeded. If some motion block generate path,
that exceed system limit, error stop seqvence is activated.

Note that the default values for position, velocity and acceleration limits are in-
tentionally set to 0, which makes them invalid. Limits must always be set by the user
according to the real axis and the axis actuator.

Inputs

uChain Input is not used by the block. User can connect any signal to
de�ne order of block's execution

Long (I32)

745

Outputs

axisRef Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis

connections are allowed)
Reference

CommandedPosition Requested (commanded) position of the axis. The value
is logical position that is put into the motion blocks. The position
is di�erent from PhysicalPosition if the axis is circular or
homed.

Double (F64)

CommandedVelocity Requested (commanded) velocity of the axis Double (F64)

CommandedAcceleration Requested (commanded) acceleration of the axis Double (F64)

CommandedTorque Requested (commanded) torque in the axis Double (F64)

State State of the axis Long (I32)

0 Disabled
1 Stand still
2 Homing
3 Discrete motion
4 Continuous motion
5 Synchronized motion
6 Coordinated motion
7 Stopping
8 Error stop
9 Drive error(simillar to Error stop, but fault is caused

by external signnal)

ErrorID Result of the last operation Error

i REXYGEN general error

PhysicalPosition Requested (commanded) position of the axis. The value
is physical position that is put into the feedback controller.
The position is di�erent from CommandedPosition if the axis
is circular or homed.

Double (F64)

Parameters

AxisType Type of the axis ⊙1 Long (I32)

1 Linear axis
2 Cyclic axis with cyclic position sensor
3 Cyclic axis with linear position sensor
4 Linear axis in testing mode. In this mode, position

limits and limit switches are disabled. This type is
intended for testing and commissioning, sometimes
it can also be suitable for continuous operation on
cyclic axes.

EnableLimitPos Enable positive position limit checking (e.g. if checked,
MaxPosAppl is valid)

Bool

MaxPosAppl Positive position limit for application (MC blocks). The value
should be smaller then (before the) MaxPosSystem for linear axis.
The value limit cyclic axis with linear senzor for few revolution
(useful for robotic application) and must be bigger then (beyond
the) MaxPosSystem.

Double (F64)

746 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

MaxPosSystem Positive position limit for system. The value is never exceeded
for linear axis. The value is end of revolution for cyclic axis.

Double (F64)

EnableLimitNeg Enable negative position limit checking (e.g. if checked,
MinPosAppl is valid)

Bool

MinPosAppl Negative position limit for application (MC blocks) The value
should be bigger then (before the) MinPosSystem for linear axis.
The value limit cyclic axis with linear senzor for few revolution
(useful for robotic application) and must be smaller then (beyond
the) MinPosSystem.

Double (F64)

MinPosSystem Negative position limit for system. The value is never exceeded
for linear axis. The value is begin of revolution for cyclic axis.

Double (F64)

EnablePosLagMonitor Enable monitoring of position lag (e.g. if checked,
MaxPositionLag is valid)

Bool

MaxPositionLag Maximal position lag. Any moving is stopped and the
axis is switched into error stop state if di�erent between
PhysicalPosition and ActualPosition exceed this value.

Double (F64)

MaxVelocitySystem Maximal allowed velocity for system Double (F64)

MaxVelocityAppl Maximal allowed velocity for application (MC blocks) Double (F64)

MaxAccelerationSystem Maximal allowed acceleration for system Double (F64)

MaxAccelerationAppl Maximal allowed acceleration for application (MC
blocks)

Double (F64)

MaxDecelerationSystem Maximal allowed deceleration for system Double (F64)

MaxDecelerationAppl Maximal allowed deceleration for application (MC
blocks)

Double (F64)

DefaultJerk Maximal recomended jerk [unit/s3]. Real jerk is not checked
and could overcome this value.

Double (F64)

MaxTorque Maximal motor torque/force (0=not used) Double (F64)

TorqueRatio Torque-Acceleration ratio. The requested torque value is useful
for feedback controller. The most block don't generate it. The
requested torque value is comuted as reqested acceleration
multiplied by this parameter.

Double (F64)

LoopDelay delay between commanded and actual values[s] The actual
position value is deleyed from commanded value due
communication with feedback controller, feedback loop, value
interpolation and sampling period. The delay could be set into
this parameter and then position lag is computed more precisely.
(not yet implemented)

Double (F64)

StartMode Some options when axis is enabled ⊙1 Long (I32)

1 start stopped
2 start tracking

HomingRequired Homing is required before any move Bool

Example

Following example illustrates basic principle of use of motion control blocks. It presents
the minimal con�guration which is needed for operation of a physical or virtual axis. The

747

axis is represented by RM_Axis block. The limitations imposed on the motion trajectory
in form of maximum velocity, acceleration, jerk and position have to be set in parameters
of the RM_Axis block. The inputs can be connected to supply the values of actual position,
speed and torque (feedback for slip monitoring) or logical limit switch signals for homing
procedure. The axisRef output signal needs to be connected to any motion control block
related to the corresponding axis. The axis has to be activated by enabling the MC_Power
block. The state of the axis changes from Disabled to Standstill (see the following state
transition diagram) and any discrete, continuous or synchronized motion can be started
by executing a proper functional block (e.g. MC_MoveAbsolute). The trajectory of motion
in form of desired position, velocity and acceleration is generated in output signals of
the RM_Axis block. The reference values are provided to an actuator control loop which
is implemented locally in REXYGEN system in the same or di�erent task or they are
transmitted via a serial communication interface to end device which controls the motor
motion (servo ampli�er, frequency inverter etc.). In case of any error, the axis performs an
emergency stop and indicates the error ID. The error has to be con�rmed by executing the
MC_Reset block prior to any subsequent motion command. The following state diagram
demonstrates the state transitions of an axis.

velocity1

30

position1

100

on_off

1

mode1

2

execute1

[execute1]

direction1

1

deceleration1

20

cammanded_velocity

[commanded_velocity_for_drive_freq_converter]

cammanded_position

[commanded_position_for_drive_freq_converter]

cammanded_acceleration

[commanded_acceleration_for_drive_freq_converter]

actual_velocity

[actual_velocity_from_drive_freq_converter]

actual_position

[actual_position_from_drive_freq_converter]

acceleration1

50

RM_Axis

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

CommandedPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

MC_Power

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

748 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Axis state transition diagram

Synchronized
motion

Discretemo t ion

Stopping

Standstill

Errorstop

Disabled

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_Superimposed)

MC_Gearln(Sl ave)
MC_GearlnPos(Sl ave)
MC_Camln(Sl ave)
MC_CombineAxes(Sl ave)

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_MoveContinousAbsolute
MC_MoveContinousRelative

D
o
n
e

Done

MC_Home
No
te
4

Note6

Note3

Note2

Note1

Homing

MC_Stop

Note5

Note

Note

Note

Note

Note

Note

1:

2:

3:

4:

5:

6:

. MC_Power.Enable =FALSE

MC_ResetANDMC_Power.Status =FALSE

MC_ResetANDMC_Power.Status =TRUEANDMC_Power.Enable =TRUE

MC_Power.Enable =TRUEANDMC_Power.Status =TRUE

MC_Stop.Done=TRUEANDMC_Stop.Execute =FALSE

Fromany state.An error in the axis occurred.

Fromany state and there is no error in the axis.

Continuous
motion

749

Motion blending

According to PLCOpen speci�cation, number of motion control blocks allow to specify
BufferMode parameter, which determines a behaviour of the axis in case that a motion
command is interrupted by another one before the �rst motion is �nished. This transition
from one motion to another (called "Blending") can be handled in various ways. The
following table presents a brief explanation of functionality of each blending mode and
the resulting shapes of generated trajectories are illustrated in the �gure. For detailed
description see full PLCOpen speci�cation.

Aborting The new motion is executed immediately
Bu�ered the new motion is executed immediately after �nishing

the previous one, there is no blending
Blending low the new motion is executed immediately after �nishing

the previous one, but the axis will not stop between
the movements, the �rst motion ends with the lower
limit for maximum velocity of both blocks at the �rst
end-position

Blending high the new motion is executed immediately after �nishing
the previous one, but the axis will not stop between
the movements, the �rst motion ends with the higher
limit for maximum velocity of both blocks at the �rst
end-position

Blending previous the new motion is executed immediately after �nishing
the previous one, but the axis will not stop between
the movements, the �rst motion ends with the limit
for maximum velocity of �rst block at the �rst end-
position

Blending next the new motion is executed immediately after �nishing
the previous one, but the axis will not stop between
the movements, the �rst motion ends with the limit
for maximum velocity of second block at the �rst end-
position

750 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Illustration of blending modes

0 5 10 15
0

20

40
Aborting

v
e

lo
c
it
y

Commanded velocity

Active block 1 =false/Active block 2 = ture

Value of the maximum velocity v
1
=30 (block 1)

Value of the maximum velocity v
2
=15 (block 2)

0 5 10 15
0

20

40
Buffered

v
e

lo
c
it
y

0 5 10 15
0

20

40
Blending low

v
e

lo
c
it
y

0 5 10 15
0

20

40
Blending high

v
e
lo

c
it
y

0 5 10 15
0

20

40
Blending next

v
e
lo

c
it
y

0 5 10 15
0

20

40
Blending previous

v
e
lo

c
it
y

751

RM_AxisOut � Axis output

Block Symbol Licence: MOTION CONTROL

uAxis

ActPos
ActVel

PhysPos
CmdPos
CmdVel
CmdAcc
LagPos

RampPos
RampVel

HomeOffset
ModOffset
VelFactor
AccFactor
JerkFactor

iTurn
iState
ErrorID
iTick

ActTrq
CmdTrq

res1
res2
res3

RM_AxisOut

Function Description

The RM_AxisOut block allows an access to important states of block RM_Axis. Same
outputs are also available directly on RM_Axis (some of them), but this direct output is
one step delayed. Blocks are ordered for execution by �ow of a signal, so RM_Axis is �rst
then all motion blocks (that actualize RM_Axis state), then RM_AxisOut (should be last)
and �nally waiting for next period.

Note: almost all blocks do not work with torque so commanded torque is 0. Com-
manded acceleration and torque should be used as feed-forward value for position/veloc-
ity controller so this value does not make any problem.

Inputs

uAxis axis reference that must be connected to axisRef of the RM_Axis
block (direct or indirect throw output yAxis of some other block)

Reference

752 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

RM_AxisSpline � Commanded values interpolation

Block Symbol Licence: MOTION CONTROL

uAxis
ActualPosition
ActualVelocity
ActualTorque
LIMN
LIMZ
LIMP
StatusWord
FAULT

yAxis

Position

Velocity

Acceleration

Torque

State

ControlWord

RM_AxisSpline

Function Description

The purpose of the block is to connect a virtual axis (represented by the RM_Axis

block) to the motor or rather the servo drive and transform virtual axis into physical
one. It includes some independent functions that are covered by this block.

The block has commanded and actual (feedback) signals to connect feedback con-
troller. It includes inputs ActualPosition, ActualVelocity, ActualTorque and outputs
Position, Velocity, Acceleration, Torque.

The feedback controller or servo drive usually works with di�erent units (position unit
is usually in encoder's tick that is transformed by gear ratio). The RM_AxisSpline block
transforms drive unit into axis logical unit. The function is controlled by the DriveUnits
and AxisUnits parameters.

The servo drive often uses integer types for compute or communicate position, velocity
and torque. Position can over�ow range of integer value when motor is running one
direction long time. The RM_AxisSpline block expects this situation and set correct
position if feedback signal over�ow from maximum integer value to minimal integer
value. This feature is controlled by the DriveBits and must be also supported by the
servo drive to work correctly.

The servo drive has di�erent working state and operation mode and require some
sequence to switch into operation mode where motor follow requested position. The
most common standard for the mode and sequencing is CiA402. The RM_AxisSpline

block support the CiA402 standard by the StatusWord input, the ControlWord output
and the DriveMode, DriveTimeout parameters. The servo drive must be set to Cyclic
Synchronous Position Mode (or mode with similar functionality). There is also possible
to use Velocity Mode, but position loop regulator must be realized in control system
(typically by a PIDU block).

There are a lot of motion control blocks which implement complicated algorithms so
they require bigger sampling period (typical update rate is from 10 to 200 ms). On the
other side, the motor driver usually requires small sampling period for smooth/waveless
movement. The RM_AxisSpline block solves this problem of multirate execution of mo-
tion planning and motion control levels. The block can run in another task than other

753

motion control blocks with highest possible sampling period. It interpolates commanded
position, velocity, acceleration and torque and generates smooth curve which is more
suited for motor driver controllers.

There are many possibilities how to compute position (and velocity, acceleration,
torque) between sampled points by slower task. This could be chosen by the InterpolationMode
parameter, but torque is interpolated always by linear function. The supported methods
include:

1: linear: Position is interpolated linearly, velocity as the derivative of position, ac-
celeration is 0 (i.e., velocity is a piecewise constant function with jumps).

2: cubic spline: Position is a 3rd order polynomial calculated based on the position
and velocity at the beginning and end of the interval; velocity is the derivative of
position, acceleration is the derivative of velocity.

3: quintic spline: Position is a 5th order polynomial calculated based on the position,
velocity, and acceleration at the beginning and end of the interval; velocity is the
derivative of position, acceleration is the derivative of velocity.

4: cubic aproximation (B-spline): Position is a 3rd order polynomial calculated
based on two positions before and two positions after the current interval; the
interpolated function may not exactly pass through the given points; velocity is
the derivative of position, acceleration is the derivative of velocity.

5: quintic aproximation (B-spline): Position is a 5th order polynomial calculated
based on three positions before and three positions after the current interval; the
interpolated function may not exactly pass through the given points; velocity is
the derivative of position, acceleration is the derivative of velocity.

6: all linear: Position, velocity, and acceleration are independently interpolated lin-
early, i.e., velocity does not precisely correspond to the derivative of position, and
acceleration does not precisely correspond to the derivative of velocity.

7: all cubic: Both position and velocity are interpolated by a 3rd order polynomial
independently, i.e., velocity does not exactly correspond to the derivative of posi-
tion.

8: reserved for future use.

9: reserved for future use.

Most simple is linear interpolation, but it leads to steps in velocity. Better possibility
is higher order polynom (e.g. 3th or 5th order). It generates a smooth curve, but leads
to a huge acceleration if the original trajectory isn't the same polynomial. Drawback of
polynomial interpolation could be solved by Bspline approximation, but it requires more
samples and therefore bigger delay. Some original position values can be changed with
this method.

754 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Note 1: Because the execution time of motion blocks is varying in time, the block uses
one or two step prediction for interpolation depending on actual conditions and timing
of the motion blocks in slower tasks. The use of predicted values is signalized by states
Run1, Run2, Run3.

Note 2: The interpolation functionality requires to put the block into di�erent (faster)
task than RM_Axis. For this reason, the block RM_AxisSpline has an internally safe
solution for connecting axis references by the block Inport and Outport between di�erent
tasks.

Input

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

ActualPosition Current position of the axis (feedback) [drive unit] Double (F64)

ActualVelocity Current velocity of the axis (feedback) [drive unit/s] Double (F64)

ActualTorque Current torque in the axis (feedback) Double (F64)

LIMN Limit switch in negative direction Bool

LIMZ Absolute switch or reference pulse for homing Bool

LIMP Limit switch in positive direction Bool

StatusWord Status register for drive control according CiA402 speci�cation Long (I32)

FAULT External fault signal Bool

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

Position Commanded interpolated position [drive unit] Double (F64)

Velocity Commanded interpolated velocity [drive unit/s] Double (F64)

Acceleration Commanded interpolated acceleration [drive unit/s/s] Double (F64)

Torque Commanded interpolated torque/force Double (F64)

755

State Interpolator state/error Long (I32)

0 O� (interpolator is disabled, actual data put on
output)

1 Wait (not enough data in bu�er, waiting)
2 Run1 (interpolator running, data from �rst bu�ered

interval)
3 Run2 (interpolator running, data from second

bu�ered interval)
4 Run3 (interpolator running, data from third bu�ered

interval)
-1 Over�ow (interpolation bu�er over�ow, the

interpolation restarts automatically, but a bump in
output values may occur)

-2 Under�ow (interpolation bu�er under�ow, the
interpolation restarts automatically, but a bump in
output values may occur)

-3 Busy (data from RM_Axis cannot be read
consistently, it usually indicates, that some
task is overloaded)

-4 Slow (the task with RM_AxisSpline has longer
period then a task with RM_Axis)

ControlWord Control register for drive control according CiA402 speci�cation Long (I32)

Parameters

InterpolationMode Algorithm for interpolation ⊙9 Long (I32)

1 linear
2 cubic spline
3 quintic spline
4 cubic aproximation (B-spline)
5 quintic aproximation (B-spline)
6 all linear
7 all cubic
8 �
9 �

ReverseLimit Invert meaning of LIMN, LIMZ and LIMP inputs Bool

InterpolationMode Drive control mode ⊙9 Long (I32)

1 Simpli�ed CiA402 (only basic check of StatusWord,
e.g. fault bit only, and direct switching of
ControlWord, e.g. without sequencing)

2 Strict CiA402 (full check of StatusWord in each state
and full sequencing of ControlWord)

DriveTimeout Drive control response timeout [s] (for Strict CiA402 mode
only)

Double (F64)

DriveBits number of valid bits (negative value means signed number) in
the Position output and the ActualPosition input

↓-64 ↑63 ⊙-32

Long (I32)

756 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

DriveUnits Distance in drive units for position transformation (value
correspond to AxisUnits)

Double (F64)

AxisUnits Distance in axis units for position transformation (value
correspond to DriveUnits)

Double (F64)

VelocityCalculate if checked, the input ActualVelocity is ignored and
velocity is calculated by actual position di�erence

Bool

757

RM_HomeOffset � ∗ Homing by setting o�set

Block Symbol Licence: MOTION CONTROL

uAxis

SAVE

LOAD

yAxis

AxisOffset

Homed

RM_HomeOffset

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

SAVE Set HomeO�set from the axis to the block parameter Bool

LOAD Set HomeO�set from the block parameter to the axis Bool

Parameter

SavedOffset Homing o�set value Double (F64)

Output

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

AxisOffset Current home o�set in axis Bool

Homed Axis homed �ag Bool

758 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

RM_Track � Tracking and inching

Block Symbol Licence: MOTION CONTROL

uAxis

posvel

der

TRACKP

TRACKV

JOGP

JOGN

yAxis

InTrack

CommandAborted

Busy

Active

Error

ErrorID

RM_Track

Function Description

The RM_Track block includes few useful functions.
If the input TRACK is active (not zero), the block tries to track requested position

(input pos) with respect to the limits for velocity, acceleration/decelertation and jerk.
The block expects that requested position is changed in each step and therefore recal-
culates the path in each step. This is di�erence to MC_MoveAbsolute block, which does
not allow to change target position while the movement is not �nished. This mode is
useful if position is generated out of the motion control subsystem, even thought the
MC_PositionProfile block is better if whole path is known.

If the input JOGP is active (not zero), the block works like the MC_MoveVelocity

block (e.g. moves axis with velocity given by parameter pv in positive direction with
respect to maximum acceleration and jerk). When input JOGP is released (switched to
zero), the block activates stopping sequence and releases the axis when the sequence is
�nished. This mode is useful for jogging (e.g. setting of position of axis by an operator
using up/down buttons).

Input JOGN works like JOGP, but direction is negative.
Note 1: This block hasn't parameter BufferMode. Mode is always aborting.
Note 2: If more functions are selected, only the �rst one is activated. Order is TRACK,

JOGP, JOGN. Simultaneous activation of more than one function is not recommended.

Inputs

uAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

posvel Requested target position or velocity [unit] Double (F64)

TRACKP Position tracking mode Bool

TRACKV Velocity tracking mode Bool

JOGP Moving positive direction mode Bool

JOGN Moving negative direction mode Bool

759

Parameters

pv Maximal allowed velocity [unit/s] Double (F64)

pa Maximal allowed acceleration [unit/s2] Double (F64)

pd Maximal allowed deceleration [unit/s2] Double (F64)

pj Maximal allowed jerk [unit/s3] Double (F64)

iLen Length of bu�er for estimation ⊙10 Long (I32)

Outputs

yAxis Axis reference (only RM_Axis.axisRef�uAxis or yAxis�uAxis
connections are allowed)

Reference

InTrack Requested position is reached Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

760 CHAPTER 20. MC_SINGLE � MOTION CONTROL - SINGLE AXIS BLOCKS

Chapter 21

MC_MULTI � Motion control -

multi axis blocks

Contents

MCP_CamIn � ∗ Engage the cam . 763

MCP_CamTableSelect � Cam de�nition 765

MCP_CombineAxes � ∗ Combine the motion of 2 axes into a third axis767

MCP_GearIn � ∗ Engage the master/slave velocity ratio 769

MCP_GearInPos � ∗ Engage the master/slave velocity ratio in de-
�ned position . 771

MCP_PhasingAbsolute � ∗ Create phase shift (absolute coordinate) 773

MCP_PhasingRelative � ∗ Create phase shift (relative to previous
motion) . 775

MC_CamIn, MCP_CamIn � Engage the cam 777

MC_CamOut � Disengage the cam . 781

MC_CombineAxes, MCP_CombineAxes � Combine the motion of 2 axes
into a third axis . 783

MC_GearIn, MCP_GearIn � Engange the master/slave velocity ratio 786

MC_GearInPos, MCP_GearInPos � Engage the master/slave velocity
ratio in de�ned position . 789

MC_GearOut � Disengange the master/slave velocity ratio 794

MC_PhasingAbsolute, MCP_PhasingAbsolute � Phase shift in syn-
chronized motion (absolute coordinates) 796

MC_PhasingRelative, MCP_PhasingRelative � Phase shift in syn-
chronized motion (relative coordinates) 799

The MC_MULTI library is specialized for multi-axis motion control. It includes
blocks like MC_CombineAxes for synchronizing multiple axes, MC_GearIn and MC_GearOut

for gearing operations, and MC_PhasingAbsolute, MC_PhasingRelative for precise axis

761

762 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

phasing. The library o�ers MC_CamIn and MC_CamOut for camming functionalities, allow-
ing complex motion pro�les to be followed. Additionally, MCP_CamTableSelect provides
�exibility in selecting cam tables, and MC_GearInPos enables position-based gearing.
This library is essential for advanced applications requiring coordinated motion control
across multiple axes.

763

MCP_CamIn � ∗ Engage the cam

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

CamTableID

Execute

yMaster
ySlave
InSync

CommandAborted
Busy
Active
Error

ErrorID
EndOfProfile
SyncDistance

MCP_CamIn

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

CamTableID Cam table reference (connect to
MCP_CamTableSelect.CamTableID)

Reference

Execute The block is activated on rising edge Bool

Parameter

MasterOffset O�set in cam table on master side [unit] Double (F64)

SlaveOffset O�set in cam table on slave side [unit] Double (F64)

MasterScaling Overall scaling factor in cam table on master side ⊙1.0 Double (F64)

SlaveScaling Overall scaling factor in cam table on slave side ⊙1.0 Double (F64)

StartMode Select relative or absolute cam table ⊙4 Long (I32)

1 Master relative
2 Slave relative
3 Both relative
4 Both absolute

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

764 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Output

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

EndOfProfile Indicate end of cam pro�le (not periodic cam only) Bool

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

765

MCP_CamTableSelect � Cam de�nition

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

Execute

yMaster
ySlave
Done
Busy
Error

ErrorID
CamTableID

MCP_CamTableSelect

Function Description

The MCP_CamTableSelect block de�nes a cam pro�le. The de�nition is similar to
MC_PositionProfile block, but the time axis is replaced by master position axis. There
are also two possible ways for cam pro�le de�nition:

1. sequence of values: given sequence of master-slave position pairs. In each master
position interval, value of slave position is interpolated by 3rd-order polynomial (simple
linear interpolation would lead to steps in velocity at interval border). Master position
sequence is in array/parameter mvalues, slave position sequence is in array/parameter
svalues. Master position sequence must be increasing.

2. spline: master position sequence is the same as in previous case. Each interval is
interpolated by 5th-order polynomial p(x) = a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0 where

beginning of time-interval is de�ned for x = 0, end of time-interval holds for x = 1 and
factors ai are put in array/parameter svalues in ascending order (e.g. array/parameter
svalues contain 6 values for each interval). This method allows to reduce the number of
intervals and there is special graphical editor available for interpolating curve synthesis.

For both cases the master position sequence can be equidistantly spaced in time and
then the time array includes only �rst and last point.

Note 1: input CamTable which is de�ned in PLCOpen speci�cation is missing, because
all path data are set in the parameters of the block.

Note 2: parameter svalues must be set as a vector in all cases, e.g. text string must
not include a semicolon.

Note 3: incorrect parameter value cSeg (higher then real size of arrays times and/or
values) can lead to unpredictable results and in some cases to crash of the whole runtime
execution (The problem is platform dependent and currently it is observed only for
SIMULINK version).

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

766 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

CamTableID Cam table reference (connect to MC_CamIn.CamTableID) Reference

Parameters

alg Algorithm for interpolation ⊙2 Long (I32)

1 Sequence of time/value pairs
2 Sequence of equidistant values
3 Spline
4 Equidistant spline

nmax Number of pro�le segments ⊙3 Long (I32)

Periodic Indicate periodic cam pro�le ⊙on Bool

camname Filename of special editor data �le (�lename is generated by
system if parameter is empty)

String

mvalues Master positions where segments are switched ⊙[0 30] Double (F64)

sValues Slave positions or interpolating polynomial coe�cients (a0, a1,
a2, ...) ⊙[0 100 100 0]

Double (F64)

767

MCP_CombineAxes � ∗ Combine the motion of 2 axes into a third
axis

Block Symbol Licence: MOTION CONTROL

uMaster1

uMaster2

uSlave

Execute

yMaster1
yMaster2
ySlave
InSync

CommandAborted
Busy
Active
Error

ErrorID
SyncDistance

MCP_CombineAxes

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uMaster1 First master axis reference Reference

uMaster2 Second master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Parameter

GearRatioNumeratorM1 Numerator for the gear factor for master axis 1
⊙1

Long (I32)

GearRatioDenominatorM1 Denominator for the gear factor for master axis 1
⊙1

Long (I32)

GearRatioNumeratorM2 Numerator for the gear factor for master axis 2
⊙1

Long (I32)

GearRatioDenominatorM2 Denominator for the gear factor for master axis 2
⊙1

Long (I32)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

768 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

CombineMode axis combination mode ⊙1 Long (I32)

1 addition
2 subtraction

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Output

yMaster1 First master axis reference Reference

yMaster2 Second master axis reference Reference

ySlave Slave axis reference Reference

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

769

MCP_GearIn � ∗ Engage the master/slave velocity ratio

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

Execute

yMaster
ySlave
InGear

CommandAborted
Busy
Active
Error

ErrorID

MCP_GearIn

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Parameter

RatioNumerator Gear ratio Numerator ⊙1 Long (I32)

RatioDenominator Gear ratio Denominator ⊙1 Long (I32)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Output

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

InGear Slave axis reached gearing ratio Bool

770 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

771

MCP_GearInPos � ∗ Engage the master/slave velocity ratio in
de�ned position

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

Execute

yMaster
ySlave

StartSync
InSync

CommandAborted
Busy
Active
Error

ErrorID
SyncDistance

MCP_GearInPos

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Parameter

RatioNumerator Gear ratio Numerator ⊙1 Long (I32)

RatioDenominator Gear ratio Denominator ⊙1 Long (I32)

MasterSyncPosition Master position for synchronization Double (F64)

SlaveSyncPosition Slave position for synchronization Double (F64)

MasterStartDistance Master distance for starting gear in procedure Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

772 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

SyncMode Synchronization mode (cyclic axes only) ⊙2 Long (I32)

1 CatchUp
2 Shortest
3 SlowDown

Output

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

StartSync Commanded gearing starts Bool

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

773

MCP_PhasingAbsolute � ∗ Create phase shift (absolute coordi-
nate)

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_PhasingAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Parameter

PhaseShift Requested phase shift (distance on master axis) for cam Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered

Output

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

774 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

775

MCP_PhasingRelative � ∗ Create phase shift (relative to pre-
vious motion)

Block Symbol Licence: MOTION CONTROL

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_PhasingRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Parameter

PhaseShift Requested phase shift (distance on master axis) for cam Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered

Output

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

776 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

777

MC_CamIn, MCP_CamIn � Engage the cam

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MC_CamIn

uMaster

uSlave

CamTableID

Execute

yMaster
ySlave
InSync

CommandAborted
Busy
Active
Error

ErrorID
EndOfProfile
SyncDistance

MCP_CamIn

Function Description

The MC_CamIn and MCP_CamIn blocks o�er the same functionality, the only di�erence

is that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_CamIn block switches on a mode in which the slave axis is commanded
to position which corresponds to the position of master axis transformed with with
a function de�ned by the MCP_CamTableSelect block (connected to CamTableID in-
put). Denoting the transformation as Cam(x), master axis position PosM and slave
axis position PosS, we obtain (for absolute relationship, without phasing): PosS =
Cam((PosM −MasterOffset)/MasterScaling) ∗ SlaveScaling + SlaveOffset. This
form of synchronized motion of the slave axis is called electronic cam.

The cam mode is switched o� by executing other motion block on slave axis with
mode aborting or by executing a MC_CamOut block. The cam mode is also �nished when
the master axis leaves a non-periodic cam pro�le. This situation is indicated by the
EndOfProfile output.

In case of a di�erence between real position and/or velocity of slave axis and cam-
pro�le slave axis position and velocity, some transient trajectory must be generated to
cancel this o�set. This mode is called ramp-in. The ramp-in function is added to the cam
pro�le to eliminate the di�erence in start position. The RampIn parametr is an average
velocity of the ramp-in function. Ramp-in path is not generated for RampIn=0 and error
-707 (position or velocity step) is invoked if some di�erence is detected. Recommended
value for the RampIn parametr is 0.1 to 0.5 of maximal slave axis velocity. The parameter
has to be lowered if maximal velocity or acceleration error is detected.

778 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

CamTableID Cam table reference (connect to
MCP_CamTableSelect.CamTableID)

Reference

Execute The block is activated on rising edge Bool

MasterOffset O�set in cam table on master side [unit] Double (F64)

SlaveOffset O�set in cam table on slave side [unit] Double (F64)

MasterScaling Overall scaling factor in cam table on master side Double (F64)

SlaveScaling Overall scaling factor in cam table on slave side Double (F64)

StartMode Select relative or absolute cam table Long (I32)

1 Master relative
2 Slave relative
3 Both relative
4 Both absolute

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

RampIn RampIn factor (0 = RampIn mode not used); average additive
velocity (absolute value) during ramp-in process

Double (F64)

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

EndOfProfile Indicate end of cam pro�le (not periodic cam only) Bool

779

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

780 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity2

1

mode2

2

mode1

1

execute2

[execute2]

execute1

[execute1]

execute0

[execute0]

direction2

1

deceleration2

0.2

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration2

1

SS

1

SO

0

SM

4

RF

0

MS

1

MO

0

MC_MoveVelocity � block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_CamIn � block 1

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamTableSelect � block 0

uMaster

uSlave

Execute

yMaster

ySlave

Done

Busy

Error

ErrorID

CamTableID

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

b
o

o
l

Block 0 execute (CamTableSelect)

Block 1 execute (CamIn)

Block 2 execute (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

b
o

o
l

Block 1 active (CamIn)

Block 2 active (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10
�100

�50

0

50

100

Acceleration

a
c
c
e
le

ra
ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

Velocity

v
e
lo

c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8
Position

p
o
s
it
io

n

Position axis 1 � master

Position axis 2 � slave

781

MC_CamOut � Disengage the cam

Block Symbol Licence: MOTION CONTROL

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_CamOut

Function Description

The MC_CamOut block switches o� the cam mode on slave axis. If cam mode is not
active, the block does nothing (no error is activated).

Inputs

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Outputs

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

782 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity2

1

mode2

2

mode1

1

jerk4

0

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

execute0

[execute0]

direction2

1

deceleration4

10

deceleration2

0.2

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration2

1

SS1

4

SS

1

SO

0

RF

0

MS

1

MO

0

MC_Stop � block 4

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_MoveVelocity � block 2

uAxis

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

yAxis

InVelocity

CommandAborted

Busy

Active

Error

ErrorID

MC_CamOut � block 3

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_CamIn block 1

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

MCP_CamTableSelect � block 0

uMaster

uSlave

Execute

yMaster

ySlave

Done

Busy

Error

ErrorID

CamTableID

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Execute

b
o

o
l Block 0 execute (CamTableSelect)

Block 1 execute (CamIn)

Block 2 execute (MoveVelocity)

Block 3 execute (CamOut)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Active

b
o

o
l

Block 1 active (CamIn)

Block 2 active (MoveVelocity)

0 1 2 3 4 5 6 7 8 9 10
�100

�50

0

50

100

Acceleration

a
c
c
e
le

ra
ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

Velocity

v
e
lo

c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8
Position

p
o
s
it
io

n

Position axis 1 � master

Position axis 2 � slave

783

MC_CombineAxes, MCP_CombineAxes � Combine the motion of 2
axes into a third axis

Block Symbols Licence: MOTION CONTROL

uMaster1

uMaster2

uSlave

Execute

GearRatioNumeratorM1

GearRatioDenominatorM1

GearRatioNumeratorM2

GearRatioDenominatorM2

BufferMode

CombineMode

RampInFactor

yMaster1

yMaster2

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_CombineAxes

uMaster1

uMaster2

uSlave

Execute

yMaster1
yMaster2
ySlave
InSync

CommandAborted
Busy
Active
Error

ErrorID
SyncDistance

MCP_CombineAxes

Function Description

The MC_CombineAxes block combines a motion of two master axes into a slave axis
command. The slave axis indicates synchronized motion state. Following relationship
holds:

SlavePosition = Master1Position · GearRatioNumeratorM1

GearRatioDenominatorM1
+

+ Master2Position · GearRatioNumeratorM2

GearRatioDenominatorM2

Negative number can be set in GearRatio... parameter to obtain the resulting slave
movement in form of di�erence of master axes positions.

Inputs

uMaster1 First master axis reference Reference

uMaster2 Second master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

GearRatioNumeratorM1 Numerator for the gear factor for master axis 1 Long (I32)

GearRatioDenominatorM1 Denominator for the gear factor for master axis 1 Long (I32)

GearRatioNumeratorM2 Numerator for the gear factor for master axis 2 Long (I32)

GearRatioDenominatorM2 Denominator for the gear factor for master axis 2 Long (I32)

784 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Outputs

yMaster1 First master axis reference Reference

yMaster2 Second master axis reference Reference

ySlave Slave axis reference Reference

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

785

Example

axis_slave_gearin

[axis_slave_gearin]

axis_slave_camin

[axis_slave_camin]

axis_master_gearin

[axis_master_gearin]

axis_master_camin

[axis_master_camin]

axis_combineaxis

[axis_combineaxis]

MC_GearIn

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

MC_CombineAxes

uMaster1

uMaster2

uSlave

Execute

GearRatioNumeratorM1

GearRatioDenominatorM1

GearRatioNumeratorM2

GearRatioDenominatorM2

BufferMode

RampIn

yMaster1

yMaster2

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_CamIn

uMaster

uSlave

CamTableID

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

StartMode

BufferMode

RampInFactor

yMaster

ySlave

InSync

CommandAborted

Busy

Active

Error

ErrorID

EndOfProfile

SyncDistance

0 1 2 3 4 5 6 7 8 9 10
�0.5

0

0.5

1

1.5

2

2.5

3

3.5

Position

p
o
s
it
io

n

Position � slave GearIn

Position � slave CamIn

Final position CombineAxis

786 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_GearIn, MCP_GearIn � Engange the master/slave velocity
ratio

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

MC_GearIn

uMaster

uSlave

Execute

yMaster
ySlave
InGear

CommandAborted
Busy
Active
Error

ErrorID

MCP_GearIn

Function Description

The MC_GearIn and MCP_GearIn blocks o�er the same functionality, the only di�er-

ence is that some of the inputs are available as parameters in the MCP_ version of the block.

The MC_GearIn block commands the slave axis motion in such a way that a pre-
set ratio between master and slave velocities is maintained. Considering the velocity of
master axis V elM and velocity of slave axis V elS, following relation holds (without phas-
ing): V elS = V elM ∗ RatioNumerator/RatioDenominator. Position and acceleration
is commanded to be consistent with velocity; position/distance ratio is also locked. This
mode of synchronized motion is called electronic gear.

The gear mode is switched o� by executing other motion block on slave axis with
mode aborting or by executing a MC_GearIn block.

Similarly to the MC_CamIn block, ramp-in mode is activated if initial velocity of
slave axis is di�erent from master axis and gearing ratio. Parameters Acceleration,
Deceleration, Jerk are used during ramp-in mode.

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

RatioNumerator Gear ratio Numerator Long (I32)

RatioDenominator Gear ratio Denominator Long (I32)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

787

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

InGear Slave axis reached gearing ratio Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

788 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity2

30

ratio_numerator

2

ratio_denominator

1

position2

100

mode2

2

mode1

2

jerk1

0

execute2

[execute2]

execute1

[execute1]

direction2

2

deceleration2

20

deceleration1

10

axis_slave

[axis_slave]axis_master

[axis_master]

acceleration2

50

acceleration1

25

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID MC_GearIn � block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6

0

0.5

1

Execute

b
o

o
l

Block 1 execute (GearIn)

Block 2 execute (MoveAbsolute)

0 1 2 3 4 5 6

0

0.5

1

Active

b
o

o
l

Block 1 active (GearIn)

Block 2 active (MoveAbsolute)

0 1 2 3 4 5 6

�50

0

50

100

Acceleration

a
c
c
e

le
ra

ti
o

n Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Velocity

v
e

lo
c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6
0

50

100

150

200

Position

p
o

s
it
io

n

Position axis 1 � master

Position axis 2 � slave

789

MC_GearInPos, MCP_GearInPos � Engage the master/slave ve-
locity ratio in de�ned position

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

MasterSyncPosition

SlaveSyncPosition

MasterStartDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

SyncMode

yMaster

ySlave

StartSync

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

MC_GearInPos

uMaster

uSlave

Execute

yMaster
ySlave

StartSync
InSync

CommandAborted
Busy
Active
Error

ErrorID
SyncDistance

MCP_GearInPos

Function Description

The MC_GearInPos and MCP_GearInPos blocks o�er the same functionality, the only

di�erence is that some of the inputs are available as parameters in the MCP_ version of

the block.

The functional block MC_GearInPos engages a synchronized motion of master and
slave axes in such a way that the ratio of velocities of both axes is maintained at a con-
stant value. Compared to MC_GearIn, also the master to slave position ratio is determined
in a given reference point, i.e. following relation holds:

SlavePosition− SlaveSyncPosition

MasterPosition−MasterSyncPosition
=

RatioNumerator

RatioDenominator
.

In case that the slave position does not ful�ll this condition of synchronicity at the
moment of block activation (i.e. in an instant of positive edge of Execute input and
after execution of previous commands in bu�ered mode), synchronization procedure is
started and indicated by output StartSync. During this procedure, proper slave trajec-
tory which results in smooth synchronization of both axes is generated with respect to
actual master motion and slave limits for Velocity, Acceleration, Deceleration and Jerk
(these limits are not applied from the moment of successful synchronization). Parameter
setting MasterStartDistance=0 leads to immediate start of synchronization procedure

790 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

at the moment of block activation (by the Execute input). Otherwise, the synchroniza-
tion starts as soon as the master position enters the interval MasterSyncPosition ±
MasterStartDistance.

Notes:
1. The synchronization procedure uses two algorithms: I. The algorithm implemented
in MC_MoveAbsolute is recomputed in every time instant in such a way, that the end
velocity is set to actual velocity of master axis. II. The position, velocity and acceleration
is generated in the same manner as in the synchronized motion and a proper 5th order
interpolation polynomial is added to achieve smooth transition to the synchronized state.
The length of interpolation trajectory is computed in such a way that maximum velocity,
acceleration and jerk do not violate the speci�ed limits (for the interpolation polynomial).
The �rst algorithm cannot be used for nonzero acceleration of the master axis whereas
the second does not guarantee the compliance of maximum limits for the overall slave
trajectory. Both algorithms are combined in a proper way to achieve the synchronized
motion of both axes.

2. The block parameters (execution of synchronization and velocity/acceleration lim-
its) have to be chosen so that the slave position is close to SlaveSyncPosition approx-
imately at the moment when the master position enters the range for synchronization
given by MasterSyncPosition and MasterStartDistance. Violation of this rule can
lead to unpredictable behaviour of the slave axis during the synchronization or to an
overrun of the speci�ed limits for slave axis. However, the motion of both axes is usually
well de�ned and predictable in standard applications and correct synchronization can
be performed easily by proper con�guration of motion commands and functional block
parameters.

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

RatioNumerator Gear ratio Numerator Long (I32)

RatioDenominator Gear ratio Denominator Long (I32)

MasterSyncPosition Master position for synchronization Double (F64)

SlaveSyncPosition Slave position for synchronization Double (F64)

MasterStartDistance Master distance for starting gear in procedure Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

791

BufferMode Bu�ering mode Long (I32)

1 Aborting (start immediately)
2 Bu�ered (start after �nish of previous motion)
3 Blending low (start after �nishing the previous

motion, previous motion �nishes with the lowest
velocity of both commands)

4 Blending high (start after �nishing the previous
motion, previous motion �nishes with the lowest
velocity of both commands)

5 Blending previous (start after �nishing the previous
motion, previous motion �nishes with its �nal
velocity)

6 Blending next (start after �nishing the previous
motion, previous motion �nishes with the starting
velocity of the next block)

SyncMode Synchronization mode (cyclic axes only) Long (I32)

1 CatchUp
2 Shortest
3 SlowDown

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

StartSync Commanded gearing starts Bool

InSync Slave axis reached the cam pro�le Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

SyncDistance Position deviation of the slave axis from synchronized position Double (F64)

792 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity3

30

velocity2

60

velocity1

30

syncMode

2

rationNumerator

2

ratioDenominator

1

position2

40

position1

100

mode3

1

mode2

1

execute3

[execute3]

execute2

[execute2]execute1

[execute1]

direction3

1

direction1

1 deceleration3

20

deceleration2

50

deceleration1

20

bufferMode1

1

axis_slave

[axis_slave]

axis_master1

[axis_master]

axis_master

[axis_master]

acceleration3

50

acceleration2

50

acceleration1

50

SSP

20

MSP

20

MSD

10

MC_MoveAbsolute � block 3

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID
MC_MoveAbsolute � block 1

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GearInPos � block 2

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

MasterSyncPosition

SlaveSyncPosition

MasterStartDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

SyncMode

yMaster

ySlave

StartSync

InSync

CommandAborted

Busy

Active

Error

ErrorID

SyncDistance

793

0 5 10 15

0

0.5

1

Execute

b
o

o
l

Block 1 execute (MoveAbsolute1)

Block 2 execute (GearIn)

Block 3 execute (MoveAbsolute2)

0 5 10 15

0

0.5

1

Active

b
o

o
l

Block 1 active (MoveAbsolute1)

Block 2 active (GearIn)

Block 3 active (MoveAbsolute2)

0 5 10 15

0

0.5

1

InSync

b
o

o
l

Block 2 InSync (GearIn)

0 5 10 15

�100

�50

0

50

100

Acceleration

a
c
c
e

le
ra

ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 5 10 15
�100

�50

0

50

100
Velocity

v
e

lo
c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 5 10 15
0

50

100

150

200

Position

p
o

s
it
io

n

Positon axis 1 � master

Position axis 2 � slave

794 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_GearOut � Disengange the master/slave velocity ratio

Block Symbol Licence: MOTION CONTROL

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_GearOut

Function Description

The MC_GearOut block switches o� the gearing mode on the slave axis. If gearing
mode is not active (no MC_GearIn block commands slave axis at this moment), block
does nothing (no error is activated).

Inputs

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

Outputs

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

795

Example

velocity2

30

ratio_numerator1

2

ratio_denominator1

1

position2

100

mode2

2

mode1

2

jerk3

0

jerk1

0

execute3

[execute2]

execute2

[execute2]

execute1

[execute1]

direction2

1

deceleration3

150

deceleration2

20

deceleration1

10

axis_slave

[axis_slave]axis_master

[axis_master]

acceleration2

50

acceleration1

25

MC_Stop_block 4

uAxis

Execute

Deceleration

Jerk

yAxis
Done

CommandAborted
Busy

Active
Error

ErrorID

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GearOut � block 3

uSlave

Execute

ySlave
Done
Busy
Error

ErrorID

MC_GearIn � block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6

0

0.5

1

Execute

b
o

o
l

Block 1 execute (GearIn)

Block 2 execute (MoveAbsolute)

Block 3 execute (GearOut)

0 1 2 3 4 5 6

0

0.5

1

Active

b
o

o
l

Block 1 active (GearIn)

Block 2 active (MoveAbsolute)

0 1 2 3 4 5 6

�150

�100

�50

0

50

100

Acceleration

a
c
c
e

le
ra

ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Velocity

v
e

lo
c
it
y Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6
0

50

100

150

200

Position

p
o

s
it
io

n

Position axis 1 � master

Position axis 2 � slave

796 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

MC_PhasingAbsolute, MCP_PhasingAbsolute � Phase shift in syn-
chronized motion (absolute coordinates)

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_PhasingAbsolute

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_PhasingAbsolute

Function Description

The MC_PhasingAbsolute and MCP_PhasingAbsolute blocks o�er the same func-

tionality, the only di�erence is that some of the inputs are available as parameters in the

MCP_ version of the block.

The MC_PhasingAbsolute block introduces an additional phase shift in master-slave
relation de�ned by an electronic cam (MC_CamIn) or electronic gear (MC_GearIn). The
functionality of this command is very similar to MC_MoveSuperimposed (additive motion
from 0 to PhaseShift position with respect to maximum velocity acceleration and jerk).
The only di�erence is that the additive position/velocity/acceleration is added to master
axis reference position in the functional dependence de�ned by a cam or gear ratio for the
computation of slave motion instead of its direct summation with master axis movement.
The absolute value of �nal phase shift is speci�ed by PhaseShift parameter.

Note: The motion command is analogous to rotation of a mechanical cam by angle
PhaseShift

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

PhaseShift Requested phase shift (distance on master axis) for cam Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

797

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

798 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Example

velocity3

50

velocity2

30

ratio_numerator1

2

ratio_denominator1

1

position2

100

phase_shift3

25

mode3

2

mode2

2

mode1

2

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

direction2

1

deceleration3

60

deceleration2

20

deceleration1

10

axis_slave1

[axis_slave]

axis_slave

[axis_slave] axis_master1

[axis_master]

axis_master

[axis_master]

acceleration3

60

acceleration2

50

acceleration1

25
MC_PhasingAbsolute � block 3

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveAbsolute � block 2

uAxis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Direction

yAxis

Done

CommandAborted

Busy

Active

Error

ErrorID MC_GearIn � block 1

uMaster

uSlave

Execute

RatioNumerator

RatioDenominator

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

InGear

CommandAborted

Busy

Active

Error

ErrorID

0 1 2 3 4 5 6 7 8

0

0.5

1

Execute

b
o

o
l

Block 1 execute (GearIn)

Block 2 execute (MoveAbsolute)

Block 3 execute (PhasingAbsolute)

0 1 2 3 4 5 6 7 8

0

0.5

1

Active

b
o

o
l Block 1 active (GearIn)

Block 2 active (MoveAbsolute)

Block 3 active (PhasingAbsolute)

0 1 2 3 4 5 6 7 8
�150

�100

�50

0

50

100

150
Acceleration

a
c
c
e

le
ra

ti
o

n

Acceleration axis 1 � master

Acceleration axis 2 � slave

0 1 2 3 4 5 6 7 8
0

50

100

150

200
Velocity

v
e

lo
c
it
y

Velocity axis 1 � master

Velocity axis 2 � slave

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300
Position

p
o

s
it
io

n

Position axis slave without phasing

Position axis slave with phasing

Position axis 1 � master

Position axis 2 � slave

799

MC_PhasingRelative, MCP_PhasingRelative � Phase shift in syn-
chronized motion (relative coordinates)

Block Symbols Licence: MOTION CONTROL

uMaster

uSlave

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

yMaster

ySlave

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_PhasingRelative

uMaster

uSlave

Execute

yMaster
ySlave
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_PhasingRelative

Function Description

The MC_PhasingRelative and MCP_PhasingRelative blocks o�er the same func-

tionality, the only di�erence is that some of the inputs are available as parameters in the

MCP_ version of the block.

The MC_PhasingRelative introduces an additional phase shift in master-slave re-
lation de�ned by an electronic cam (MC_CamIn) or electronic gear (MC_GearIn). The
functionality of this command is very similar to MC_MoveSuperimposed (additive motion
from 0 to PhaseShift position with respect to maximum velocity acceleration and jerk).
The only di�erence is that the additive position/velocity/acceleration is added to master
axis reference position in the functional dependence de�ned by a cam or gear ratio for
the computation of slave motion instead of its direct summation with master axis move-
ment. The relative value of �nal phase shift with respect to previous value is speci�ed
by PhaseShift parameter. Note: The motion command is analogous to rotation of a
mechanical cam by angle PhaseShift

Inputs

uMaster Master axis reference Reference

uSlave Slave axis reference Reference

Execute The block is activated on rising edge Bool

PhaseShift Requested phase shift (distance on master axis) for cam Double (F64)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

800 CHAPTER 21. MC_MULTI � MOTION CONTROL - MULTI AXIS BLOCKS

Jerk Maximal allowed jerk [unit/s3] Double (F64)

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered

Outputs

yMaster Master axis reference Reference

ySlave Slave axis reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Chapter 22

MC_COORD � Motion control -

coordinated movement blocks

Contents

MCP_GroupHalt � ∗ Stopping a group movement (interruptible) . 805

MCP_GroupInterrupt � ∗ Read a group interrupt 806

MCP_GroupSetOverride � ∗ Set group override factors 807

MCP_GroupSetPosition � ∗ Sets the position of all axes in a group 808

MCP_GroupStop � ∗ Stopping a group movement 809

MCP_MoveCircularAbsolute � ∗ Circular move to position (absolute
coordinates) . 810

MCP_MoveCircularRelative � ∗ Circular move to position (relative
to execution point) . 812

MCP_MoveDirectAbsolute � ∗ Direct move to position (absolute
coordinates) . 814

MCP_MoveDirectRelative � ∗ Direct move to position (relative to
execution point) . 816

MCP_MoveLinearAbsolute � ∗ Linear move to position (absolute
coordinates) . 818

MCP_MoveLinearRelative � ∗ Linear move to position (relative to
execution point) . 820

MCP_MovePath � ∗ General spatial trajectory generation 822

MCP_MovePath_PH � ∗ General spatial trajectory generation PH . . 824

MCP_SetCartesianTransform � ∗ Sets Cartesian transformation . . 826

MCP_SetKinTransform_Arm � ∗ Kinematic transformation robot ARM828

MCP_SetKinTransform_UR � ∗ Kinematic transformation for UR robot830

MC_AddAxisToGroup � Adds one axis to a group 832

MC_GroupContinue � Continuation of interrupted movement . . . 833

MC_GroupDisable � Changes the state of a group to GroupDisabled834

MC_GroupEnable � Changes the state of a group to GroupEnable 835

801

802CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupHalt � Stopping a group movement (interruptible) . . . 836

MC_GroupInterrupt, MCP_GroupInterrupt � Read a group interrupt 841

MC_GroupReadActualAcceleration � Read actual acceleration in
the selected coordinate system . 842

MC_GroupReadActualPosition � Read actual position in the se-
lected coordinate system . 843

MC_GroupReadActualVelocity � Read actual velocity in the se-
lected coordinate system . 844

MC_GroupReadError � Read a group error 845

MC_GroupReadStatus � Read a group status 846

MC_GroupReset � Reset axes errors 847

MC_GroupSetOverride � Set group override factors 848

MC_GroupSetPosition, MCP_GroupSetPosition � Sets the position of
all axes in a group . 849

MC_GroupStop � Stopping a group movement 851

MC_MoveCircularAbsolute � Circular move to position (absolute
coordinates) . 854

MC_MoveCircularRelative � Circular move to position (relative to
execution point) . 858

MC_MoveDirectAbsolute � Direct move to position (absolute coor-
dinates) . 862

MC_MoveDirectRelative � Direct move to position (relative to ex-
ecution point) . 865

MC_MoveLinearAbsolute � Linear move to position (absolute coor-
dinates) . 868

MC_MoveLinearRelative � Linear move to position (relative to ex-
ecution point) . 872

MC_MovePath � General spatial trajectory generation 876

MC_MovePath_PH � ∗ General spatial trajectory generation PH . . 878

MC_ReadCartesianTransform � Reads the parameter of the carte-
sian transformation . 880

MC_SetCartesianTransform � Sets Cartesian transformation 881

MC_UngroupAllAxes � Removes all axes from the group 883

RM_AxesGroup � Axes group for coordinated motion control . . . 884

RM_Feed � ∗ MC Feeder ??? . 887

RM_Gcode � ∗ CNC motion control 888

RM_GroupTrack � T . 890

The MC_COORD library is speci�cally designed for the coordination of multi-axis
motion control within complex systems. It encompasses a variety of blocks, includ-
ing MC_MoveLinearAbsolute for executing precise linear movements, complemented by
MC_MoveLinearRelative for relative linear motion. For the execution of circular motion,

803

the library incorporates MC_MoveCircularAbsolute alongside MC_MoveCircularRelative,
ensuring detailed circular trajectories. In the context of managing group axis control,
this library introduces MC_AddAxisToGroup, which is further supported by functional-
ities such as MC_GroupEnable for activation, MC_GroupDisable for deactivation, and
MC_GroupHalt for immediate stopping of grouped axes. Furthermore, the library provides
MC_MoveDirectAbsolute and MC_MoveDirectRelative, enabling direct control over axis
movements. For navigating through complex paths, MC_MovePath is made available. Es-
sential monitoring and control features are facilitated by MC_GroupReadActualPosition

for positional data, MC_GroupReadActualVelocity for velocity insights, MC_GroupReadError
for error detection, and MC_GroupReadStatus for status updates. Additionally, the li-
brary integrates MC_ReadCartesianTransform and MC_SetCartesianTransform, which
are vital for Cartesian transformation processes. This collection of functionalities under-
scores the library's signi�cance in applications that demand the synchronized control of
multiple axes, particularly in the realms of robotics and automation systems.

804CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

805

MCP_GroupHalt � ∗ Stopping a group movement (interruptible)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_GroupHalt

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered

LimitMode Velocity/Acceleration/Jerk limits meaning ⊙1 Long (I32)

1 Relative [part of default]
2 Absolute[unit/s unit/s^2 ...]

Superimposed start as superimposed motion �ag Bool

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

806CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_GroupInterrupt � ∗ Read a group interrupt

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupInterrupt

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

LimitMode Velocity/Acceleration/Jerk limits meaning ⊙1 Long (I32)

1 Relative [part of default]
2 Absolute[unit/s unit/s^2 ...]

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

807

MCP_GroupSetOverride � ∗ Set group override factors

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

yAxesGroup
Enabled

Busy
Error

ErrorID

MCP_GroupSetOverride

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Parameter

diff Deadband (di�erence for recalculation) ⊙0.05 Double (F64)

VelFactor Velocity multiplication factor ⊙1.0 Double (F64)

AccFactor Acceleration/deceleration multiplication factor ⊙1.0 Double (F64)

JerkFactor Jerk multiplication factor ⊙1.0 Double (F64)

Output

yAxesGroup Axes group reference Reference

Enabled Signal that the override faktor are set successfully Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

808CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_GroupSetPosition � ∗ Sets the position of all axes in a
group

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupSetPosition

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

Relative Mode of position inputs Bool

CoordSystem Reference to the coordinate system used ⊙3 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

Position_ Array of coordinates (positions and orientations)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

809

MCP_GroupStop � ∗ Stopping a group movement

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_GroupStop

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

Deceleration Maximal allowed deceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

810CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MoveCircularAbsolute � ∗ Circular move to position (ab-
solute coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveCircularAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

CircMode Speci�es the meaning of the input signals AuxPoint and
CircDirection ⊙1

Long (I32)

1 BORDER
2 CENTER
3 RADIUS

PathChoice Choice of path ⊙1 Long (I32)

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

CoordSystem Reference to the coordinate system used ⊙1 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

811

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

LimitMode Velocity/Acceleration/Jerk limits meaning ⊙1 Long (I32)

1 Relative [part of default]
2 Absolute[unit/s unit/s^2 ...]

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Superimposed start as superimposed motion �ag Bool

AuxPoint Next coordinates to de�ne circle (depend on CircMode)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

EndPoint Target axes coordinates position
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

812CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MoveCircularRelative � ∗ Circular move to position (rel-
ative to execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveCircularRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

CircMode Speci�es the meaning of the input signals AuxPoint and
CircDirection ⊙1

Long (I32)

1 BORDER
2 CENTER
3 RADIUS

PathChoice Choice of path ⊙1 Long (I32)

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

CoordSystem Reference to the coordinate system used ⊙1 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

813

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

LimitMode Velocity/Acceleration/Jerk limits meaning ⊙1 Long (I32)

1 Relative [part of default]
2 Absolute[unit/s unit/s^2 ...]

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Superimposed start as superimposed motion �ag Bool

AuxPoint Next coordinates to de�ne circle (depend on CircMode)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

EndPoint Target axes coordinates position
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

814CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MoveDirectAbsolute � ∗ Direct move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveDirectAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

CoordSystem Reference to the coordinate system used ⊙1 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

815

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Superimposed start as superimposed motion �ag Bool

Position_ Array of coordinates (positions and orientations)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

816CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MoveDirectRelative � ∗ Direct move to position (relative
to execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveDirectRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

CoordSystem Reference to the coordinate system used ⊙1 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

817

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Superimposed start as superimposed motion �ag Bool

Distance Array of coordinates (relative distances and orientations)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

818CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MoveLinearAbsolute � ∗ Linear move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveLinearAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

CoordSystem Reference to the coordinate system used ⊙1 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

LimitMode Velocity/Acceleration/Jerk limits meaning ⊙1 Long (I32)

1 Relative [part of default]
2 Absolute[unit/s unit/s^2 ...]

819

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Superimposed start as superimposed motion �ag Bool

Position_ Array of coordinates (positions and orientations)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

820CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MoveLinearRelative � ∗ Linear move to position (relative
to execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MoveLinearRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s^2] Double (F64)

Jerk Maximal allowed jerk [unit/s^3] Double (F64)

CoordSystem Reference to the coordinate system used ⊙1 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

LimitMode Velocity/Acceleration/Jerk limits meaning ⊙1 Long (I32)

1 Relative [part of default]
2 Absolute[unit/s unit/s^2 ...]

821

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Superimposed start as superimposed motion �ag Bool

Distance Array of coordinates (relative distances and orientations)
⊙[0.0 0.0 0.0 0.0 0.0 0.0]

Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

822CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MovePath � ∗ General spatial trajectory generation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MCP_MovePath

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

TotalTime Time [s] for whole move Double (F64)

RampTime Time [s] for acceleration/deceleration Double (F64)

CoordSystem Reference to the coordinate system used ⊙2 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

823

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Superimposed start as superimposed motion �ag Bool

pc Control-points matrix
⊙[0.0 1.0 2.0; 0.0 1.0 1.0; 0.0 1.0 0.0]

Double (F64)

pk Knot-points vector ⊙[0.0 0.0 0.0 0.0 0.5 1.0 1.0] Double (F64)

pw Weighting vector ⊙[1.0 1.0 1.0] Double (F64)

pv Polynoms for feedrate de�nition
⊙[0.0 0.05 0.95; 0.0 0.1 0.1; 0.0 0.0 0.0; 0.1 0.0 -0.1; -0.05 0.0 0.05; 0.0 0.0 0.0]

Double (F64)

pt Knot-points (time [s]) for feedrate ⊙[0.0 1.0 10.0 11.0] Double (F64)

user Only for special edit ⊙[0.0 1.0 2.0 3.0] Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

824CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_MovePath_PH � ∗ General spatial trajectory generation PH

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

uMaster

Execute

yAxesGroup
yMaster
Done

CommandAborted
Busy
Active
Error

ErrorID
PathLen

MCP_MovePath_PH

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

uMaster Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

Parameter

CoordSystem Reference to the coordinate system used ⊙2 Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Cyclic Pro�le is cyclic �ag Bool

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Superimposed start as superimposed motion �ag Bool

UZVl ⊙[] Double (F64)

Points ⊙[] Double (F64)

825

Output

yAxesGroup Axes group reference Reference

yMaster Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

PathLen Double (F64)

826CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_SetCartesianTransform � ∗ Sets Cartesian transformation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup

Done

Busy

Error

ErrorID

MCP_SetCartesianTransform

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

SelTrans Coordinate transformation to set/get ⊙1 Long (I32)

1 PCS o�set
2 Tool o�set
3 Machine base o�set

TransX X-component of translation vector Double (F64)

TransY Y-component of translation vector Double (F64)

TransZ Z-component of translation vector Double (F64)

RotAngle1 Rotation angle component Double (F64)

RotAngle2 Rotation angle component Double (F64)

RotAngle3 Rotation angle component Double (F64)

Relative Mode of position inputs Bool

SSF Simple shift �ag Bool

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

827

ErrorID Result of last operation Error

i REXYGEN error code

828CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_SetKinTransform_Arm � ∗ Kinematic transformation robot
ARM

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MCP_SetKinTransform_Arm

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

arot Angle for one revolute (ACS) ⊙6.28318531 Double (F64)

mrot Angle for one revolute (MCS) ⊙6.28318531 Double (F64)

irt Rotation format ⊙1 Long (I32)

1 ZYX angles
2 Quaternion

a1 ⊙400.0 Double (F64)

a2 ⊙300.0 Double (F64)

a3 Double (F64)

d1 Double (F64)

d23 Double (F64)

d4 ⊙200.0 Double (F64)

d6 ⊙100.0 Double (F64)

xe Double (F64)

ye Double (F64)

ze Double (F64)

gamaE Double (F64)

betaE Double (F64)

alphaE Double (F64)

829

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

830CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MCP_SetKinTransform_UR � ∗ Kinematic transformation for UR
robot

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MCP_SetKinTransform_UR

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameter

arot Angle for one revolute (ACS) ⊙6.28318531 Double (F64)

mrot Angle for one revolute (MCS) ⊙6.28318531 Double (F64)

irt Rotation format ⊙1 Long (I32)

1 ZYX angles
2 Quaternion

l1 Double (F64)

l2 Double (F64)

l3 Double (F64)

l4 ⊙400.0 Double (F64)

l5 ⊙400.0 Double (F64)

l6 ⊙400.0 Double (F64)

l7 ⊙400.0 Double (F64)

l8 ⊙400.0 Double (F64)

Output

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

831

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of last operation Error

i REXYGEN error code

832CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_AddAxisToGroup � Adds one axis to a group

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup
yAxis
Done
Busy
Error

ErrorID

MC_AddAxisToGroup

Function Description

The function block MC_AddAxisToGroup adds one uAxis to the group in a structure
uAxesGroup. Axes Group is implemented by the function block RM_AxesGroup. The input
uAxis must be de�ned by the function block RM_Axis from the MC_SINGLE library.

Note 1: Every IdentInGroup is unique and can be used only for one time otherwise
the error is set.

Inputs

uAxesGroup Axes group reference Reference

uAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

IdentInGroup The order of axes in the group (0 = �rst unassigned) Long (I32)

Outputs

yAxesGroup Axes group reference Reference

yAxis Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

833

MC_GroupContinue � Continuation of interrupted movement

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MC_GroupContinue

Function Description

The function block MC_GroupContinue transfers the program back to the situa-
tion at issuing MC_GroupInterrupt. It uses internally the data set as stored at issuing
MC_GroupInterrupt, and at the end (output Done set) transfer the control on the group
back to the original FB doing the movements on the axes group, meaning also that at
the originally interrupted FB the output Busy is still high and the output Active is set
again.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

834CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupDisable � Changes the state of a group to GroupDis-
abled

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_GroupDisable

Function Description

The function block MC_GroupDisable changes the state for the group uAxesGroup to
"GroupDisabled". If the axes are not standing still while issuing this command the state
of the group is changed to "Stopping". It is mean stopping with the maximal allowed
deceleration. When stopping is done the state of the group is changed to "GroupDis-
abled".

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

835

MC_GroupEnable � Changes the state of a group to GroupEn-
able

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_GroupEnable

Function Description

The function block MC_GroupEnable changes the state for the group uAxesGroup

from "GroupDisabled" to "GroupStandby".

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

836CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupHalt � Stopping a group movement (interruptible)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
Deceleration
Jerk
LimitMode
BufferMode
Superimposed

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_GroupHalt

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

837

velocity1

0.4

transition_parameter1

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z1

1

position y1

1.1

position x1

0.9

orientation_of_effector1

�1.5

execute2

[execute2]

execute1

[execute1]

deceleration

0.75

coord_system1

2

buffer_mode1

1

acceleration1

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupHalt

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

838CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Error � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_GroupStop

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_GroupStop

0 2 4 6 8 10
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

com. position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Error � MC_MoveLinearAbsolute

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Execute � MC_GroupHalt

0 2 4 6 8 10

�0.2

0

0.2

0.4

0.6

0.8

1

1.2

b
o
o
l

Done � MC_GroupHalt

0 2 4 6 8 10
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

com. position y

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

839

velocity2

0.4

velocity1

0.4

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z2

1

position z1

1

position y2

0.7

position y1

1.1

position x2

0.8

position x1

0.9

orientation_of_effector2

�1.5

orientation_of_effector1

�1.5

execute3

[execute3]

execute2

[execute2]

execute1

[execute1]

deceleration

0.75

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

1

acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 2

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupHalt

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

840CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute �� Function Block 1

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Done � MC_MoveLinearAbsolute �� Function Block 1

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute �� Function Block 2

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Done � MC_MoveLinearAbsolute �� Function Block 2

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_GroupHalt

0 1 2 3 4 5 6

0

0.5

1

b
o
o
l

Execute � MC_GroupHalt

0 1 2 3 4 5 6
�0.2

0

0.2

0.4

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 1 2 3 4 5 6

0.6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

841

MC_GroupInterrupt, MCP_GroupInterrupt � Read a group inter-
rupt

Block Symbols Licence: COORDINATED MOTION

uAxesGroup

Execute

Deceleration

Jerk

LimitMode

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MC_GroupInterrupt

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupInterrupt

Function Description

The MC_GroupInterrupt and MCP_GroupInterrupt blocks o�er the same functional-

ity, the only di�erence is that some of the inputs are available as parameters in the MCP_

version of the block.

The function block MC_GroupInterrupt interrupts the on-going motion and stops
the group from moving, however does not abort the interrupted motion (meaning that
at the interrupted FB the output CommandAborted will not be Set, Busy is still high and
Active is reset). It stores all relevant track or path information internally at the moment
it becomes active. The uAxesGroup stays in the original state even if the velocity zero is
reached and the Done output is set.

Note 1: This function block is complementary to the function block MC_GroupContinue
which execution the uAxesGroup state is reset to the original state (before MC_GroupInterrupt
execution)

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

842CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupReadActualAcceleration � Read actual acceleration
in the selected coordinate system

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Acceleration

MC_GroupReadActualAcceleration

Function Description

The function block MC_GroupReadActualAcceleration returns the actual velocity in
the selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Acceleration xxx Reference

843

MC_GroupReadActualPosition � Read actual position in the se-
lected coordinate system

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Position

MC_GroupReadActualPosition

Function Description

The function block MC_GroupReadActualPosition returns the actual position in the
selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Position xxx Reference

844CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupReadActualVelocity � Read actual velocity in the se-
lected coordinate system

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

CoordSystem

yAxesGroup
Valid
Busy
Error

ErrorID
Velocity

MC_GroupReadActualVelocity

Function Description

The function block MC_GroupReadActualVelocity returns the actual velocity in the
selected coordinate system of an axes group. The position is valid only if the output
Valid is true which is achieved by setting the input Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Velocity xxx Reference

845

MC_GroupReadError � Read a group error

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

yAxesGroup
Valid
Busy
Error

ErrorID
GroupErrorID

MC_GroupReadError

Function Description

The function block MC_GroupReadError describes general error on the uAxesGroup

which is not relating to the function blocks. If the output GroupErrorID is equal to 0
there is no error on the axes group. The actual error code GroupErrorID is valid only if
the output Valid is true which is achieved by setting the input Enable on true.

Note 1: This function block is implemented because of compatibility with the PLCopen
norm. The same error value is on the output ErrorID of the function block RM_AxesGroup.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

GroupErrorID Result of the last operation Error

i REXYGEN general error

846CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupReadStatus � Read a group status

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

yAxesGroup
Valid
Busy

GroupMoving
GroupHoming
GroupErrorStop
GroupStandby
GroupStopping
GroupDisabled

ConstantVelocity
Accelerating
Decelerating
InPosition

Error
ErrorID

MC_GroupReadStatus

Function Description

The function block MC_GroupReadStatus returns the status of the uAxesGroup. The
status is valid only if the output Valid is true which is achieved by setting the input
Enable on true.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

GroupMoving State GroupMoving Bool

GroupHoming State GroupHoming Bool

GroupErrorStop State ErrorStop Bool

GroupStandby State Standby Bool

GroupStopping State Stopping Bool

GroupDisabled State Disabled Bool

ConstantVelocity Constant velocity motion Bool

Accelerating Accelerating Bool

Decelerating Decelerating Bool

InPosition Symptom achieve the desired position Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

847

MC_GroupReset � Reset axes errors

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_GroupReset

Function Description

The function block MC_GroupReset makes the transition from the state "GroupEr-
rorStop" to "GroupStandBy" by resetting all internal group-related errors. This func-
tion block also resets all axes in this group like the function block MC_Reset from the
MC_SINGLE library.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

848CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_GroupSetOverride � Set group override factors

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Enable
VelFactor
AccFactor
JerkFactor

yAxesGroup
Enabled

Busy
Error

ErrorID

MC_GroupSetOverride

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

VelFactor Velocity multiplication factor Double (F64)

AccFactor Acceleration/deceleration multiplication factor Double (F64)

JerkFactor Jerk multiplication factor Double (F64)

Parameter

diff Deadband (di�erence for recalculation) ⊙0.05 Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Enabled Signal that the override faktor are set successfully Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

849

MC_GroupSetPosition, MCP_GroupSetPosition � Sets the posi-
tion of all axes in a group

Block Symbols Licence: COORDINATED MOTION

uAxesGroup

Execute

Position

Relative

CoordSystem

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MC_GroupSetPosition

uAxesGroup

Execute

yAxesGroup
Done
Busy

CommandAborted
Error

ErrorID

MCP_GroupSetPosition

Function Description

The MC_GroupSetPosition and MCP_GroupSetPosition blocks o�er the same function-

ality, the only di�erence is that some of the inputs are available as parameters in the

MCP_ version of the block.

The function block MC_GroupSetPosition sets the position of all axes in the group
uAxesGroup without moving the axes. The new coordinates are described by the in-
put Position. With the coordinate system input CoordSystem the according coordinate
system is selected. The function block MC_GroupSetPosition shifts position of the ad-
dressed coordinate system and a�ect the higher level coordinate systems (so if ACS
selected, MCS and PCS are a�ected).

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Position Array of coordinates (positions and orientations) Reference

Relative Mode of position inputs Bool

off . . . absolute
on relative

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

CommandAborted Algorithm was aborted Bool

Error Error occurred Bool

850CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

ErrorID Result of the last operation Error

i REXYGEN general error

851

MC_GroupStop � Stopping a group movement

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Deceleration

Jerk

LimitMode

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_GroupStop

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Deceleration Maximal allowed deceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

852CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

velocity1

0.4

transition_parameter1

1

transition_mode1

1

reference_to_axesgroup

[axes_group]

position z1

1

position y1

1.1

position x1

0.9

orientation_of_effector1

�1.5

execute2

[execute2]

execute1

[execute1]

deceleration

0.75

coord_system1

2

buffer_mode1

1

acceleration1

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_GroupStop

uAxesGroup

Execute

Deceleration

Jerk

yAxesGroup
Done

CommandAborted
Busy

Active
Error

ErrorID

853

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Done � MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Error � MC_MoveLinearAbsolute

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Execute � MC_GroupStop

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

b
o
o
l

Done � MC_GroupStop

0 1 2 3 4 5 6 7 8 9 10
�0.2

0

0.2

0.4

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

854CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveCircularAbsolute � Circular move to position (abso-
lute coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
CircMode
AuxPoint
EndPoint
PathChoice
Velocity
Acceleration
Deceleration
Jerk
LimitMode
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Starting
point

Border
point

End
point

x

y

Starting
point

Center
point

End
point

x

y

Starting
point

End
point

x

y

Spearhead
point

length = Radious of the circle

CircMode = BORDER CircMode = CENTER CircMode = RADIUS

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

CircMode Speci�es the meaning of the input signals AuxPoint and
CircDirection

Long (I32)

1 BORDER
2 CENTER
3 RADIUS

AuxPoint Next coordinates to de�ne circle (depend on CircMode) Reference

EndPoint Target axes coordinates position Reference

PathChoice Choice of path Long (I32)

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

855

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.5

velocity1

0.5

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_groupaxes

[axes_group]

position z2 � EndPoint

1

position z2 � AuxPoint

1

position z1 � EndPoint

1

position z1 � AuxPoint

1

position y2 � EndPoint

1.1

position y2 � AuxPoint

1.2

position y1 � EndPoint

1.1

position y1 � AuxPoint

1.1

position x2 � EndPoint

1.1

position x2 � AuxPoint

1

position x1 � EndPoint

0.9

position x1 � AuxPoint

0.7

orientation_of_effector2 � EndPoint

�1.5

orientation_of_effector2 � AuxPoint

�1.5

orientation_of_effector1 � EndPoint

�1.5

orientation_of_effector1 � AuxPoint

�1.5

execute2

[execute2]

execute1

[execute1]

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

0.5

acceleration1

0.5

RTOV4

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV3

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

PathChoice3

1

PathChoice1

1

MC_MoveCircularAbsolute �

Function Block 2

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularAbsolute �

Function Block 1

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

CircMode2

1

CircMode1

1

856CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

857

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularAbsolute �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularAbsolute �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularAbsolute �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularAbsolute �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularAbsolute �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularAbsolute �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

2 2.5 3 3.5 4 4.5 5 5.5 6

0.8

1

1.2

commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

858CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveCircularRelative � Circular move to position (relative
to execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
CircMode
AuxPoint
EndPoint
PathChoice
Velocity
Acceleration
Deceleration
Jerk
LimitMode
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Starting
point

Border
point

End
point

x

y

Starting
point

Center
point

End
point

x

y

Starting
point

End
point

x

y

Spearhead
point

length = Radious of the circle

CircMode = BORDER CircMode = CENTER CircMode = RADIUS

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

CircMode Speci�es the meaning of the input signals AuxPoint and
CircDirection

Long (I32)

1 BORDER
2 CENTER
3 RADIUS

AuxPoint Next coordinates to de�ne circle (depend on CircMode) Reference

EndPoint Target axes coordinates position Reference

PathChoice Choice of path Long (I32)

1 Clockwise
2 CounterClockwise

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

859

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.5

velocity1

0.5

transition_parameter2

1

transition_parameter1

1

transition_mode2

1

transition_mode1

1

reference_to_groupaxes

[axes_group]

execute2

[execute2]

execute1

[execute1]

distance_orientation_of_effector2 � EndPoint

0

distance_orientation_of_effector1 � EndPoint

0

distance z2 � EndPoint

0

distance z2 � AuxPoint

0

distance z1 � EndPoint

0

distance z1 � AuxPoint

0

distance y2 � EndPoint

�0.05

distance y2 � AuxPoint

0.05

distance y1 � EndPoint

�0.1

distance y1 � AuxPoint

�0.1

distance x2 � EndPoint

0.05

distance x2 � AuxPoint

0.05

distance x1 � EndPoint

0.1

distance x1 � AuxPoint

�0.1

dintance_orientation_of_effector2 � AuxPoint

0

dintance_orientation_of_effector1 � AuxPoint

0

coord_system2

2

coord_system1

2

buffer_mode2

1

buffer_mode1

1

acceleration2

0.5

acceleration1

0.5

RTOV4

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV3

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

PathChoice2

1

PathChoice1

1

MC_MoveCircularRelative �

Function Block 2

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveCircularRelative �

Function Block 1

uAxesGroup

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

CircMode2

1

CircMode1

1

860CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

861

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularRelative �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularRelative �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularRelative �� Function Block 1

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Execute � MC_MoveCircularRelative �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Active � MC_MoveCircularRelative �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

b
o
o
l

Done � MC_MoveCircularRelative �� Function Block 2

2 2.5 3 3.5 4 4.5 5 5.5 6
�0.2

0

0.2

0.4

0.6

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

2 2.5 3 3.5 4 4.5 5 5.5 6

0.8

1

1.2

commanded position y

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

862CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveDirectAbsolute � Direct move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
Position
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_MoveDirectAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Position Array of coordinates (positions and orientations) Reference

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

863

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

transition_parameter

1

transition_mode

1

reference_to_axesgroup

[group_axes]

position z

1

position y

0.6

position x

0.9

orientation_of_effector

�1.5

execute

[execute]

coord_system

2

buffer_mode

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveDirectAbsolute

uAxesGroup

Execute

Position

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

864CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Execute � MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Active � MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Done � MC_MoveDirectAbsolute

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.8

1
commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

865

MC_MoveDirectRelative � Direct move to position (relative to
execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
Distance
CoordSystem
BufferMode
TransitionMode
TransitionParameter
Superimposed

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID

MC_MoveDirectRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Distance Array of coordinates (relative distances and orientations) Reference

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

866CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

transition_parameter

1

transition_mode

1

reference_to_axesgroup

[group_axes]

orientation_of_efector

0

execute

[execute]

distance z

0

distance y

�0.1

distance x

0.3

coord_system

2

buffer_mode

1

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveDirectRelative

uAxesGroup

Execute

Distance

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

867

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Execute � MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Active � MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

b
o
o
l

Done � MC_MoveDirectRelative

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

V
e
lo

c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.6

0.8

1
commanded position x

commanded position y

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

x�axis

y�axis

868CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveLinearAbsolute � Linear move to position (absolute
coordinates)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

LimitMode

CoordSystem

BufferMode

TransitionMode

TransitionParameter

Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Position Array of coordinates (positions and orientations) Reference

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

869

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.4
velocity1

0.4

transition_parameter2

1
transition_parameter1

1
transition_mode2

1
transition_mode1

1

reference_to_axesgroup

[axes_group]

position z2

1
position z1

1
position y2

0.8
position y1

1
position x2

1.2
position x1

1

orientation_of_effector2

�1.5
orientation_of_effector1

�1.5

execute2

[execute2]execute1

[execute1]

coord_system2

2
coord_system1

2

buffer_mode2

1
buffer_mode1

1

acceleration2

1
acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearAbsolute �

Function Block 2

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearAbsolute �

Function Block 1

uAxesGroup

Execute

Position

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

870CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

871

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o
l

Execute � MC_MoveLinearAbsolute �� Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o

l

Active � MC_MoveLinearAbsolute �� Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o

o
l

Done � MC_MoveLinearAbsolute �� Function Block 1

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o

l

Execute � MC_MoveLinearAbsolute �� Function Block 2

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o
o
l

Active � MC_MoveLinearAbsolute �� Function Block 2

1 1.5 2 2.5 3 3.5 4

0

0.5

1

b
o

o
l

Done � MC_MoveLinearAbsolute �� Function Block 2

1 1.5 2 2.5 3 3.5 4
�0.2

0

0.2

0.4

0.6

V
e

lo
c
it
y
 [
ra

d
/s

]

Velocity AxesGroup

1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

commanded position x,y

Cas [s]

P
o
s
it
io

n
 [

ra
d
]

Position AxesGroup

x�axis

y�axis

872CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MoveLinearRelative � Linear move to position (relative to
execution point)

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

LimitMode

CoordSystem

BufferMode

TransitionMode

TransitionParameter

Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearRelative

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Distance Array of coordinates (relative distances and orientations) Reference

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

873

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

velocity2

0.4
velocity1

0.4

transition_parameter2

1
transition_parameter1

1
transition_mode2

1
transition_mode1

1

reference_to_axesgroup

[axes_group]

execute2

[execute2]execute1

[execute1]

distance_orientation_of_effector2

0
distance_orientation_of_effector1

0
distance z2

0
distance z1

0
distance y2

�0.2
distance y1

0.2
distance x2

0.2
distance x1

0.2

coord_system2

2
coord_system1

2

buffer_mode2

1
buffer_mode1

1

acceleration2

1
acceleration1

1

RTOV2

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

RTOV1

uVec
u1
u2
u3
u4
u5
u6
u7
u8

yVec

MC_MoveLinearRelative �

Function Block 2

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveLinearRelative �

Function Block 1

uAxesGroup

Execute

Distance

Velocity

Acceleration

Jerk

CoordSystem

BufferMode

TransitionMode

TransitionParameter

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

874CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

875

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Execute � MC_MoveLinearRelative �� Function Block 1

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Active � MC_MoveLinearRelative �� Function Block 1

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Done � MC_MoveLinearRelative �� Function Block 1

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Execute � MC_MoveLinearRelative �� Function Block 2

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Active � MC_MoveLinearRelative �� Function Block 2

b
o
o
l

1 1.5 2 2.5 3 3.5 4

0

0.5

1

Done � MC_MoveLinearRelative �� Function Block 2

b
o
o
l

1 1.5 2 2.5 3 3.5 4
�0.2

0

0.2

0.4

0.6

Velocity AxesGroup

V
e
lo

c
it
y
 [
ra

d
/s

]

1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

Time [s]

P
o
s
it
io

n
 [
ra

d
]

Position AxesGroup

commanded position x,y
x�axis

y�axis

876CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MovePath � General spatial trajectory generation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
pc
pk
pw
pv
pt
TotalTime
RampTime
CoordSystem
BufferMode
TransitionMode
TransitionParameter
RampInFactor
Superimposed

yAxesGroup

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MovePath

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

TotalTime Time [s] for whole move Double (F64)

RampTime Time [s] for acceleration/deceleration Double (F64)

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

877

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

Parameters

pc Control-points matrix
⊙[0.0 1.0 2.0; 0.0 1.0 1.0; 0.0 1.0 0.0]

Double (F64)

pk Knot-points vector ⊙[0.0 0.0 0.0 0.0 0.5 1.0 1.0] Double (F64)

pw Weighting vector ⊙[1.0 1.0 1.0] Double (F64)

pv Polynoms for feedrate de�nition
⊙[0.0 0.05 0.95; 0.0 0.1 0.1; 0.0 0.0 0.0; 0.1 0.0 -0.1; -0.05 0.0 0.05; 0.0 0.0 0.0]

Double (F64)

pt Knot-points (time [s]) for feedrate ⊙[0.0 1.0 10.0 11.0] Double (F64)

user Only for special edit ⊙[0.0 1.0 2.0 3.0] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

878CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_MovePath_PH � ∗ General spatial trajectory generation PH

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
uMaster
Execute
UZVl
Points
CoordSystem
BufferMode
Cyclic
RampInFactor
Superimposed

yAxesGroup
yMaster
Done

CommandAborted
Busy
Active
Error

ErrorID
PathLen

MC_MovePath_PH

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

This block does not propagates the signal quality. More information can be found in
the 1.4 section.

Input

uAxesGroup Axes group reference Reference

uMaster Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Execute The block is activated on rising edge Bool

CoordSystem Reference to the coordinate system used Long (I32)

1 ACS
2 MCS
3 PCS
4 TCS

BufferMode Bu�ering mode Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

Cyclic Pro�le is cyclic �ag Bool

RampIn RampIn factor (0 = RampIn mode not used) Double (F64)

UZVl Reference

Points Reference

Parameter

Superimposed start as superimposed motion �ag Bool

879

Output

yAxesGroup Axes group reference Reference

yMaster Axis reference (only RM_Axis.axisRef-uAxis or yAxis-uAxis
connections are allowed)

Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of last operation Error

PathLen Double (F64)

880CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

MC_ReadCartesianTransform � Reads the parameter of the carte-
sian transformation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Enable

SelTrans

yAxesGroup
Valid
Busy

TransX
TransY
TransZ

RotAngle1
RotAngle2
RotAngle3

Aux1
Aux2
Aux3
Error

ErrorID

MC_ReadCartesianTransform

Function Description

The function block MC_ReadCartesianTransform reads the parameter of the carte-
sian transformation that is active between the MCS and PCS. The parameters are valid
only if the output Valid is true which is achieved by setting the input Enable on true. If
more than one transformation is active, the resulting cartesian transformation is given.

Inputs

uAxesGroup Axes group reference Reference

Enable Block function is enabled Bool

Outputs

yAxesGroup Axes group reference Reference

Valid Output value is valid Bool

Busy Algorithm not �nished yet Bool

TransX X-component of translation vector Double (F64)

TransY Y-component of translation vector Double (F64)

TransZ Z-component of translation vector Double (F64)

RotAngle1 Rotation angle component Double (F64)

RotAngle2 Rotation angle component Double (F64)

RotAngle3 Rotation angle component Double (F64)

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

881

MC_SetCartesianTransform � Sets Cartesian transformation

Block Symbol Licence: COORDINATED MOTION

uAxesGroup
Execute
Relative
SelTrans
TransX
TransY
TransZ
RotAngle1
RotAngle2
RotAngle3
Aux1
Aux2
Aux3

yAxesGroup

Done

Busy

Error

ErrorID

MC_SetCartesianTransform

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

TransX X-component of translation vector Double (F64)

TransY Y-component of translation vector Double (F64)

TransZ Z-component of translation vector Double (F64)

RotAngle1 Rotation angle component Double (F64)

RotAngle2 Rotation angle component Double (F64)

RotAngle3 Rotation angle component Double (F64)

Relative Mode of position inputs Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

882CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

z’=z

x

x’

y’

y

y’’=y’

x’ x’’

z’z’’

x’’’=x’’

y’’

y’’’

z’’z’’’

y’’’

z’’’

x’’’

x

y

z

Trans

RotZ

RotY RotX

TransX

T
ra
n
s
Y

RotZ

883

MC_UngroupAllAxes � Removes all axes from the group

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_UngroupAllAxes

Function Description

The function block MC_UngroupAllAxes removes all axes from the group uAxesGroup.
After �nalization the state is changed to "GroupDisabled".

Note 1: If the function block is execute in the group state "GroupDisabled", "Group-
StandBy" or "GroupErrorStop" the error is set and the block is not execute.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

Busy Algorithm not �nished yet Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

884CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

RM_AxesGroup � Axes group for coordinated motion control

Block Symbol Licence: COORDINATED MOTION

uChain

refGroup
refPos
State
ErrorID

RM_AxesGroup

Function Description

Note 1: Applicable for all non-administrative (moving) function blocks.
Note 2: In the states GroupErrorStop or GroupStopping, all Function Blocks canbe
called, although they will not be executed, except MC_GroupReset for GroupErrorStop
and any occurring Error� they will generate the transition to GroupStandby or GroupEr-
rorStop respectively
Note 3: MC_GroupStop.DONE AND NOT MC_GroupStop.EXECUTE
Note 4: Transition is applicable if last axis is removed from the group
Note 5: Transition is applicable while group is not empty.
Note 6: MC_GroupDisable and MC_UngroupAllAxes can be issued in all states and
will change the state to GroupDisabled.

Parameters

McsCount Number of axis in MCS ↓1 ↑6 ⊙6 Long (I32)

AcsCount Number of axis in ACS ↓1 ↑16 ⊙6 Long (I32)

PosCount Number of position axis ↓1 ↑6 ⊙3 Long (I32)

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s3] Double (F64)

Outputs

refGroup Axes group reference Reference

refPos Position, velocity and acceleration vector Reference

iState Group status Long (I32)

0 Disabled
1 Standby
2 Homing
6 Moving
7 Stopping
8 Error stop

ErrorID Result of the last operation Error

i REXYGEN general error

885

The State Diagram of AxesGroup

GroupMoving

GroupErrorStop

GroupStandby

GroupStopping

(Note 4)
MC_GroupDisable
MC_UngroupAllAxes
MC_RemoveAxisFromGroupMC_AddAxisToGroup

MC_RemoveAxisFromGroup
MC_UngroupAllAxes

Done

GroupDisabled

GroupHoming

MC_GroupEnable

MC_GroupHome

Note 1 and
MC_GroupHalt

MC_GroupStop

Done

Note 1

Erro
rN

ot
e

3

Note 2

Error

Note 2

M
C
_G

ro
up

S
to

p

M
C_G

roupStop

MC_GroupReset

(Note 5)
MC_AssAxisToGroup
MC_RemoveAxisFromGroup

Error

axes_group_reference

[axes_group]

VTOR2

uVec

y1
y2
y3
y4
y5
y6
y7
y8

VTOR1

uVec

y1
y2
y3
y4
y5
y6
y7
y8RM_AxesGroup

refGroup
refPos
iState
ErrorID

886CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

adding particalar axis to axesgroup

implementation of particular single axis

implementation of axes group

vel4

[actual_velocity4]

vel3

[actual_velocity3]

vel2

[actual_velocity2]

vel1

[actual_velocity1]

skupina_os

[axes_group]

reference_to_axis4

[axis4]

reference_to_axis3

[axis3]

reference_to_axis2

[axis22]

reference_to_axis1

[axis1]

reference_to_axesgroup

[axes_group]

pos4

[actual_position4]

pos3

[actual_position3]

pos2

[actual_position2]

pos1

[actual_position1]

commanded_vel4

[commanded_velocity4]

commanded_vel3

[commanded_velocity3]

commanded_vel2

[commanded_velocity2]

commanded_vel1

[commanded_velocity1]

commanded_tor4

[commanded_torque4]

commanded_tor3

[commanded_torque3]

commanded_tor2

[commanded_torque2]

commanded_tor1

[commanded_torque1]

commanded_pos4

[commanded_position4]

commanded_pos3

[commanded_position3]

commanded_pos2

[commanded_position2]

commanded_pos1

[commanded_position1]

axis4

[axis4]

axis3

[axis3]

axis2

[axis2]

axis1

[axis1]

RM_Axis4

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis3

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis2

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_Axis1

HLD

ActualPos

ActualVelocity

ActualTorque

LIMN

LIMZ

LIMP

axisRef

PhysicalPosition

CommandedVelocity

CommandedAcceleration

CommandedTorque

iState

ErrorID

CommandedPosition

RM_AxesGroup1234

refGroup
refPos
iState

ErrorID

MC_Power4

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power3

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power2

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_Power1

uAxis

Enable

yAxis
Status
Busy

Active
Error

ErrorID

MC_GroupEnable_1234

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

MC_AddAxisToGroup_O4

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O3

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O2

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MC_AddAxisToGroup_O1

uAxesGroup

uAxis

Execute

IdentInGroup

yAxesGroup

yAxis

Done

Busy

Error

ErrorID

MCP_SetKinTransform_Agebot

uAxesGroup

Execute

yAxesGroup
Done
Busy
Error

ErrorID

CNB3

on

CNB2

on

CNB1

on

CNB1

on

CNB

1

887

RM_Feed � ∗ MC Feeder ???

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

Execute

uData

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID
Aux

RM_Feed

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

Parameters

Filename 0 String

VelFactor 0 ↓0.01 ↑100.0 ⊙1.0 Double (F64)

Relative 0 Bool

CoordSystem 0 ↓1 ↑3 ⊙2 Long (I32)

BufferMode 0 ↓1 ↑6 ⊙1 Long (I32)

TransitionMode 0 ↓0 ↑15 ⊙1 Long (I32)

TransitionParameter 0 Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

Aux 0 Double (F64)

888CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

RM_Gcode � ∗ CNC motion control

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

uGCData

Execute

BlockSkip

Pause

DI

yAxesGroup
Done

CommandAborted
Busy
Active
Error

ErrorID
Cooling

SpindleSpeed
DO

PrgNo
LineNo
Line

RM_Gcode

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

Execute The block is activated on rising edge Bool

BlockSkip MILAN Bool

Parameters

BaseDir Directory of the G-code �les String

MainFile Source �le number Long (I32)

CoordSystem 0 ↓1 ↑3 ⊙3 Long (I32)

BufferMode Bu�ering mode ⊙1 Long (I32)

1 Aborting
2 Bu�ered
3 Blending low
4 Blending high
5 Blending previous
6 Blending next

TransitionMode Transition mode in blending mode ⊙1 Long (I32)

1 TMNone
2 TMStartVelocity
3 TMConstantVelocity
4 TMCornerDistance
5 TMMaxCornerDeviation
11 Smooth

TransitionParameter Parametr for transition (depends on transition mode) Double (F64)

889

workOffsets Sets with initial coordinate
⊙[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Double (F64)

toolOffsets Sets of tool o�set ⊙[0 0 0] Double (F64)

cutterOffsets Tool radii ⊙[0 0 0] Double (F64)

Outputs

yAxesGroup Axes group reference Reference

Done Algorithm �nished Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

ErrorID Result of the last operation Error

i REXYGEN general error

Cooling Cooling Bool

LineNo Current executed line number Long (I32)

Line Current line of G-code String

SpindleSpeed Spindle speed Double (F64)

890CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

RM_GroupTrack � T

racking position/velocity

Block Symbol Licence: COORDINATED MOTION

uAxesGroup

posvel

der

TRACKP

TRACKV

yAxesGroup
InTrack

CommandAborted
Busy
Active
Error

ErrorID

RM_GroupTrack

Function Description

The function block description is not yet available. Below you can �nd partial description
of the inputs, outputs and parameters of the block. Complete documentation will be
available in future revisions.

Inputs

uAxesGroup Axes group reference Reference

posvel Vector of desired position or velocity Reference

TRACKP Position tracking Bool

TRACKV Velocity tracking Bool

Parameters

Velocity Maximal allowed velocity [unit/s] Double (F64)

Acceleration Maximal allowed acceleration [unit/s2] Double (F64)

Jerk Maximal allowed jerk [unit/s2] Double (F64)

CoordSystem Reference to the coordinate system used ⊙2 Long (I32)

1 ACS
2 MCS
3 PCS

iLen Number of samples to estimate the velocity / acceleration
↓-1 ↑99

Long (I32)

Outputs

yAxesGroup Axes group reference Reference

InTrack Position / velocity track �ag Bool

CommandAborted Algorithm was aborted Bool

Busy Algorithm not �nished yet Bool

Active The block is controlling the axis Bool

Error Error occurred Bool

891

ErrorID Result of the last operation Error

i REXYGEN general error

892CHAPTER 22. MC_COORD �MOTION CONTROL - COORDINATEDMOVEMENT BLOCKS

Chapter 23

CanDrv � Communication via CAN

bus

Contents

CanItem � Secondary received CAN message 894

CanRecv � Receive CAN message 896

CanSend � Send CAN message . 898

The CanDrv library is dedicated to handling CAN (Controller Area Network) bus
communication in REXYGEN system. It features CanItem for managing CAN data items,
CanRecv for receiving messages from the bus, and CanSend for sending messages. This
library provides essential tools for e�cient and reliable communication over CAN net-
works, facilitating data exchange and control commands between various system com-
ponents.

893

894 CHAPTER 23. CANDRV � COMMUNICATION VIA CAN BUS

CanItem � Secondary received CAN message

Block Symbol Licence: CANDRV

uRef

yRef

msgId

data

length

DRDY

CanItem

Function Description

The CanItem block is used with the CanRecv block. The uRef input must be connected
to the itemRef output of some CanRecv block or to the yRef output of another CanItem
block.

This block shows the previous message that has passed the �lter in the CanRecv

block.
If more than one CanItem block is connected (directly or indirectly through the yRef

output of the CanItem block already connected to the CanRecv block) then the �rst
executed CanItem block shows the �rst message before the last received message (which
is shown by the CanRecv block), the second executed CanItem block shows the second
message before the last received message (which is shown by the CanRecv block) etc. It
is strongly recommended to connect the CanItem blocks in a daisy chain. Unexpected
ordering of messages may occur if the blocks are connected in a tree-like structure.

If no message has been received since start of the CAN driver, the data outputs have
fallback values msgId = -1 and length = -1.

The DRDY output is set to DRDY = on if the message has been received during the
last period, i.e. after previous execution of the CanItem block. At the same moment, the
outputs msgId, data and length are updated. If there is no new data, DRDY output is
set to DRDY = off and the data values are kept on the other outputs (msgId, data and
length).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uRef Secondary received packet reference Reference

Output

yRef Secondary received packet reference Reference

msgId CAN message ID (COB-ID) Long (I32)

895

data Message data (8 bytes maximum, LSB �rst)
↓-9.22337E+18 ↑9.22337E+18

Large (I64)

length Message length (number of bytes of data) ↓0 ↑8 Long (I32)

DRDY Received message in the last period �ag Bool

896 CHAPTER 23. CANDRV � COMMUNICATION VIA CAN BUS

CanRecv � Receive CAN message

Block Symbol Licence: CANDRV

itemRef

msgId

data

length

nDRDY

iErr

age

CanRecv

Function Description

The CanRecv block receives message via CAN bus. The block accepts only messages that
match the �lter (parameters filterId, filterIdMask, filterLength, RTR, EXT).

Number of messages received in the current task period (i.e. since the previous exe-
cution) is indicated by the nDRDY output.

The data from the last received message is available at the msgId, data and length

outputs. Previous messages (with respect to the nmax parameter) are available using the
CanItem block(s) linked to the itemRef output.

The block must be linked with the CanDrv driver. The driver must be con�gured to
use the simple CAN mode (i.e. the parameter NodeMode = 256). The block's name must
be in the form <DRV>__<blkname> (see e.g. Goto, OUTQUAD or OUTOCT blocks for details
about referencing data from I/O drivers). The <blkname> part of the name has no special
meaning in this case and it is recommended to keep the original CanRecv.

The block supports short (11-bit) and long (29-bit) message IDs (see the EXT param-
eter) and RequestToReceive messages (see the RTR parameter). FD mode which allows
up to 64 data bytes in a single message is not supported.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

filterId MessageId of packets to receive by this block ↓0 ↑536870911 Long (I32)

filterIdMask Mask for the �lterId parameter (marks valid bits)
↓0 ↑536870911

Long (I32)

filterLength Data length of packets to receive by this block (-1 allows all
lengths) ↓-1 ↑8

Long (I32)

RTR Request To Receive �ag ⊙on Bool

EXT Extended message ID (29bits) ⊙on Bool

timeout Error is indicated if no packet is received within the timeout
interval [s] ↓0.0

Double (F64)

nmax Maximum number of received messages in one period ↓1 ↑255 Long (I32)

897

Output

itemRef Secondary received packet reference Reference

msgId CAN message ID (COB-ID) Long (I32)

data Message data (8 bytes maximum, LSB �rst)
↓-9.22337E+18 ↑9.22337E+18

Large (I64)

length Message length (number of bytes of data) ↓0 ↑8 Long (I32)

nDRDY Number of received messages in the last period ↑255 Word (U16)

iErr Error code Error

age Elapsed time since the last received message [s] ↓0.0 Double (F64)

898 CHAPTER 23. CANDRV � COMMUNICATION VIA CAN BUS

CanSend � Send CAN message

Block Symbol Licence: CANDRV

msgId

length

data

RUN

iErr

CanSend

Function Description

The CanSend block sends message via CAN bus. The message content is de�ned by the
msgId, data and length inputs and the RTR and EXT parameters. Message is sent only
if the input RUN is set to on.

The block must be linked with the CanDrv driver. The driver must be con�gured to
use the simple CAN mode (i.e. the parameter NodeMode = 256). The block's name must
be in the form <DRV>__<signal> (see e.g. Goto, OUTQUAD or OUTOCT blocks for details
about referencing data from I/O drivers). The <signal> part of the name has no special
meaning in this case and it is recommended to keep the original CanSend.

The block supports short (11-bit) and long (29-bit) message IDs (see the EXT param-
eter) and RequestToReceive messages (see the RTR parameter). FD mode which allows
up to 64 data bytes in a single message is not supported.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

msgId CAN message ID (COB-ID) ↓0 ↑536870911 Long (I32)

length Message length (number of bytes of data) ↓0 ↑8 Long (I32)

data Message data (8 bytes maximum, LSB �rst)
↓-9.22337E+18 ↑9.22337E+18

Large (I64)

RUN Sending message is enabled Bool

Parameter

RTR Request To Receive �ag ⊙on Bool

EXT Extended message ID (29bits) ⊙on Bool

Output

iErr Error code Error

Chapter 24

OpcUaDrv � Communication using

OPC UA

Contents

OpcUaReadValue � Read value from OPC UA Server 900

OpcUaServerValue � Expose value as an OPC UA Node 902

OpcUaWriteValue � Write value to OPC UA Server 904

The OpcUaDrv library is specialized in interfacing with OPC UA (Open Platform
Communications Uni�ed Architecture) servers for industrial automation. The �rst block
� OpcUaReadValue is designed for reading data from servers, making it pivotal for data
acquisition in automated systems. The OpcUaWriteValue block enables writing data to
servers, allowing for control and command execution. Additionally, the OpcUaServerValue
block facilitates the monitoring and management of server values. This library serves as
a critical tool for seamless communication and interaction with OPC UA servers, en-
hancing the capabilities of automation systems.

899

900 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

OpcUaReadValue � Read value from OPC UA Server

Block Symbol Licence: ADVANCED

READ

value

BUSY

DONE

errId

OpcUaReadValue

Function Description

This function block depends on the OpcUa driver. Please read the OpcUaDrv manual [27]
before use.

The OpcUaReadValue block reads value of an OPC UA Node through a connection
established by the OPC UA client driver.

The �rst two parameters are NodeId and NodeId_type. The NodeId_type speci�es
what type of information it is expected to be entered as the NodeId parameter. If the
value is string, numeric, guid than the NodeId parameter should contain the id of the
actual OPC UA Node on the server pre�xed with the index of the namespace declared
in the con�guration of the driver separated by a colon (e.g. 1:myNode).

If the type is set to path than the NodeId parameter should contain the path to
the desired Node in the server structure. Every segment of the path is composed from
the attribute BrowserName of the node and the BrowserName is similarly with regular
NodeId types pre�xed with the index of the namespace declared in the con�guration of
the driver separated by a colon (e.g. /1:myDevice/1:myNode). The path is relative to
the Objects folder in the OPC UA server structure.

The parameter type speci�es the expected Node's value data type. The block converts
the Node's value to the speci�ed type and sets the value output signal in case of success
or it sets the errId to the resulting error code.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

READ Enable execution Bool

Parameter

NodeId OPC UA Node Id String

901

NodeId_type Type of Node ID ⊙1 Long (I32)

1 string
2 numeric
3 guid
4 path

type Expected type of incoming data ⊙1 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)
12 String

Output

value Output signal Any

BUSY Busy �ag Bool

DONE Indicator of �nished transaction Bool

errId Error code Error

902 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

OpcUaServerValue � Expose value as an OPC UA Node

Block Symbol Licence: ADVANCED

uValue

SET

DISABLE

yValue

CHANGED

errId

OpcUaServerValue

Function Description

This function block depends on the OpcUa driver. Please read the OpcUaDrv manual [27]
before use.

The OpcUaServerValue block exposes an OPC UA Node through the OpcUaDrv driver
in the OPC UA Server mode.

The �rst two parameters are NodeId and NodeId_type. The NodeId_type speci�es
how the value entered as the NodeId parameter should be treated. The parameter NodeId
speci�es the NodeId that the OPC UA Node represented by the block should be exposed
with.

The input DISABLE controls whether the OPC UA Node is exposed on the server
or not. When the SET input is set to on the value on the input uValue port is set to
the OPC UA Node's value. If the parameter READONLY is set to off the Node's value
can also be changed from outside of the algorithm through the OPC UA communication
protocol.

The output signal yValue is set to the Node's value on every tick. The parameter
type speci�es the Node's value data type, the data type of the uValue input and yValue

output.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

uValue Input signal Any

SET Set the input value to OPC UA Node value Bool

DISABLE Disable OPC UA Node Bool

Parameter

NodeId OPC UA Node Id String

NodeId_type OPC UA Node Id type ⊙1 String

1 string
2 numeric
3 guid

903

type Value data type ⊙1 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)
12 String

BrowseName OPC UA Node Browse name String

Description OPC UA Node description String

DisplayName OPC UA Node display name String

READONLY Set OPC Node value as read only ⊙on Bool

Output

yValue Output signal Any

CHANGED Value of the node changed though the OPC UA protocol Bool

errId Error code Error

904 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

OpcUaWriteValue � Write value to OPC UA Server

Block Symbol Licence: ADVANCED

value

WRITE

BUSY

DONE

errId

code

status

OpcUaWriteValue

Function Description

This function block depends on the OpcUa driver. Please read the OpcUaDrv manual [27]
before use.

The OpcUaWriteValue block writes value to the OPC UA Node through a connection
established by the OpcUaDrv.

The �rst two parameters are NodeId and NodeId_type. The NodeId_type speci�es
what type of information it is expected to be entered as the NodeId parameter. If the
value is string, numeric, guid than the NodeId parameter should contain the id of the
actual OPC UA Node on the server pre�xed with the index of the namespace declared
in the con�guration of the driver separated by a colon (e.g. 1:myNode).

If the type is set to path than the NodeId parameter should contain the path to
the desired Node in the server structure. Every segment of the path is composed from
the attribute BrowserName of the node and the BrowserName is similarly with regular
NodeId types pre�xed with the index of the namespace declared in the con�guration of
the driver separated by a colon (e.g. /1:myDevice/1:myNode). The path is relative to
the Objects folder in the OPC UA server structure.

The parameter type speci�es the expected Node's value data type. The input signal
value is converted to the speci�ed type and is than written to the Node's value attribute.

When the process of writing the value is �nished the result code de�ned by OPC UA
is set to the code output and it's textual representation is set to the status output.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

value Input signal Any

WRITE Enable execution Bool

Parameter

NodeId OPC UA Node Id String

905

NodeId_type Type of Node ID ⊙1 Long (I32)

1 string
2 numeric
3 guid
4 path

type Value data type ⊙1 Long (I32)

1 Bool
2 Byte (U8)
3 Short (I16)
4 Long (I32)
5 Word (U16)
6 DWord (U32)
7 Float (F32)
8 Double (F64)
10 Large (I64)
12 String

Output

BUSY Busy �ag Bool

DONE Indicator of �nished transaction Bool

errId Error code Error

code OPC UA result status code DWord (U32)

status OPC UA result status string String

906 CHAPTER 24. OPCUADRV � COMMUNICATION USING OPC UA

Chapter 25

UNIPI � Communication blocks for

Unipi

Contents

IM201CNT � Iris IM201CNT, 4 digital counters 909

IM201DI � Iris IM201DI, 4 digital inputs 910

IM203DO � Iris IM203DO, 8 digital outputs 911

IM203PWM � Iris IM203PWM, 8 PWM outputs 912

IM204CNT � Iris IM204CNT, 16 digital counters 913

IM204DI � Iris IM204DI, 16 digital inputs 915

IM205DO � Iris IM205DO, 16 digital outputs 916

IM205PWM � Iris IM205PWM, 16 PWM outputs 917

IM301CNT � Iris IM301CNT, 2 digital counters 919

IM301DI � Iris IM301DI, 2 digital inputs 920

IM301DO � Iris IM301DO, 2 digital outputs 921

IM502AO � Iris IM502AO, 4 analog outputs 922

IM503AI � Iris IM503AI, 8 analog inputs 923

IM504RI � Iris IM504RI, 8 resistance or temperature inputs . . . 925

IM506AI � Iris IM506AI, 2 analog inputs 927

IM506AO � Iris IM506AO, 1 analog output 929

IRIS_MODULE � Iris - Module description info 930

UNIPI_CHANNEL � Iris module or Patron section info 931

UNIPI_PRODUCT � Product description info 933

UNIPI_S1AI � Patron section 1, analog input 934

UNIPI_S1AOR � Patron section 1, analog output or resistance input 935

UNIPI_S1CNT � Patron section 1, counters 936

UNIPI_S1DI � Patron section 1, digital inputs 937

UNIPI_S1DO � Patron section 1, digital outputs 938

907

908 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S1LED � Patron section 1, LED outputs 939

UNIPI_S1PWM � Patron section 1, PWM outputs 940

UNIPI_S2AI � Patron section 2, analog inputs 941

UNIPI_S2AO � Patron section 2, analog outputs 942

UNIPI_S2CNT � Patron section 2, counters 943

UNIPI_S2DI � Patron section 2, digital inputs 944

UNIPI_S2RO � Patron section 2, relay outputs 945

This library is used to control and monitor Unipi devices. It includes blocks for
reading and writing digital and analog inputs and outputs, blocks for controlling relays,
PWM outputs, LED diodes and reading counters. For reading buses, drivers such as
OwsDrv or MbDrv can be used. The blocks work in accordance with the manufacturer's
documentation [1], where technical details about individual devices and their inputs and
outputs can be found.

909

IM201CNT � Iris IM201CNT, 4 digital counters

Block Symbol Licence: UNIPI

HLD
R1
R2
R3
R4

VALID
err_id

y1
y2
y3
y4

IM201CNT

Function Description

The IM201CNT block enables the use of digital inputs as counters on the Unipi Iris module.
For more details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

R1..R4 Reset counter Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

debounce1..debounce4 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

reset_value1..reset_value4 Counter reset value ↑4294967295 Word (U16)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1..y4 Counter value ↑4294967295 Word (U16)

910 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

IM201DI � Iris IM201DI, 4 digital inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id
Y1
Y2
Y3
Y4

IM201DI

Function Description

The IM201DI block enables reading digital inputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

debounce1..debounce4 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

Y1..Y4 Digital input Bool

911

IM203DO � Iris IM203DO, 8 digital outputs

Block Symbol Licence: UNIPI

HLD
U1
U2
U3
U4
U5
U6
U7
U8

VALID

err_id

IM203DO

Function Description

The IM203DO block enables the use of digital outputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

U1..U8 Digital output Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

912 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

IM203PWM � Iris IM203PWM, 8 PWM outputs

Block Symbol Licence: UNIPI

HLD
u1
u2
u3
u4
u5
u6
u7
u8

VALID

err_id

IM203PWM

Function Description

The IM203PWM block is used to control the pulse-width modulation (PWM) outputs on
the Unipi Iris module. For more details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

u1..u8 PWM output Word (U16)

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

freq Frequency Long (I32)

0 1kHz
1 100Hz
2 Custom prescaler

prescaler Prescaler ↓0 ↑65535 Long (I32)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

913

IM204CNT � Iris IM204CNT, 16 digital counters

Block Symbol Licence: UNIPI

HLD
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16

VALID
err_id

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

IM204CNT

Function Description

The IM204CNT block enables the use of digital inputs as counters on the Unipi Iris module.
For more details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

R1..R16 Reset counter Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

debounce1..debounce16 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

reset_value1..reset_value16 Counter reset value ↑4294967295 Word (U16)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

914 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

y1..y16 Counter value ↑4294967295 Word (U16)

915

IM204DI � Iris IM204DI, 16 digital inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
Y14
Y15
Y16

IM204DI

Function Description

The IM204DI block enables reading digital inputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

debounce1..debounce16 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

Y1..Y16 Digital input Bool

916 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

IM205DO � Iris IM205DO, 16 digital outputs

Block Symbol Licence: UNIPI

HLD
U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16

VALID

err_id

IM205DO

Function Description

The IM205DO block enables the use of digital outputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

U1..U16 Digital output Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

917

IM205PWM � Iris IM205PWM, 16 PWM outputs

Block Symbol Licence: UNIPI

HLD
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16

VALID

err_id

IM205PWM

Function Description

The IM205PWM block is used to control the pulse-width modulation (PWM) outputs on
the Unipi Iris module. For more details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

u1..u16 PWM output Word (U16)

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

freq Frequency Long (I32)

0 1kHz
1 100Hz
2 Custom prescaler

prescaler Prescaler ↓0 ↑65535 Long (I32)

918 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

919

IM301CNT � Iris IM301CNT, 2 digital counters

Block Symbol Licence: UNIPI

HLD

R1

R2

VALID
err_id

y1
y2

IM301CNT

Function Description

The IM301CNT block enables the use of digital inputs as counters on the Unipi Iris module.
For more details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

R1 Reset counter Bool

R2 Reset counter Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

debounce1 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

debounce2 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

reset_value1 Counter reset value ↑4294967295 Word (U16)

reset_value2 Counter reset value ↑4294967295 Word (U16)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1 Counter value ↑4294967295 Word (U16)

y2 Counter value ↑4294967295 Word (U16)

920 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

IM301DI � Iris IM301DI, 2 digital inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id
Y1
Y2

IM301DI

Function Description

The IM301DI block enables reading digital inputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

debounce1 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

debounce2 Debounce time in 100 µs ↓0 ↑65535 ⊙1 Long (I32)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

Y1 Digital input Bool

Y2 Digital input Bool

921

IM301DO � Iris IM301DO, 2 digital outputs

Block Symbol Licence: UNIPI

HLD
U1
U2

VALID

err_id

IM301DO

Function Description

The IM301DO block enables the use of digital outputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

U1 Digital output Bool

U2 Digital output Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

922 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

IM502AO � Iris IM502AO, 4 analog outputs

Block Symbol Licence: UNIPI

HLD
u1
u2
u3
u4

VALID
err_id
SAT1
SAT2
SAT3
SAT4

IM502AO

Function Description

The IM502AO block enables the use of analog outputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

u1..u4 Analog output Double (F64)

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

SAT1..SAT4 Saturation of analog output Bool

923

IM503AI � Iris IM503AI, 8 analog inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id

y1
y2
y3
y4
y5
y6
y7
y8

IM503AI

Function Description

The IM503AI block enables the use of analog inputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

mode1..mode8 Mode ⊙1 Long (I32)

0 Not used
1 Voltage
2 Current

average_mode Average mode ⊙1 Long (I32)

0 User
1 50-60Hz
2 50Hz
3 60Hz

average_window Average window ↓1 Word (U16)

average_count Average count ↓1 ↑256 Word (U16)

924 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1..y8 Analog input Double (F64)

925

IM504RI � Iris IM504RI, 8 resistance or temperature inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id

y1
y2
y3
y4
y5
y6
y7
y8

IM504RI

Function Description

The IM504RI block enables reading of resistance or temperature inputs on the Unipi Iris
module. For more details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

mode1..mode8 Mode Long (I32)

0 Not used
1 PT100
2 PT1000
3 Resistance

average1..average8 Average Long (I32)

0 OFF
1 Fast
2 Slow

filter Error id Long (I32)

0 60HZ
1 50HZ

926 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1..y8 Measured value Double (F64)

927

IM506AI � Iris IM506AI, 2 analog inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id

y1
y2

IM506AI

Function Description

The IM506AI block enables the use of analog inputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

mode1 Mode Long (I32)

0 Not used
1 Voltage
2 Current

mode2 Mode Long (I32)

0 Not used
1 Voltage
2 Current

average_mode Average mode ⊙1 Long (I32)

0 User
1 50-60Hz
2 50Hz
3 60Hz

average_window Average window ↓1 Word (U16)

928 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

average_count Average count ↓1 ↑256 Word (U16)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1 Analog input Double (F64)

y2 Analog input Double (F64)

929

IM506AO � Iris IM506AO, 1 analog output

Block Symbol Licence: UNIPI

HLD

u

VALID
err_id
SAT

IM506AO

Function Description

The IM506AO block enables the use of analog outputs on the Unipi Iris module. For more
details, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

u Analog output Double (F64)

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

SAT Saturation of analog output Bool

930 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

IRIS_MODULE � Iris - Module description info

Block Symbol Licence: UNIPI

HLD

VALID
err_id
name
version
serial

id
sku

nvmem
yslot

IRIS_MODULE

Function Description

The IRIS_MODULE block retrieves information about the Unipi Iris module and displays
it on its outputs. For more information, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

name Module name String

version Module version String

serial Module serial String

id Module ID String

sku SKU String

nvmem Nvmem String

yslot Slot String

931

UNIPI_CHANNEL � Iris module or Patron section info

Block Symbol Licence: UNIPI

HLD

VALID
err_id
fw_ver
fw_id
hw_id

num_di
num_do
num_ao
num_ai

num_RS485
pcb_ser
int_mask

mwd
vref

UNIPI_CHANNEL

Function Description

The UNIPI_CHANNEL block block retrieves information about the Unipi Iris module or
Unipi Patron section and displays it on its outputs. For more information, visit the
manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

slot Slot Long (I32)

0 Not used
1 Section#1
2 Section#2
3 Section#3
12 Slot#12
22 Slot#22
32 Slot#32
42 Slot#42
52 Slot#52
11 Slot#11
21 Slot#21

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

fw_ver Firmware Version Word (U16)

932 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

fw_id Firmware ID Word (U16)

hw_id Hardware ID Word (U16)

num_di Number of DIs Word (U16)

num_do Number of DOs Word (U16)

num_ao Number of AOs Word (U16)

num_ai Number of AIs Word (U16)

num_RS485 Number of internal RS485 lines Word (U16)

pcb_ser PCB Serial Number DWord (U32)

int_mask Interrupt Mask Word (U16)

mwd Section MasterWatchDog (MWD) Timeout (in 1ms) Word (U16)

vref VRef of MCU Word (U16)

933

UNIPI_PRODUCT � Product description info

Block Symbol Licence: UNIPI

HLD

VALID
err_id

product_model
product_version
product_serial

sku
options

platform_family
platform_series
raw_platform_id

UNIPI_PRODUCT

Function Description

The UNIPI_PRODUCT block retrieves information about the Unipi product and displays it
on its outputs. For more information, visit the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

product_model Product model String

product_version Product version String

product_serial Product serial String

sku SKU String

options Options String

platform_family Platform family String

platform_series Platform series String

raw_platform_id RAW platform ID String

934 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S1AI � Patron section 1, analog input

Block Symbol Licence: UNIPI

HLD
VALID
err_id
AI1_1

UNIPI_S1AI

Function Description

The UniPi_S1AI block allows reading the value of the analog input located in Section
1 of the Unipi Patron device. This section is present in all Unipi Patron models. More
information can be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

mode Mode voltage/current ⊙1 Long (I32)

0 Voltage 0 - 10V
1 Current 0 - 20mA

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

AI1_1 Analog input Double (F64)

935

UNIPI_S1AOR � Patron section 1, analog output or resistance
input

Block Symbol Licence: UNIPI

HLD

AOR1_1

VALID
err_id
AORV

UNIPI_S1AOR

Function Description

The UNIPI_S1AOR block allows controlling the analog output located in section 1 of the
Unipi Patron device. This section is present in all Unipi Patron models. Depending on
the value of the mode parameter, it is possible to generate voltage, current, or measure
resistance. More information can be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

AOR1_1 Analog output Bool

Parameter

mode Mode ⊙1 Long (I32)

0 Voltage output 0 - 10V
1 Current output 0 - 20mA
3 Resistance measurement 0 - 2 kΩ

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

AORV Measured resistance Double (F64)

936 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S1CNT � Patron section 1, counters

Block Symbol Licence: UNIPI

HLD
R1
R2
R3
R4

VALID
err_id

y1
y2
y3
y4

UNIPI_S1CNT

Function Description

The UNIPI_S1CNT block allows the use of digital inputs located in section 1 of the Unipi
Patron device in the counter input mode. The section 1 is present in all Unipi Patron
models. More information can be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

R1..R4 Reset counter Bool

Parameter

debounce1..debounce4 Debounce time in 100 µs ↓0 ↑65535 ⊙-1 Long (I32)

reset_value1..reset_value4 Counter reset value ↑4294967295 Word (U16)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1..y4 Counter value ↑4294967295 Word (U16)

937

UNIPI_S1DI � Patron section 1, digital inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id
DI1_1
DI1_2
DI1_3
DI1_4

UNIPI_S1DI

Function Description

The UNIPI_S1DI block allows reading digital inputs located in section 1 of the Unipi
Patron device. This section is present in all Unipi Patron models. More information can
be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

debounce1..debounce4 Debounce time in 100 µs ↓0 ↑65535 ⊙-1 Long (I32)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

DI1_1 Digital input Bool

DI1_2 Digital input Bool

DI1_3 Digital input Bool

DI1_4 Digital input Bool

938 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S1DO � Patron section 1, digital outputs

Block Symbol Licence: UNIPI

HLD
DO1_1
DO1_2
DO1_3
DO1_4

VALID

err_id

UNIPI_S1DO

Function Description

The UNIPI_S1DO block allows controlling digital outputs located in section 1 of the Unipi
Patron device. This section is present in all Unipi Patron models. More information can
be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

DO1_1 Digital output Bool

DO1_2 Digital output Bool

DO1_3 Digital output Bool

DO1_4 Digital output Bool

Parameter

enable_DS1..enable_DS4 Enable direct switch ⊙on Bool

invert_DS1..invert_DS4 Invert direct switch ⊙on Bool

toggle_DS1..toggle_DS4 Toggle direct switch ⊙on Bool

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

939

UNIPI_S1LED � Patron section 1, LED outputs

Block Symbol Licence: UNIPI

HLD
X1
X2
X3
X4

VALID

err_id

UNIPI_S1LED

Function Description

The UNIPI_S1LED block is used to control the LEDs located in section 1 of the Unipi
Patron device. This section is present in all Unipi Patron models. More information can
be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

X1..X4 LED indicator Bool

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

940 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S1PWM � Patron section 1, PWM outputs

Block Symbol Licence: UNIPI

HLD
DO1_1
DO1_2
DO1_3
DO1_4

VALID

err_id

UNIPI_S1PWM

Function Description

The UNIPI_S1PWM block is used to control the digital outputs located in section 1 of
the Unipi Patron device in the pulse width modulation (PWM) mode. The section 1 is
present in all Unipi Patron models. More information can be found on the manufacturer's
website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

DO1_1 PWM output Word (U16)

DO1_2 PWM output Word (U16)

DO1_3 PWM output Word (U16)

DO1_4 PWM output Word (U16)

Parameter

prescaler Prescaler ↓0 ↑65535 Long (I32)

cycle_length Cycle length ↓0 ↑65535 Long (I32)

Output

err_id Error ID Long (I32)

VALID Data validity indicator Bool

941

UNIPI_S2AI � Patron section 2, analog inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id
AI2_1
AI2_2
AI2_3
AI2_4

UNIPI_S2AI

Function Description

The UNIPI_S2AI block is used to read the analog inputs located in section 2 of the Unipi
Patron device. The block can be used only with speci�c Patron models that have more
than one section. More information can be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

mode1..mode4 Mode voltage/current ⊙1 Long (I32)

0 Voltage 0 - 10V
1 Current 0 - 20mA

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

AI2_1 Analog input Double (F64)

AI2_2 Analog input Double (F64)

AI2_3 Analog input Double (F64)

AI2_4 Analog input Double (F64)

942 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S2AO � Patron section 2, analog outputs

Block Symbol Licence: UNIPI

HLD
AOV2_1
AOV2_2
AOV2_3
AOV2_4

VALID

err_id

UNIPI_S2AO

Function Description

The UNIPI_S2AO block is used to control the analog output located in section 2 of the
Unipi Patron device. The block can be used only with speci�c Patron models that have
more than one section. More information can be found on the manufacturer's website
[1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

AOV2_1 Analog output Double (F64)

AOV2_2 Analog output Double (F64)

AOV2_3 Analog output Double (F64)

AOV2_4 Analog output Double (F64)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

943

UNIPI_S2CNT � Patron section 2, counters

Block Symbol Licence: UNIPI

HLD
R1
R2
R3
R4

VALID
err_id

y1
y2
y3
y4

UNIPI_S2CNT

Function Description

The UNIPI_S2CNT block is used to read the counter inputs located in section 2 of the
Unipi Patron device in the counter input mode. The block can be used only with speci�c
Patron models that have more than one section. More information can be found on the
manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

R1..R4 Reset counter Bool

Parameter

debounce1..debounce4 Debounce time in 100 µs ↓0 ↑65535 ⊙-1 Long (I32)

reset_value1..reset_value4 Counter reset value ↑4294967295 ⊙1 Word (U16)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

y1..y4 Counter value ↑4294967295 Word (U16)

944 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

UNIPI_S2DI � Patron section 2, digital inputs

Block Symbol Licence: UNIPI

HLD

VALID
err_id
DI2_1
DI2_2
DI2_3
DI2_4

UNIPI_S2DI

Function Description

The UNIPI_S2DI block is used to read the digital inputs located in section 2 of the Unipi
Patron device. The block can be used only with speci�c Patron models that have more
than one section. More information can be found on the manufacturer's website [1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

Parameter

debounce1..debounce4 Debounce time in 100 µs ↓0 ↑65535 ⊙-1 Long (I32)

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

DI2_1 Digital input Bool

DI2_2 Digital input Bool

DI2_3 Digital input Bool

DI2_4 Digital input Bool

945

UNIPI_S2RO � Patron section 2, relay outputs

Block Symbol Licence: UNIPI

HLD
RO2_1
RO2_2
RO2_3
RO2_4
RO2_5

VALID

err_id

UNIPI_S2RO

Function Description

The UNIPI_S2RO block is used to control the relay outputs located in section 2 of the
Unipi Patron device. The block can be used only with speci�c Patron models that have
more than one section. More information can be found on the manufacturer's website
[1].

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

HLD Hold Bool

RO2_1 Digital output Bool

RO2_2 Digital output Bool

RO2_3 Digital output Bool

RO2_4 Digital output Bool

RO2_5 Digital output Bool

Parameter

enable_DS1..enable_DS4 Enable direct switch ⊙on Bool

invert_DS1..invert_DS4 Invert direct switch ⊙on Bool

togle_DS1..togle_DS4 Toggle direct switch ⊙on Bool

Output

VALID Data validity indicator Bool

err_id Error ID Long (I32)

946 CHAPTER 25. UNIPI � COMMUNICATION BLOCKS FOR UNIPI

Appendix A

Licensing policy

With the release of version 3 of the REXYGEN system, REX Controls s.r.o. has introduced
a new licensing system. We are moving away from the previous model, where licences
were tied to speci�c hardware based on performance, to a more equitable system based
on the complexity of the target application. From this version on, it no longer matters
whether the application runs on a small and inexpensive computer (e.g., Raspberry Pi),
a supported PLC family, an industrial PC, or a high-performance server. The type of
processor or operating system (Linux, Windows, or no OS) is also irrelevant.

Flexible Licensing

You do not need to worry about additional licence costs when expanding your project.
The new licensing system allows upgrades between di�erent licence levels, with the up-
grade price re�ecting the di�erence in licence costs. This makes ongoing upgrades possible
without extra fees.

Licensing groups

After installing the RexCore on your target device, you must activate a licence on your
device. Please refer to the Licensing Manual [28] for instructions. To verify the runtime's
functionality, you can utilise the free "DEMO" licence. The "DEMO" licence allows
runtime operation for up to 2 hours per session.

To run the REXYGEN system permanently on the target device, a permanent licence
is required. In terms of licensing, there are several versions of the RexCore runtime module
that provide maximum �exibility for individual projects. The licence cost depends on
the size and complexity of the developed application, determined by the following factors
used in the application (speci�c REXYGEN project):

• Function Blocks

• Input/output drivers

• Application complexity

• Visualization and operator control (Human-Machine Interface, HMI) complexity

947

948 APPENDIX A. LICENSING POLICY

• Other tools

These factors are explained in more detail in the following paragraphs. A detailed de-
scription of individual blocks, drivers, HMI creation, and other tools can be found in
the REXYGEN user documentation. During project compilation, all relevant factors are
displayed in the compilation window, including the list of required licences for the per-
manent operation of the application.

Function Blocks

The extensive library of function blocks is divided into several licensing groups:

• STANDARD � common (mostly simple) function blocks available in all licence
variants,

• ADVANCED � advanced (mostly more complex) function blocks available in all
licence variants except the Starter licence,

• REXLANG � a programmable block in a language similar to C,

• PYTHON � a programmable block in the Python language.

Additional groups of function blocks have separate licences and function as optional
libraries that can be purchased separately for Pro� S, M, and L licences:

• AUTOTUNING � controllers with automatic parameter tuning,

• MOTION CONTROL � single-axis and multi-axis motion control,

• COORDINATED MOTION � coordinated motion control (e.g., for robots),

• MATRIX � advanced matrix function blocks based on orthogonal transformations,

• OPTIM � optimization algorithms and solvers.

The availability of individual groups of function blocks depends on the chosen licence.
Table A.1 lists the function block groups and their availability in the licence variants.

Input and Output Drivers

Like function blocks, drivers are divided into several licence groups:

• Basic � drivers for inputs and outputs native to the given hardware, direct input
and output drivers (if available on given HW), and a 1Wire driver using OWFS,

• IIoT � drivers for the Industrial Internet of Things (IIoT): MQTT, OPC UA driver,
Database access (DbDrv, PqDrv),

• Fieldbus � Modbus RTU/TCP (master and slave), CAN/CANopen,

• Ethernet � EtherCAT, Siemens S7.

https://www.rexygen.com/doc/index.html
https://eshop.rexcontrols.com/products/autotuning-controllers-optional-module-for-rexygen
https://eshop.rexcontrols.com/products/motion-control
https://eshop.rexcontrols.com/products/coordinated-motion
https://eshop.rexcontrols.com/products/matrix-function-blocks-optional-module-for-rexygen
https://eshop.rexcontrols.com/products/optional-modules

949

Licensing group Starter Plus Pro� Ultimate
S M L S M L

STANDARD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ADVANCED ✓ ✓ ✓ ✓ ✓ ✓ ✓
REXLANG ✓ ✓ ✓ ✓ ✓ ✓ ✓
PYTHON ✓ ✓ ✓ ✓
AUTOTUNING + + + ✓
MOTION CONTROL + + + ✓
COORDINATED MOTION + + + ✓
MATRIX + + + ✓
OPTIM + + + ✓

Table A.1: Function Blocks (✓ = included ; + = optional)

Licensing group Starter Plus Pro� Ultimate
S M L S M L

Basic 2 2 2 4 ∞ ∞ ∞ ∞
IIoT 1 2 2 4 4 8 ∞
Fieldbus 1 2 4 8 12 ∞
Ethernet 1 2 4 8 ∞

Table A.2: Inputs and Outputs Drivers (∞ = unlimited)

Table A.2 lists the driver groups and their availability in the licence variants.

Project Complexity

Each licence variant has a limit on the maximum number of blocks and I/Os that a
project can contain. Higher licence groups also support multi-core processor operation.
The information is clearly presented in Table A.3.

Licensing group Starter Plus Pro� Ultimate
S M L S M L

Number of Blocks 512 1024 2048 4096 6144 10240 12288 ∞
Number of I/Os 64 128 256 512 1024 2048 4096 ∞
Multicore ✓ ✓ ✓ ✓ ✓

Table A.3: Project Complexity (✓ = included ; ∞ = unlimited)

Visualization and Operator Control (Human-Machine Interface, HMI) Complexity

In version 3 of the REXYGEN system, large visualizations are subject to fees. The com-
plexity is assessed according to the so-called tags. Visualizations with up to 128 tags are

950 APPENDIX A. LICENSING POLICY

free. Tags are counted as follows:

• Each utilized value (input or display) counts as 1 tag.

• Each allocated array element is 1 tag. E.g. an array allocated to 100 elements
with dimensions of 3x4 counts as 100 tags. If such an array will permanently have
dimensions of 3x4, it is su�cient that it be allocated to 12 elements.

• Each signal displayed in a trend counts as 10 tags.

If the number of tags exceeds the visualization licence limit, this is visibly indicated,
but the visualization continues to work. Purchasing the necessary licence removes this
indication.

Other Tools

The REXYGEN system also includes other tools that are free for small-scale use. For
extensive use, a separate licence must be purchased:

• High-performance OPC UA Server,

• RexArcView - Archive data viewer.

The complexity of use, like HMI, is determined by the number of tags. For the OPC UA
Server, tags are counted the same as for HMI. For RexArcView, each displayed signal
counts as 10 tags. The number of free tags for each tool and licence version is listed in
Table A.4.

Licensing group Starter Plus Pro� Ultimate
S M L S M L

HMI 128 128 128 128 128 128 128 128
OPC UA 32 32 32 32 512 512 512 512
RexArcView 64 64 64 64 64 64 64 64

Table A.4: Number of free tags (more tags can be purchased separately)

See Appendix B for details about licensing of individual function blocks.

https://eshop.rexcontrols.com/products/rexygen-hmi
https://eshop.rexcontrols.com/products/rexygen-opc-ua-server
https://eshop.rexcontrols.com/products/rexarcview

Appendix B

Licensing of individual function

blocks

To maximize �exibility for individual projects, function blocks of the REXYGEN system
are divided into several licensing groups. The table below shows the groups the function
blocks belong to. See Appendix A for detailed information about the individual licensing
options.

Function block name Licensing group
STANDARD Other

ABS •
ABSROT ADVANCED
ACD •
ACLEAR •
ADD •
ADDHEXD •
ADDOCT •
ADDQUAD •
AFLUSH •
ALARMS •
ALB •
ALBI •
ALM •
ALMI •
ALN •
ALNI •
AND •
ANDHEXD •
ANDOCT •
ANDQUAD •

The list continues on the next page...

951

952 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

ANLS •
ARC •
ARLY •
ARS •
ASW ADVANCED
ATMT •
AVG •
AVS ADVANCED
AVSI ADVANCED
BDHEXD •
BDOCT •
BINS •
BIS •
BISR •
BITOP •
BMHEXD •
BMOCT •
BPF •
BSFIFO ADVANCED
BSGET ADVANCED
BSGETOCT ADVANCED
BSGETOCTV ADVANCED
BSGETV ADVANCED
BSSET ADVANCED
BSSETOCT ADVANCED
BSSETOCTV ADVANCED
BSSETV ADVANCED
CDELSSM ADVANCED
CMP •
CNA •
CNB •
CNDR •
CNDT •
CNE •
CNI •
CNR •
CNS •
CNT •
CONCAT •

The list continues on the next page...

953

Function block name Licensing group
STANDARD Other

CONCAT_DT •
COUNT •
CSSM ADVANCED
CanItem CANDRV
CanRecv CANDRV
CanSend CANDRV
DATA •
DATE •
DATETIME •
DDELSSM ADVANCED
DEL •
DELM •
DER •
DFIR ADVANCED
DIF •
DIV •
DSSM ADVANCED
DT2STR •
Display •
EAS •
EATMT ADVANCED
EDGE •
EKF MODEL
EMD •
EPC ADVANCED
EQ •
EVAR •
EXEC •
FFT ADVANCED
FIND •
FIWR ADVANCED
FLCU ADVANCED
FNX •
FNXY •
FOPDT •
FRID ADVANCED
From •
FromFile •
FromWorkspace •

The list continues on the next page...

954 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

GAIN •
GETPA •
GETPB •
GETPI •
GETPR •
GETPS •
GETPX •
GRADS ADVANCED
Goto •
GotoTagVisibility •
HID MODEL
HMI •
HTTP ADVANCED
HTTP2 ADVANCED
I3PM ADVANCED
IADD •
IDIV •
IM201CNT UNIPI
IM201DI UNIPI
IM203DO UNIPI
IM203PWM UNIPI
IM204CNT UNIPI
IM204DI UNIPI
IM205DO UNIPI
IM205PWM UNIPI
IM301CNT UNIPI
IM301DI UNIPI
IM301DO UNIPI
IM502AO UNIPI
IM503AI UNIPI
IM504RI UNIPI
IM506AI UNIPI
IM506AO UNIPI
IMOD •
IMUL •
INCONN •
INFO •
INHEXD •
INOCT •

The list continues on the next page...

955

Function block name Licensing group
STANDARD Other

INQUAD •
INSTD •
INTE •
INTSM •
IOASYNC •
IODRV •
IOTASK •
IPEN2 MODEL
IPEN2p MODEL
IPEN2pu MODEL
IPEN3 MODEL
IPEN3p MODEL
IPEN3pu MODEL
IRIS_MODULE UNIPI
ISSW •
ISUB •
ITOI •
ITOS •
Inport •
KDER ADVANCED
LC •
LEN •
LIN •
LLC •
LPBRK •
LPF •
LPI ADVANCED
LUA REXLANG
LUAHEXD REXLANG
LUAOCT REXLANG
LUAQUAD REXLANG
MB_DASUM •
MB_DAXPY •
MB_DCOPY •
MB_DDOT •
MB_DGEMM •
MB_DGEMV •
MB_DGER •
MB_DNRM2 •

The list continues on the next page...

956 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

MB_DROT •
MB_DSCAL •
MB_DSWAP •
MB_DTRMM •
MB_DTRMV •
MB_DTRSV •
MCP_AccelerationProfile MOTION CONTROL
MCP_CamIn MOTION CONTROL
MCP_CamTableSelect MOTION CONTROL
MCP_CombineAxes MOTION CONTROL
MCP_GearIn MOTION CONTROL
MCP_GearInPos MOTION CONTROL
MCP_GroupHalt COORDINATED MOTION
MCP_GroupInterrupt COORDINATED MOTION
MCP_GroupSetOverride COORDINATED MOTION
MCP_GroupSetPosition COORDINATED MOTION
MCP_GroupStop COORDINATED MOTION
MCP_Halt MOTION CONTROL
MCP_HaltSuperimposed MOTION CONTROL
MCP_Home MOTION CONTROL
MCP_MoveAbsolute MOTION CONTROL
MCP_MoveAdditive MOTION CONTROL
MCP_MoveCircularAbsolute COORDINATED MOTION
MCP_MoveCircularRelative COORDINATED MOTION
MCP_MoveContinuousAbsolute MOTION CONTROL
MCP_MoveContinuousRelative MOTION CONTROL
MCP_MoveDirectAbsolute COORDINATED MOTION
MCP_MoveDirectRelative COORDINATED MOTION
MCP_MoveLinearAbsolute COORDINATED MOTION
MCP_MoveLinearRelative COORDINATED MOTION
MCP_MovePath COORDINATED MOTION
MCP_MovePath_PH COORDINATED MOTION
MCP_MoveRelative MOTION CONTROL
MCP_MoveSuperimposed MOTION CONTROL
MCP_MoveVelocity MOTION CONTROL
MCP_PhasingAbsolute MOTION CONTROL
MCP_PhasingRelative MOTION CONTROL
MCP_PositionProfile MOTION CONTROL
MCP_SetCartesianTransform COORDINATED MOTION

The list continues on the next page...

957

Function block name Licensing group
STANDARD Other

MCP_SetKinTransform_Arm COORDINATED MOTION
MCP_SetKinTransform_Lin COORDINATED MOTION
MCP_SetKinTransform_Schunk COORDINATED MOTION
MCP_SetKinTransform_UR COORDINATED MOTION
MCP_SetOverride MOTION CONTROL
MCP_Stop MOTION CONTROL
MCP_TorqueControl MOTION CONTROL
MCP_VelocityProfile MOTION CONTROL
MCU •
MC_AccelerationProfile MOTION CONTROL
MC_AddAxisToGroup COORDINATED MOTION
MC_CamIn MOTION CONTROL
MC_CamOut MOTION CONTROL
MC_CombineAxes MOTION CONTROL
MC_GearIn MOTION CONTROL
MC_GearInPos MOTION CONTROL
MC_GearOut MOTION CONTROL
MC_GroupContinue COORDINATED MOTION
MC_GroupDisable COORDINATED MOTION
MC_GroupEnable COORDINATED MOTION
MC_GroupHalt COORDINATED MOTION
MC_GroupInterrupt COORDINATED MOTION
MC_GroupReadActualAcceleration COORDINATED MOTION
MC_GroupReadActualPosition COORDINATED MOTION
MC_GroupReadActualVelocity COORDINATED MOTION
MC_GroupReadError COORDINATED MOTION
MC_GroupReadStatus COORDINATED MOTION
MC_GroupReset COORDINATED MOTION
MC_GroupSetOverride COORDINATED MOTION
MC_GroupSetPosition COORDINATED MOTION
MC_GroupStop COORDINATED MOTION
MC_Halt MOTION CONTROL
MC_HaltSuperimposed MOTION CONTROL
MC_Home MOTION CONTROL
MC_MoveAbsolute MOTION CONTROL
MC_MoveAdditive MOTION CONTROL
MC_MoveCircularAbsolute COORDINATED MOTION
MC_MoveCircularRelative COORDINATED MOTION
MC_MoveContinuousAbsolute MOTION CONTROL

The list continues on the next page...

958 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

MC_MoveContinuousRelative MOTION CONTROL
MC_MoveDirectAbsolute COORDINATED MOTION
MC_MoveDirectRelative COORDINATED MOTION
MC_MoveLinearAbsolute COORDINATED MOTION
MC_MoveLinearRelative COORDINATED MOTION
MC_MovePath COORDINATED MOTION
MC_MovePath_PH COORDINATED MOTION
MC_MoveRelative MOTION CONTROL
MC_MoveSuperimposed MOTION CONTROL
MC_MoveVelocity MOTION CONTROL
MC_PhasingAbsolute MOTION CONTROL
MC_PhasingRelative MOTION CONTROL
MC_PositionProfile MOTION CONTROL
MC_Power MOTION CONTROL
MC_ReadActualPosition MOTION CONTROL
MC_ReadAxisError MOTION CONTROL
MC_ReadBoolParameter MOTION CONTROL
MC_ReadCartesianTransform COORDINATED MOTION
MC_ReadParameter MOTION CONTROL
MC_ReadStatus MOTION CONTROL
MC_Reset MOTION CONTROL
MC_SetCartesianTransform COORDINATED MOTION
MC_SetOverride MOTION CONTROL
MC_Stop MOTION CONTROL
MC_TorqueControl MOTION CONTROL
MC_UngroupAllAxes COORDINATED MOTION
MC_VelocityProfile MOTION CONTROL
MC_WriteBoolParameter MOTION CONTROL
MC_WriteParameter MOTION CONTROL
MDL •
MDLI •
MID •
MINMAX •
ML_DGEBAK MATRIX
ML_DGEBAL MATRIX
ML_DGEBRD MATRIX
ML_DGECON MATRIX
ML_DGEES MATRIX
ML_DGEEV MATRIX

The list continues on the next page...

959

Function block name Licensing group
STANDARD Other

ML_DGEHRD MATRIX
ML_DGELQF MATRIX
ML_DGELSD MATRIX
ML_DGEQRF MATRIX
ML_DGESDD MATRIX
ML_DLACPY •
ML_DLANGE •
ML_DLASET •
ML_DTRSYL MATRIX
MODULE •
MOSS ADVANCED
MP •
MUL •
MVD •
MX_AT •
MX_ATSET •
MX_CNADD •
MX_CNMUL •
MX_CTODPA •
MX_DIM •
MX_DIMSET •
MX_DSAGET •
MX_DSAREF •
MX_DSASET •
MX_DTRNSP •
MX_DTRNSQ •
MX_FILL •
MX_FNX •
MX_MAT •
MX_RAND •
MX_REFCOPY •
MX_SLFS •
MX_VEC •
MX_WRITE •
MqttPublish MQTT
MqttSubscribe MQTT
NANINF •
NOT •
NSCL •

The list continues on the next page...

960 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

NSSM MODEL
NUREACT MODEL
OPCUA •
OR •
ORHEXD •
OROCT •
ORQUAD •
OSCALL •
OSD •
OUTCONN •
OUTHEXD •
OUTOCT •
OUTQUAD •
OUTRHEXD ADVANCED
OUTROCT ADVANCED
OUTRQUAD ADVANCED
OUTRSTD ADVANCED
OUTSTD •
OpcUaReadValue ADVANCED
OpcUaServerValue ADVANCED
OpcUaWriteValue ADVANCED
Outport •
PARA •
PARB •
PARE •
PARI •
PARR •
PARS •
PARX •
PCI ADVANCED
PIDAT AUTOTUNING
PIDE ADVANCED
PIDGS ADVANCED
PIDMA AUTOTUNING
PIDMAW AUTOTUNING
PIDMAX AUTOTUNING
PIDU •
PIDUI ADVANCED
PJROCT •

The list continues on the next page...

961

Function block name Licensing group
STANDARD Other

PJSEXOCT •
PJSOCT •
POL •
POUT •
PRBS •
PRGM •
PROJECT •
PSD ADVANCED
PSMPC ADVANCED
PWM •
PYTHON REXLANG
QCEDPOPT ADVANCED
QCOPT MODEL
QFC •
QFD •
QP_MPC2QP ADVANCED
QP_OASES ADVANCED
QP_UPDATE ADVANCED
QTASK •
RAWCOPY ADVANCED
RDC ADVANCED
RDFT ADVANCED
REC •
REGEXP ADVANCED
REL •
REPLACE •
REXLANG REXLANG
RLIM •
RLY •
RM_AxesGroup COORDINATED MOTION
RM_Axis MOTION CONTROL
RM_AxisIn MOTION CONTROL
RM_AxisOut MOTION CONTROL
RM_AxisSpline MOTION CONTROL
RM_DirectTorque MOTION CONTROL
RM_DirectVelocity MOTION CONTROL
RM_DriveMode MOTION CONTROL
RM_Feed COORDINATED MOTION
RM_Gcode COORDINATED MOTION

The list continues on the next page...

962 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

RM_GroupTrack COORDINATED MOTION
RM_HomeOffset MOTION CONTROL
RM_Track MOTION CONTROL
RS •
RTOI •
RTOS •
RTOV •
S1OF2 ADVANCED
SAI ADVANCED
SAT •
SC2FA AUTOTUNING
SCU •
SCUV •
SEL •
SELHEXD •
SELOCT •
SELQUAD •
SELSOCT •
SELU •
SETPA •
SETPB •
SETPI •
SETPR •
SETPS •
SETPX •
SG •
SGEN MODEL
SGENTX MODEL
SGI •
SGSLP ADVANCED
SHIFTOCT •
SHLD •
SILO •
SILOS •
SINT •
SLEEP •
SMHCC ADVANCED
SMHCCA AUTOTUNING
SMTP ADVANCED

The list continues on the next page...

963

Function block name Licensing group
STANDARD Other

SOLNP MATRIX
SOPDT •
SPIKE ADVANCED
SPLIT_DT •
SQR •
SQRT •
SR •
SRTF ADVANCED
SSW •
STATELOAD ADVANCED
STATESAVE ADVANCED
STEAM •
STMGEN MODEL
STOR •
STR2DT •
STURB MODEL
SUB •
SWR •
SWU •
SWVMR •
SYSEVENT •
SYSLOG •
SubSystem •
T2STR •
TASK •
TC •
TIME •
TIMER •
TIODRV •
TRIM •
TRND •
TRNDV •
TS •
TS2NS •
TSE •
TZ2UTC •
ToFile •
ToWorkspace •
UART •

The list continues on the next page...

964 APPENDIX B. LICENSING OF INDIVIDUAL FUNCTION BLOCKS

Function block name Licensing group
STANDARD Other

UNIPI_CHANNEL UNIPI
UNIPI_PRODUCT UNIPI
UNIPI_S1AI UNIPI
UNIPI_S1AOR UNIPI
UNIPI_S1CNT UNIPI
UNIPI_S1DI UNIPI
UNIPI_S1DO UNIPI
UNIPI_S1LED UNIPI
UNIPI_S1PWM UNIPI
UNIPI_S2AI UNIPI
UNIPI_S2AO UNIPI
UNIPI_S2CNT UNIPI
UNIPI_S2DI UNIPI
UNIPI_S2RO UNIPI
UTC2TZ •
UTOI •
VDEL •
VIN •
VOUT •
VTOR •
WASM REXLANG
WEEK •
WSCH •
WWW •
ZV4IS ADVANCED

Appendix C

Error codes of the REXYGEN

system

Success codes

0 Success
-1 False
-2 First value is greater
-3 Second value is greater
-4 Parameter changed
-5 Success, no server transaction done
-6 Value too big
-7 Value too small
-8 Operation in progress
-9 REXYGEN I/O driver warning
-10 No more archive items
-11 Object is array
-12 Closed
-13 End of �le
-14 Parameter may be incorrect

General failure codes

-100 Not enough memory
-101 Assertion failure
-102 Timeout
-103 General input variable error
-104 Invalid con�guration version
-105 Not implemented
-106 Invalid parameter
-107 COM/OLE error
-108 REXYGEN Module error - some driver or block is not installed or licensed

965

966 APPENDIX C. ERROR CODES OF THE REXYGEN SYSTEM

-109 REXYGEN I/O driver error
-110 Task creation error
-111 Operating system call error
-112 Invalid operating system version
-113 Access denied by operating system
-114 Block period has not been set
-115 Initialization failed
-116 REXYGEN con�guration is being changed
-117 Invalid target device
-118 Access denied by REXYGEN security mechanism
-119 Block or object is not installed or licensed
-120 Checksum mismatch
-121 Object already exists
-122 Object doesn't exist
-123 System user doesn't belong to any REXYGEN group
-124 Password mismatch
-125 Bad user name or password
-126 Target device is not compatible
-127 Resource is locked by another module and can not be used
-128 String is not valid in UTF8 codepage
-129 Start of executive not allowed
-130 Some resource count reached limit
-131 Text value has been truncated
-132 Unsu�cient bu�er for requested operation
-133 Block execution halted due to runtime error

Class registration, symbol and validation error codes

-200 Class not registered
-201 Class already registered
-202 Not enough space for registry
-203 Registry index out of range
-204 Invalid context
-205 Invalid identi�er
-206 Invalid input �ag
-207 Invalid input mask
-208 Invalid object type
-209 Invalid variable type
-210 Invalid object workspace
-211 Symbol not found
-212 Symbol is ambiguous
-213 Range check error
-214 Not enough search space
-215 Write to read-only variable denied
-216 Data not ready

967

-217 Value out of range
-218 Input connection error
-219 Loop of type UNKNOWN detected
-220 REXLANG compilation error

Stream and �le system codes

-300 Stream over�ow
-301 Stream under�ow
-302 Stream send error
-303 Stream receive error
-304 Stream download error
-305 Stream upload error
-306 File creation error
-307 File open error
-308 File close error
-309 File read error
-310 File write error
-311 Invalid format
-312 Unable to compress �les
-313 Unable to extract �les

Communication errors

-400 Network communication failure
-401 Communication already initialized
-402 Communication �nished successfully
-403 Communicaton closed unexpectedly
-404 Unknown command
-405 Unexpected command
-406 Communicaton closed unexpectedly, probably 'Too many clients'
-407 Communication timeout
-408 Target device not found
-409 Link failed
-410 REXYGEN con�guration has been changed
-411 REXYGEN executive is being terminated
-412 REXYGEN executive was terminated
-413 Connection refused
-414 Target device is unreachable
-415 Unable to resolve target in DNS
-416 Error reading from socket
-417 Error writing to socket
-418 Invalid operation on socket
-419 Reserved for socket 1
-420 Reserved for socket 2
-421 Reserved for socket 3

968 APPENDIX C. ERROR CODES OF THE REXYGEN SYSTEM

-422 Reserved for socket 4
-423 Reserved for socket 5
-424 Unable to create SSL context
-425 Unable to load certi�cate
-426 SSL handshake error
-427 Certi�cate veri�cation error
-428 Reserved for SSL 2
-429 Reserved for SSL 3
-430 Reserved for SSL 4
-431 Reserved for SSL 5
-432 Relay rejected
-433 STARTTLS rejected
-434 Authentication method rejected
-435 Authentication failed
-436 Send operation failed
-437 Receive operation failed
-438 Communication command failed
-439 Receiving bu�er too small
-440 Sending bu�er too small
-441 Invalid header
-442 HTTP server responded with error
-443 HTTP server responded with redirect
-444 Operation would blok
-445 Invalid operation
-446 Communication closed
-447 Connection cancelled

Numerical error codes

-500 General numeric error
-501 Division by zero
-502 Numeric stack over�ow
-503 Invalid numeric instruction
-504 Invalid numeric address
-505 Invalid numeric type
-506 Not initialized numeric value
-507 Numeric argument over�ow/under�ow
-508 Numeric range check error
-509 Invalid subvector/submatrix range
-510 Numeric value too close to zero

Archive system codes

-600 Archive seek under�ow
-601 Archive semaphore fatal error
-602 Archive cleared

969

-603 Archive reconstructed from saved vars
-604 Archive reconstructed from normal vars
-605 Archive check summ error
-606 Archive integrity error
-607 Archive sizes changed
-608 Maximum size of disk archive �le exceeded

Motion control codes

-700 MC - Invalid parameter
-701 MC - Out of range
-702 MC - Position not reachable
-703 MC - Invalid axis state
-704 MC - Torque limit exceeded
-705 MC - Time limit exceeded
-706 MC - Distance limit exceeded
-707 MC - Step change in position or velocity
-708 MC - Base axis error or invalid state
-709 MC - Stopped by drive FAULT
-710 MC - Stopped by POSITION limit
-711 MC - Stopped by VELOCITY limit
-712 MC - Stopped by ACCELERATION limit
-713 MC - Stopped by LIMITSWITCH
-714 MC - Stopped by position LAG
-715 MC - Axis disabled during motion
-716 MC - Transition failed
-717 MC - Servodrive failed or disabled
-718 MC - Not used
-719 MC - Not used
-720 MC - General failure
-721 MC - Not implemented
-722 MC - Command is aborted
-723 MC - Con�ict in block and axis periods
-724 MC - Busy, waiting for activation

Licensing codes

-800 Unable to identify Ethernet interface
-801 Unable to identify CPU
-802 Unable to identify HDD
-803 Invalid device code
-804 Invalid licensing key
-805 Not licensed

970 APPENDIX C. ERROR CODES OF THE REXYGEN SYSTEM

Webserver-related errors

-900 Web request too large
-901 Web reply too large
-902 Invalid format
-903 Invalid parameter

RexVision-related errors

-1000 . . . Result is not evaluated
-1001 . . . The searched object/pattern can not be found
-1002 . . . The search criterion returned more corresponding objects

FMI standard related errors

-1100 . . . FMI Context allocation failure
-1101 . . . Invalid FMU version
-1102 . . . FMI XML parsing error
-1103 . . . FMI Model Exchange kind required
-1104 . . . FMI Co-Simulation kind required
-1105 . . . Could not create FMU loading mechanism
-1106 . . . Instantiation of FMU failed
-1107 . . . Termination of FMU failed
-1108 . . . FMU reset failed
-1109 . . . FMU Experiment setup failed
-1110 . . . Entering FMU initialization mode failed
-1111 . . . Exiting FMU initialization mode failed
-1112 . . . Error getting FMU variable list
-1113 . . . Error getting FMU real variable
-1114 . . . Error setting FMU real variable
-1115 . . . Error getting FMU integer variable
-1116 . . . Error setting FMU integer variable
-1117 . . . Error getting FMU boolean variable
-1118 . . . Error setting FMU boolean variable
-1119 . . . Doing a FMU simulation step failed
-1120 . . . FMU has too many inputs
-1121 . . . FMU has too many ouputs
-1122 . . . FMU has too many parameters

Appendix D

Special signals of the REXYGEN

system

There is a list of Special signals which can be read within REXYGEN. For details on how
to use it have a look at example 0001_Special_Signals.

971

972 APPENDIX D. SPECIAL SIGNALS OF THE REXYGEN SYSTEM

Parameter Desc Data Type Possibilities
perf Performance counter fre-

quency
LARGE EXEC

period Level, task, or block period DOUBLE LEVEL, TASK, SEQ, IODRV,
QTASK, BLOCK, ARCHIVE

nblocks Task or sequence number of
blocks

SHORT TASK, SEQ, QTASK

stack Task stack size LONG TASK, IODRV, QTASK
exfac Task execution factor DWORD TASK, IODRV, QTASK
start Task start tick DWORD TASK
stop Task stop tick DWORD TASK
ntasks Exec or level number of tasks SHORT LEVEL, IODRV, EXEC
ntick Number of level ticks DWORD LEVEL
pri Level priority SHORT LEVEL, IODRV, QTASK
tick Executive timer tick LARGE EXEC

nlevels Number of executive levels SHORT EXEC
nmodules Number of executive modules SHORT EXEC
ndrivers Number of executive drivers SHORT EXEC
narchives Number of executive archives SHORT EXEC
nqtasks Number of executive quick-

tasks
SHORT EXEC

tcomp Time when executive was
compiled [ns from epoch]

LARGE EXEC

tdnld Executive download time [ns
from epoch]

LARGE EXEC

bufsize (Archive) bu�er size LONG ARCHIVE
timesize (Archive) index-bu�er size LONG ARCHIVE
daysize (Archive) day-bu�er(�le) size LARGE ARCHIVE
errblk Index of block with exec error SHORT TASK, SEQ, QTASK
errno Exec error code SHORT TASK, SEQ, QTASK, IODRV
status (Driver) status code LONG IODRV
over (Qtask) number of overlap/-

colisions
LARGE QTASK, TASK, IODRV

excnt Count of task's starts LARGE LEVEL, TASK, SEQ, IODRV,
QTASK

tlast Number of last execution
[performance-counter-ticks]

LARGE LEVEL, TASK, SEQ, IODRV,
QTASK

tmin Minimum number of exe-
cution [performance-counter-
ticks]

LARGE LEVEL, TASK, SEQ, IODRV,
QTASK

tmax Maximum number of exe-
cution [performance-counter-
ticks]

LARGE LEVEL, TASK, SEQ, IODRV,
QTASK

tsum Execution sum [ns or ticks] LARGE LEVEL, TASK, SEQ, IODRV,
QTASK

tavg Execution ticks average
(tsum/excnt)[performance-
counter-ticks]

LARGE LEVEL, TASK, SEQ, IODRV,
QTASK

dstart Start tick delay [performance-
counter-ticks]

LARGE IODRV, TASK

dstop Stop tick delay [performance-
counter-ticks]

LARGE IODRV, TASK

tover Time over�ow [performance-
counter-ticks]

LARGE TASK

dmstart Maximum start tick delay
[performance-counter-ticks]

LARGE IODRV, TASK

dmstop Maximum stop tick delay
[performance-counter-ticks]

LARGE IODRV, TASK

tmover Maximum time over�ow
[performance-counter-ticks]

LARGE TASK

tbegin (Executive or archive) start
time [ns from epoch]

LARGE EXEC, ARCHIVE

tend (Executive) stop or (archive)
last time [ns from epoch]

LARGE EXEC, ARCHIVE

tact Current time [ns from epoch] LARGE EXEC
trun (Executive) running time

(tact-tbegin)[ns]
LARGE EXEC

mem Current memory usage LARGE EXEC
mmem Maximum memory usage LARGE EXEC
bufuse (Archive) bu�er current usage LONG ARCHIVE
timeuse (Archive) index-bu�er usage LONG ARCHIVE
diskuse (Archive) day-bu�er(�le) us-

age
LARGE ARCHIVE

hostname Host name - from gethostby-
name()

LARGE SPECIAL

cpuid CPU ID SHORT SPECIAL
osid OS ID SHORT SPECIAL
platid Platform ID SHORT SPECIAL

genplatid Generic Platform ID SHORT SPECIAL
cpuname CPU text type STRING SPECIAL
osname OS name STRING SPECIAL
cpuinfo Detailed info about CPU STRING SPECIAL
osinfo Detailed info about OS STRING SPECIAL
platinfo Detailed info about Platform STRING SPECIAL
platname Platform text identi�er STRING SPECIAL

genplatname Generic Platform text identi-
�er

STRING SPECIAL

vermajor Major version LONG SPECIAL
verminor Minor version LONG SPECIAL
verrel Release version LONG SPECIAL
verrev Revision LONG SPECIAL
veryear Release Year LONG SPECIAL
vermonth Release Month LONG SPECIAL
verday Release Day LONG SPECIAL

simulation Simulation mode enabled BOOL SPECIAL
simstartsteps Simulation start steps LONG SPECIAL
simmintick Simulation min tick DWORD SPECIAL
simmaxtick Simulation max tick DWORD SPECIAL

Table D.1: Special signals

Bibliography

[1] Unipi Technology s.r.o. Unipi technology. http://www.unipi.technology, 2024. →.

[2] OPC Foundation. Data Access Custom Interface Speci�cation Version 3.00. OPC
Foundation, P.O. Box 140524, Austin, Texas, USA, 2003.

[3] REX Controls s.r.o.. OPC UA server pro systém REXYGEN � Referen£ní manuál,
2019. →.

[4] REX Controls s.r.o.. REXYGEN Studio � User manual, 2024. →.

[5] Schlegel Milo². Fuzzy controller: a tutorial. www.rexcontrols.com, pages 1�10, 2002.

[6] M. Goubej. Kalman �lter based observer design for real-time frequency identi�cation
in motion control systems. https://ieeexplore.ieee.org/document/7169979, 2015.

[7] Milo² Schlegel, Pavel Balda, and Milan �t¥tina. Robust PID autotuner: method of
moments. Automatizace, 46(4):242�246, 2003.

[8] M. Schlegel and P. Balda. Diskretizace spojitého lineárního systému (in Czech).
Automatizace, 11, 1987.

[9] J. Königsmarková and M. Schlegel. Identi�cation of n-link inverted pendulum on a
cart. https://ieeexplore.ieee.org/document/7976186, 2017.

[10] BLAS 3.8.0. � netlib.org. Basic Linear Algebra Subprograms Version 3.8.0.
http://www.netlib.org/blas/, 2017.

[11] LAPACK 3.8.0 � netlib.org. Linear Algebra PACKage Version 3.8.0.
http://www.netlib.org/lapack/explore-html/index.html, 2018.

[12] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-�ve years later. SIAM Review, 45(1):3�49, 2003.

[13] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, England.,
2002.

[14] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES: A para-
metric active-set algorithm for quadratic programming. Mathematical Programming

Computation, 6(4):327�363, 2014.

973

http://www.unipi.technology
https://www.rexygen.com/doc/CZECH/MANUALS/RexOpcUa/RexOpcUa_CZ.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/RexygenStudio/RexygenStudio_ENG.html

974 BIBLIOGRAPHY

[15] H.J. Ferreau. qpOASES User's Manual, Version 3.2 (April 2017), 2017.

[16] Y. Ye. Interior algorithms for linear quadratic and linearly constrained nonlinear

programming. Ph.d. dissertation, Dept. Elect. Eng. Syst., Stanford Univ., Stanford,
CA, 1987.

[17] Y. Ye. User's Manual for Matlab Linear Programming Codes, 1989. →.

[18] LabLua PUC-Rio. Lua 5.4 Reference Manual. https://www.lua.org/manual/5.4/,
2020.

[19] Python Software Foundation. Python documentation. https://docs.python.org/3/,
2019.

[20] Martin Reinecke. PocketFFT. https://gitlab.mpcdf.mpg.de/mtr/pocket�t, 2019.

[21] Paul N. Swarztrauber. FFTPACK Version 4 � netlib.org.
https://www.netlib.org/�tpack, 1985.

[22] Paul N. Swarztrauber. Vectorizing the �ts**this chapter was written while the
author was visiting the scienti�c computing division at the national bureau of stan-
dards. In GARRY RODRIGUE, editor, Parallel Computations, pages 51�83. Aca-
demic Press, 1982.

[23] P. Welch. The use of fast fourier transform for the estimation of power spectra: A
method based on time averaging over short, modi�ed periodograms. IEEE Trans-

actions on Audio and Electroacoustics, 15(2):70�73, 1967.

[24] Wikipedia. Welch's method. https://en.wikipedia.org/wiki/Welch's_method.

[25] REX Controls s.r.o.. MQTTDrv driver of REXYGEN � User guide, 2020. →.

[26] OASIS. MQTT Version 3.1.1. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, 2014.

[27] REX Controls s.r.o.. OpcUaDrv driver of REXYGEN � User guide, 2024. →.

[28] REX Controls s.r.o.. REXYGEN Licensing � User guide, 2024. →.

https://web.stanford.edu/~yyye/LYtextbook5thMatlab/manual.pdf
https://www.rexygen.com/doc/ENGLISH/MANUALS/MQTTDrv/MQTTDrv_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/OpcUaDrv/OpcUaDrv_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/Rexygen_Licensing/Rexygen_Licensing_ENG.html

Index

REXYGEN Compiler

compiler, 43
REXYGEN Compiler compiler, 35

ABS, 18, 26, 96, 97, 951
ABSROT, 26, 139, 951
ACD, 335, 338, 951
ACLEAR, 335, 340, 951
ADD, 18, 26, 96, 98, 99, 951
ADDHEXD, 26, 99, 951
ADDOCT, 98, 99, 135, 951
ADDQUAD, 99, 951
AFLUSH, 335, 341, 951
ALARMS, 29, 342, 344, 345, 951
ALB, 29�31, 335, 342, 348, 951
ALBI, 29�31, 335, 342, 348, 951
ALM, 29�31, 335, 344, 951
ALMI, 29�31, 335, 344, 951
ALN, 29�31, 335, 345, 348, 951
ALNI, 29�31, 335, 345, 348, 951
AND, 18, 26, 295�297, 951
ANDHEXD, 26, 296, 297, 951
ANDOCT, 296, 297, 951
ANDQUAD, 296, 297, 951
ANLS, 18, 191, 192, 952
application

of the REXYGEN System, 35
ARC, 32, 336, 341, 952
architecture

open, 44
archiv, 335
archive

backed-up memory, 336
con�guration, 32
disk, 336
RAM memory, 335

ARLY, 26, 207, 952
ARS, 335, 348, 952
ASW, 18, 26, 138, 141, 952
ATMT, 18, 26, 295, 298, 305, 381, 396, 402,

952
AVG, 18, 26, 138, 143, 952
AVS, 26, 144, 952
AVSI, 26, 145, 952

band
frequency transmission, 148

bandwidth, 161
BDHEXD, 26, 300, 305, 952
BDOCT, 18, 295, 300, 305, 952
Bessel �lter, 161
BINS, 18, 191, 194, 196, 198, 952
BIS, 18, 191, 194, 196, 200, 952
BISR, 18, 191, 198, 952
BITOP, 18, 26, 136, 295, 301, 952
block

description, 23
description format, 23
execution, 50
inputs, 23
outputs, 23
parameters, 23
symbol, 23

BMHEXD, 26, 302, 305, 952
BMOCT, 18, 295, 302, 305, 952
BPF, 18, 26, 138, 148, 952
BSFIFO, 20, 629, 630, 952
BSGET, 20, 629, 632, 634, 636, 952
BSGETOCT, 632, 636, 952
BSGETOCTV, 634, 637, 952
BSGETV, 20, 629, 634, 637, 952
BSSET, 20, 629, 632, 636, 952

975

976 INDEX

BSSETOCT, 632, 636, 952
BSSETOCTV, 634, 637, 952
BSSETV, 20, 629, 634, 637, 952
Butterworth �lter, 161

CanItem, 22, 893, 894, 896, 953
CanRecv, 22, 893, 894, 896, 953
CanSend, 22, 893, 898, 953
CDELSSM, 19, 26, 410, 411, 952
CMP, 26, 149, 952
CNA, 26, 379, 395, 456, 952
CNB, 26, 100, 952
CNDR, 26, 150, 952
CNDT, 952
CNE, 101, 952
CNI, 26, 102, 952
CNR, 26, 103, 952
CNS, 19, 26, 355, 356, 952
CNT, 952
coe�cient

relative damping, 148, 161
compatibility

REXYGEN and Simulink, 43
compiler

REXYGEN Compiler, 35, 43
CONCAT, 19, 26, 355, 357, 952
CONCAT_DT, 953
con�guration

REXYGEN System, 35
archives, 35
computation task, 35
input-output drivers, 35
modules, 35

COUNT, 18, 24, 26, 295, 303, 953
CSSM, 19, 26, 410, 414, 953

DATA, 34, 953
data types, 23
DATE, 19, 321�323, 953
DATETIME, 19, 321�323, 328, 953
DDELSSM, 19, 26, 410, 417, 953
DEL, 18, 25, 26, 138, 152, 953
DELM, 26, 153, 953
denominator, 107

DER, 26, 154, 953
DFIR, 19, 26, 410, 419, 953
DIF, 26, 104, 953
Display, 67, 953
DIV, 18, 25, 26, 96, 105, 126, 953
driver

REXYGEN System, 40
.rio �le extension, 40
con�guration data, 40
user manual, 42

DSSM, 19, 26, 410, 420, 953
DT2STR, 953

EAS, 26, 106, 953
EATMT, 26, 305, 953
EDGE, 26, 178, 308, 953
EKF, 19, 410, 423, 437, 953
EMD, 26, 107, 953
EPC, 20, 46, 575, 576, 953
EQ, 26, 309, 953
error

fatal, 48
EVAR, 26, 156, 953
EXEC, 17, 28, 32, 34, 35, 37, 40, 42, 44, 48,

49, 59, 165, 326, 953

FFT, 20, 629, 638, 953
�lter

Bessel, 161
Butterworth, 161
nonlinear, 182

�ltering
digital, 48

FIND, 19, 26, 355, 358, 953
�rst order system, 446
FIWR, 26, 208, 953
FLCU, 18, 26, 206, 213, 953
FMUCS, 19, 410
FMUINFO, 19, 410
FNX, 18, 26, 96, 108, 953
FNXY, 18, 26, 96, 111, 953
FOPDT, 446
FOPDT, 19, 26, 236, 243, 410, 426, 953
frequency transmission band, 148

INDEX 977

FRID, 26, 215, 953
From, 71, 75, 83, 953
FromFile, 69, 953
FromWorkspace, 70, 953
function

single variable, 108

GAIN, 26, 113, 954
generator

time function, 255
GETPA, 19, 26, 72, 86, 377, 378, 382, 395,

954
GETPB, 381, 383, 384, 954
GETPI, 381, 383, 384, 595, 596, 954
GETPR, 26, 72, 381, 383, 384, 402, 954
GETPS, 19, 26, 72, 377, 383, 384, 954
GETPX, 26, 382�384, 954
Goto, 71, 75, 83, 896, 898, 954
GotoTagVisibility, 71, 83, 954
GRADS, 114, 954

HID, 954
HMI, 17, 28, 37, 954
HTTP, 579, 954
HTTP2, 20, 575, 579, 581, 954

I3PM, 219, 954
IADD, 18, 26, 96, 116, 954
IDIV, 18, 26, 96, 118, 954
IM201CNT, 909, 954
IM201DI, 910, 954
IM203DO, 911, 954
IM203PWM, 912, 954
IM204CNT, 913, 954
IM204DI, 915, 954
IM205DO, 916, 954
IM205PWM, 917, 954
IM301CNT, 919, 954
IM301DI, 920, 954
IM301DO, 921, 954
IM502AO, 922, 954
IM503AI, 923, 954
IM504RI, 925, 954
IM506AI, 927, 954
IM506AO, 929, 954

IMOD, 18, 26, 96, 119, 954
IMUL, 18, 26, 96, 120, 954
INCONN, 72, 379, 382, 383, 391, 954
INFO, 39, 954
INHEXD, 73, 954
INOCT, 73, 77, 954
Inport, 85, 89, 382, 397, 754, 955
INQUAD, 73, 955
INSTD, 73, 75, 77, 79, 955
INTE, 26, 157, 181, 955
INTSM, 26, 136, 310, 955
IOASYNC, 26, 77, 955
IODRV, 40, 75, 83, 955
IOTASK, 42, 50, 61, 378, 382, 394, 397, 411,

414, 955
IPEN2, 427, 430, 955
IPEN2p, 955
IPEN2pu, 427, 430, 955
IPEN3, 427, 430, 955
IPEN3p, 955
IPEN3pu, 427, 430, 955
IRIS_MODULE, 930, 955
ISSW, 26, 311, 955
ISUB, 26, 122, 955
ITOI, 26, 312, 955
ITOS, 19, 26, 355, 359, 955

KDER, 26, 159, 641, 955

LC, 26, 221, 955
least squares method, 154
LEN, 19, 26, 355, 360, 955
LIN, 18, 26, 96, 124, 955
LLC, 26, 222, 446, 955
LPBRK, 26, 43, 141, 955
LPF, 26, 161, 955
LPI, 26, 223, 955
LSM, 154
LUA, 618, 955
LUAHEXD, 618, 955
LUAOCT, 618, 955
LUAQUAD, 618, 955

MB_DASUM, 458, 955
MB_DAXPY, 460, 955

978 INDEX

MB_DCOPY, 462, 955
MB_DDOT, 464, 955
MB_DGEMM, 20, 455, 466, 955
MB_DGEMV, 468, 955
MB_DGER, 20, 455, 470, 955
MB_DNRM2, 472, 511, 955
MB_DROT, 474, 956
MB_DSCAL, 476, 956
MB_DSWAP, 478, 956
MB_DTRMM, 20, 455, 480, 956
MB_DTRMV, 482, 956
MB_DTRSV, 484, 956
MC_AccelerationProfile, 21, 658, 686, 718,

719, 738, 739, 957
MC_AddAxisToGroup, 21, 803, 832, 957
MC_CamIn, 21, 762, 766, 777, 786, 796, 799,

957
MC_CamOut, 21, 762, 777, 781, 957
MC_CombineAxes, 21, 761, 783, 957
MC_GearIn, 21, 761, 786, 789, 794, 796, 799,

957
MC_GearInPos, 21, 762, 789, 957
MC_GearOut, 21, 761, 794, 957
MC_GroupContinue, 833, 841, 957
MC_GroupDisable, 21, 803, 834, 957
MC_GroupEnable, 21, 803, 835, 957
MC_GroupHalt, 21, 803, 836, 957
MC_GroupInterrupt, 833, 841, 957
MC_GroupReadActualAcceleration, 842, 957
MC_GroupReadActualPosition, 22, 803, 843,

957
MC_GroupReadActualVelocity, 22, 803, 844,

957
MC_GroupReadError, 22, 803, 845, 957
MC_GroupReadStatus, 22, 803, 846, 957
MC_GroupReset, 847, 957
MC_GroupSetOverride, 848, 957
MC_GroupSetPosition, 849, 957
MC_GroupStop, 851, 957
MC_Halt, 21, 658, 690, 957
MC_HaltSuperimposed, 691, 957
MC_Home, 21, 658, 692, 723, 957
MC_MoveAbsolute, 21, 658, 694, 701, 731,

758, 790, 957

MC_MoveAdditive, 694, 698, 957
MC_MoveCircularAbsolute, 21, 803, 854,

957
MC_MoveCircularRelative, 21, 803, 858,

957
MC_MoveContinuousAbsolute, 701, 957
MC_MoveContinuousRelative, 704, 958
MC_MoveDirectAbsolute, 21, 803, 862, 958
MC_MoveDirectRelative, 21, 803, 865, 958
MC_MoveLinearAbsolute, 21, 802, 868, 958
MC_MoveLinearRelative, 21, 802, 872, 958
MC_MovePath, 22, 803, 876, 958
MC_MovePath_PH, 878, 958
MC_MoveRelative, 21, 658, 694, 704, 708,

711, 958
MC_MoveSuperimposed, 694, 711, 796, 799,

958
MC_MoveVelocity, 21, 658, 714, 758, 958
MC_PhasingAbsolute, 21, 761, 796, 958
MC_PhasingRelative, 21, 761, 799, 958
MC_PositionProfile, 21, 658, 686, 687, 718,

738, 739, 758, 765, 958
MC_Power, 21, 658, 722, 958
MC_ReadActualPosition, 21, 658, 723, 958
MC_ReadAxisError, 21, 658, 724, 958
MC_ReadBoolParameter, 725, 958
MC_ReadCartesianTransform, 22, 803, 880,

958
MC_ReadParameter, 21, 658, 726, 958
MC_ReadStatus, 728, 958
MC_Reset, 21, 658, 730, 847, 958
MC_SetCartesianTransform, 22, 803, 881,

958
MC_SetOverride, 731, 958
MC_SetPosition, 692
MC_Stop, 21, 658, 690, 733, 958
MC_TorqueControl, 735, 958
MC_UngroupAllAxes, 883, 958
MC_VelocityProfile, 21, 658, 686, 687, 718,

719, 738, 958
MC_WriteBoolParameter, 742, 958
MC_WriteParameter, 21, 658, 743, 958
MCP_AccelerationProfile, 659, 686, 956
MCP_CamIn, 763, 777, 956

INDEX 979

MCP_CamTableSelect, 21, 762, 765, 777, 778,
956

MCP_CombineAxes, 767, 783, 956
MCP_GearIn, 769, 786, 956
MCP_GearInPos, 771, 789, 956
MCP_GroupHalt, 805, 956
MCP_GroupInterrupt, 806, 841, 956
MCP_GroupSetOverride, 807, 956
MCP_GroupSetPosition, 808, 849, 956
MCP_GroupStop, 809, 956
MCP_Halt, 661, 690, 956
MCP_HaltSuperimposed, 662, 691, 956
MCP_Home, 663, 692, 956
MCP_MoveAbsolute, 665, 694, 956
MCP_MoveAdditive, 667, 698, 956
MCP_MoveCircularAbsolute, 810, 956
MCP_MoveCircularRelative, 812, 956
MCP_MoveContinuousAbsolute, 669, 701, 956
MCP_MoveContinuousRelative, 671, 704, 956
MCP_MoveDirectAbsolute, 814, 956
MCP_MoveDirectRelative, 816, 956
MCP_MoveLinearAbsolute, 818, 956
MCP_MoveLinearRelative, 820, 956
MCP_MovePath, 822, 956
MCP_MovePath_PH, 824, 956
MCP_MoveRelative, 673, 708, 956
MCP_MoveSuperimposed, 675, 711, 956
MCP_MoveVelocity, 676, 714, 956
MCP_PhasingAbsolute, 773, 796, 956
MCP_PhasingRelative, 775, 799, 956
MCP_PositionProfile, 678, 718, 956
MCP_SetCartesianTransform, 826, 956
MCP_SetKinTransform_Arm, 828, 957
MCP_SetKinTransform_Lin, 957
MCP_SetKinTransform_Schunk, 957
MCP_SetKinTransform_UR, 830, 957
MCP_SetOverride, 680, 731, 957
MCP_Stop, 681, 733, 957
MCP_TorqueControl, 682, 735, 957
MCP_VelocityProfile, 684, 738, 957
MCU, 26, 225, 292, 957
MDL, 19, 26, 410, 433, 434, 958
MDLI, 19, 26, 410, 434, 958
MID, 19, 26, 355, 361, 958

MINMAX, 26, 163, 958
ML_DGEBAK, 486, 958
ML_DGEBAL, 488, 958
ML_DGEBRD, 20, 455, 490, 958
ML_DGECON, 492, 958
ML_DGEES, 20, 455, 495, 958
ML_DGEEV, 20, 455, 497, 958
ML_DGEHRD, 499, 959
ML_DGELQF, 501, 959
ML_DGELSD, 503, 959
ML_DGEQRF, 20, 455, 505, 959
ML_DGESDD, 20, 455, 507, 959
ML_DLACPY, 509, 959
ML_DLANGE, 472, 511, 959
ML_DLASET, 513, 959
ML_DTRSYL, 515, 959
model

FOPDT, 446
MODULE, 40, 44, 959
module, 44

extension, 40
MOSS, 20, 629, 640, 959
MP, 18, 191, 200, 342, 345, 959
MqttPublish, 21, 651, 652, 959
MqttSubscribe, 21, 651, 654, 959
MUL, 18, 26, 96, 125, 959
MVD, 19, 26, 410, 435, 959
MX_AT, 517, 959
MX_ATSET, 518, 959
MX_CNADD, 519, 959
MX_CNMUL, 520, 959
MX_CTODPA, 521, 959
MX_DIM, 523, 959
MX_DIMSET, 524, 959
MX_DSAGET, 526, 959
MX_DSAREF, 528, 959
MX_DSASET, 530, 959
MX_DTRNSP, 20, 455, 532, 959
MX_DTRNSQ, 534, 959
MX_FILL, 20, 455, 536, 959
MX_FNX, 537, 959
MX_MAT, 20, 379, 395, 455, 539, 557, 567,

959
MX_RAND, 20, 455, 540, 959

980 INDEX

MX_REFCOPY, 542, 959
MX_SLFS, 543, 959
MX_VEC, 20, 455, 546, 959
MX_WRITE, 547, 959

NANINF, 26, 126, 959
NOT, 18, 26, 295, 313, 959
NSCL, 26, 164, 959
NSSM, 424, 436, 960
NUREACT, 439, 960

OPCUA, 45, 960
OpcUaReadValue, 22, 899, 900, 960
OpcUaServerValue, 22, 899, 902, 960
OpcUaWriteValue, 22, 899, 904, 960
operation

binary, 130
OR, 18, 26, 295, 314, 315, 960
order

driver execution, 40
driver initialization, 40
module initialization, 44
of task execution, 59
of task initialization, 59

ORHEXD, 26, 314, 315, 960
OROCT, 314, 315, 960
ORQUAD, 314, 315, 960
OSCALL, 46, 577, 960
OSD, 26, 165, 960
OUTCONN, 78, 395, 397, 398, 960
OUTHEXD, 79, 81, 960
OUTOCT, 77, 79, 81, 896, 898, 960
Outport, 85, 89, 382, 397, 754, 960
OUTQUAD, 79, 81, 896, 898, 960
OUTRHEXD, 81, 960
OUTROCT, 81, 960
OUTRQUAD, 81, 960
OUTRSTD, 82, 960
OUTSTD, 73, 77, 79, 82, 83, 960
overhead

control system core, 35

PARA, 386, 960
PARAM, 601
parameter

tick, 35
remote, 394
remote acquirement, 378, 381

PARB, 389, 391, 392, 960
PARE, 388, 960
PARI, 388, 389, 391, 392, 960
PARR, 19, 180, 377, 389, 391, 392, 960
PARS, 391, 392, 960
PARX, 389, 391, 392, 960
path

full, 50
PCI, 642, 960
period

of quick task execution, 48
of task execution, 59

PIDAT, 18, 26, 206, 227, 960
PIDE, 26, 230, 960
PIDGS, 18, 26, 206, 232, 960
PIDMA, 18, 26, 206, 219, 234, 241, 273, 584,

960
PIDMAW, 960
PIDMAX, 26, 241, 960
PIDU, 26, 227, 230, 232, 234, 248, 252, 273,

276, 292, 584, 744, 960
PIDUI, 26, 252, 960
PJROCT, 19, 355, 362, 960
PJSEXOCT, 364, 961
PJSOCT, 364, 366, 961
POL, 18, 26, 96, 128, 961
POUT, 26, 254, 961
PRBS, 18, 191, 201, 961
PRGM, 255, 961
priority

dependancy on the operating system,
35

logic, 35
logical, 40, 48
of tasks, 59

program
REXYGEN Studio, 32, 40, 48, 50, 59, 61,

85, 378, 382, 394, 397
REXYGEN Studio, Enable checkbox, 50
REXYGEN Studio, Halt/Run button, 50
REXYGEN Studio, Reset button, 51

INDEX 981

PROJECT, 47, 961
project

main �le, 35, 40
protocol

UDP/IP, 583
PSD, 20, 629, 643, 961
PSMPC, 18, 26, 206, 219, 257, 961
puls, 254
pulse counting

bidirectional, 303
PWM, 26, 235, 242, 249, 261, 281, 285, 286,

961
PYTHON, 614, 622, 632, 961

QCEDPOPT, 20, 553, 961
QCOPT, 440, 961
QFC, 87, 88, 594, 961
QFD, 81, 82, 87, 88, 594, 961
QP_MPC2QP, 20, 553, 554, 566, 961
QP_OASES, 20, 553, 554, 561, 961
QP_UPDATE, 20, 553, 554, 566, 961
QTASK, 17, 28, 35, 42, 48, 50, 59, 411, 414,

579, 581, 607, 961

rate monotonic scheduling, 36
RAWCOPY, 649, 961
RDC, 20, 575, 583, 961
RDFT, 26, 166, 961
REC, 26, 129, 961
REGEXP, 19, 355, 368, 961
REL, 26, 130, 961
relative damping coe�cient, 148, 161
REPLACE, 19, 26, 355, 370, 961
REXLANG, 20, 349, 424, 436, 437, 571, 575,

587, 614, 617, 618, 622, 632, 961
RLIM, 26, 168, 961
RLY, 26, 207, 263, 961
RM_AxesGroup, 832, 845, 884, 961
RM_Axis, 551, 692, 722�726, 733, 744, 751,

754, 832, 961
RM_AxisIn, 961
RM_AxisOut, 751, 961
RM_AxisSpline, 86, 145, 744, 752, 961
RM_DirectTorque, 961

RM_DirectVelocity, 961
RM_DriveMode, 961
RM_Feed, 887, 961
RM_Gcode, 888, 961
RM_GroupTrack, 890, 962
RM_HomeOffset, 757, 962
RM_Track, 758, 962
RS, 26, 316, 318, 962
RTOI, 26, 131, 962
RTOS, 19, 26, 355, 371, 962
RTOV, 26, 379, 395, 549, 577, 962

S1OF2, 25, 169, 962
SAI, 25, 169, 170, 172, 962
SAT, 26, 264, 962
SC2FA, 26, 266, 962
SCU, 26, 235, 242, 249, 273, 276, 962
SCUV, 26, 235, 242, 249, 276, 962
SEL, 175, 962
SELHEXD, 26, 175, 176, 962
SELOCT, 175, 176, 962
SELQUAD, 175, 176, 962
SELSOCT, 26, 372, 962
SELU, 26, 279, 551, 962
SETPA, 19, 26, 78, 85, 377, 378, 394, 397,

962
SETPB, 396, 398, 399, 962
SETPI, 396, 398, 399, 596, 962
SETPR, 19, 26, 78, 377, 396, 398, 399, 402,

962
SETPS, 19, 26, 78, 377, 398, 399, 962
SETPX, 26, 397�399, 962
SG, 18, 191, 203, 584, 962
SGEN, 442, 962
SGENTX, 444, 962
SGI, 203, 962
SGSLP, 401, 405, 962
SHIFTOCT, 26, 178, 962
SHLD, 26, 180, 389, 962
SILO, 19, 377, 403, 405, 962
SILOS, 19, 377, 407, 962
simulation

parameters, 49
real-time, 49

982 INDEX

Simulink, 49, 583
SINT, 26, 157, 181, 962
SLEEP, 49, 962
SMHCC, 26, 281, 962
SMHCCA, 26, 285, 962
SMTP, 20, 575, 607, 962
SOLNP, 571, 963
SOPDT, 19, 26, 236, 243, 410, 446, 963
SPIKE, 26, 172, 173, 182, 963
SPLIT_DT, 963
SQR, 18, 26, 96, 133, 963
SQRT, 18, 26, 96, 126, 134, 963
SR, 26, 317, 963
SRTF, 50, 963
SSW, 26, 184, 551, 584, 963
stack

size, 40
STATELOAD, 52, 963
STATESAVE, 52, 54, 963
STEAM, 20, 575, 609, 963
STMGEN, 448, 963
STOR, 19, 26, 355, 374, 963
STR2DT, 963
STURB, 450, 963
SUB, 18, 26, 96, 99, 135, 963
SUBSYSTEM, 379, 395
SubSystem, 73, 76, 79, 84, 89, 963
subsystem

archiving, 19, 335
execution, 50

SWR, 26, 185, 551, 963
SWU, 26, 279, 292, 963
SWVMR, 551, 963
SYSEVENT, 56, 963
SYSLOG, 58, 963

T2STR, 963
TASK, 17, 28, 35, 42, 48, 50, 59, 411, 414,

963
task

execution, 50
execution period, 59
priority, 59
quick, 48

quick, execution period, 48
TC, 19, 321, 326, 963
TIME, 19, 321, 323, 328, 963
TIMER, 18, 26, 295, 318, 963
timer

system, 42
TIODRV, 42, 61, 963
ToFile, 91, 963
ToWorkspace, 92, 963
trajectory

time-optimal, 144
TRIM, 26, 375, 963
TRND, 24, 30, 335, 350, 353, 963
TRNDV, 335, 353, 963
TS, 329, 331, 350, 963
TS2NS, 331, 963
TSE, 26, 273, 276, 293, 963
type

input, 23
output, 23
parameter, 23

types
of variables, 23

TZ2UTC, 963

UART, 20, 575, 597, 614, 963
UNIPI_CHANNEL, 931, 964
UNIPI_PRODUCT, 933, 964
UNIPI_S1AI, 934, 964
UNIPI_S1AOR, 935, 964
UNIPI_S1CNT, 936, 964
UNIPI_S1DI, 937, 964
UNIPI_S1DO, 938, 964
UNIPI_S1LED, 939, 964
UNIPI_S1PWM, 940, 964
UNIPI_S2AI, 941, 964
UNIPI_S2AO, 942, 964
UNIPI_S2CNT, 943, 964
UNIPI_S2DI, 944, 964
UNIPI_S2RO, 945, 964
UTC2TZ, 964
UTOI, 26, 136, 964

value

INDEX 983

default, 23
maximal, 23
minimal, 23
substitute, 105, 107, 108, 111, 119, 134

valve
servo, 435

VDEL, 26, 186, 964
VIN, 25, 26, 81, 82, 88, 93, 594, 964
VOUT, 87, 94, 594, 964
VTOR, 26, 166, 552, 577, 964

WASM, 964
WEEK, 964
WSCH, 19, 321, 332, 964
WWW, 63, 964

ZV4IS, 26, 187, 964

984 INDEX

Documentation reference number: 17159

	1 Introduction
	1.1 How to use this manual
	1.2 The function block description format
	1.3 Conventions for variables, blocks and subsystems naming
	1.4 Signal Quality Corresponding with OPC

	2 EXEC - Real-time executive configuration
	 ALARMS - REXYGEN alarms list
	 ARC - REXYGEN archive
	 DATA - Include external files
	 EXEC - Real-time executive
	 HMI - HMI configuration
	 INFO - Additional project information
	 IODRV - REXYGEN input/output driver
	 IOTASK - REXYGEN driver-triggered task
	 LPBRK - Loop break
	 MODULE - REXYGEN extension module
	 OPCUA - REXYGEN OPCUA server configuration
	 OSCALL - Operating system calls
	 PROJECT - Additional project settings
	 QTASK - REXYGEN quick task
	 SLEEP - Timing in Simulink
	 SRTF - Set run-time flags
	 STATELOAD - Load multiple block states and parameters
	 STATESAVE - Save multiple block states and parameters
	 SYSEVENT - Read system log
	 SYSLOG - Write system log
	 TASK - REXYGEN standard task
	 TIODRV - REXYGEN input/output driver with tasks
	 WWW - Internal webserver content

	3 INOUT - Input and output blocks
	 Display - Numeric display of input values
	 FromFile - From File
	 FromWorkspace - From Workspace
	 GotoTagVisibility - Visibility of the signal source
	 INCONN - Block for remote value acquirement
	 INQUAD, INOCT, INHEXD - Multi-input blocks
	 From, INSTD - Signal connection or input
	 IOASYNC - Asynchronous reading and writing
	 OUTCONN - Block for remote value setting
	 OUTQUAD, OUTOCT, OUTHEXD - Multi-output blocks
	 OUTRQUAD, OUTROCT, OUTRHEXD - Multi-output blocks with verification
	 OUTRSTD - Output block with verification
	 Goto, OUTSTD - Signal source or output
	 Inport, Outport - Input and output port
	 QFC - Quality flags coding
	 QFD - Quality flags decoding
	 SubSystem - Subsystem block
	 ToFile - To File
	 ToWorkspace - To Workspace
	 VIN - Validation of the input signal
	 VOUT - Validation of the output signal

	4 MATH - Math blocks
	 ABS - Absolute value
	 ADD - Addition of two signals
	 ADDQUAD, ADDOCT, ADDHEXD - Multi-input addition
	 CNB - Boolean (logic) constant
	 CNE - Enumeration constant
	 CNI - Integer constant
	 CNR - Real constant
	 DIF - Difference
	 DIV - Division of two signals
	 EAS - Extended addition and subtraction
	 EMD - Extended multiplication and division
	 FNX - Evaluation of single-variable function
	 FNXY - Evaluation of two-variables function
	 GAIN - Multiplication by a constant
	 GRADS - Gradient search optimization
	 IADD - Integer addition
	 IDIV - Integer division
	 IMOD - Remainder after integer division
	 IMUL - Integer multiplication
	 ISUB - Integer subtraction
	 LIN - Linear interpolation
	 MUL - Multiplication of two signals
	 NANINF - Block for checking NaN and Inf values
	 POL - Polynomial evaluation
	 REC - Reciprocal value
	 REL - Relational operator
	 RTOI - Real to integer number conversion
	 SQR - Square value
	 SQRT - Square root
	 SUB - Subtraction of two signals
	 UTOI - Unsigned to signed integer number conversion

	5 ANALOG - Analog signal processing
	 ABSROT - Absolute rotation (multiturn extension of the position sensor)
	 ASW - Switch with automatic selection of input
	 AVG - Moving average filter
	 AVS - Motion control unit
	 AVSI - Smooth trajectory interpolation
	 BPF - Band-pass filter
	 CMP - Comparator with hysteresis
	 CNDR - Nonlinear conditioner
	 DEL - Delay with initialization
	 DELM - Time delay
	 DER - Derivation, filtering and prediction from the last n+1 samples
	 EVAR - Moving mean value and standard deviation
	 INTE - Controlled integrator
	 KDER - Derivation and filtering of the input signal
	 LPF - Low-pass filter
	 MINMAX - Running minimum and maximum
	 NSCL - Nonlinear scaling factor
	 OSD - One Step Delay
	 RDFT - Running discrete Fourier transform
	 RLIM - Rate limiter
	 S1OF2 - One of two analog signals selector
	 SAI - Safety analog input
	 SEL - Selector switch for analog signals
	 SELQUAD, SELOCT, SELHEXD - Selector switch for analog signals
	 SHIFTOCT - Data shift register
	 SHLD - Sample and hold
	 SINT - Simple integrator
	 SPIKE - Spike filter
	 SSW - Simple switch
	 SWR - Selector with ramp
	 VDEL - Variable time delay
	 ZV4IS - Zero vibration input shaper

	6 GEN - Signal generators
	 ANLS - Controlled generator of piecewise linear function
	 BINS - Controlled binary sequence generator
	 BIS - Binary sequence generator
	 BISR - Binary sequence generator with reset
	 MP - Manual pulse generator
	 PRBS - Pseudo-random binary sequence generator
	 SG, SGI - Signal generators

	7 REG - Function blocks for control
	 ARLY - Advance relay
	 FIWR - Frequence Identification With Reconstructor
	 FLCU - Fuzzy logic controller unit
	 FRID - Frequency response identification
	 I3PM - Identification of a three parameter model
	 LC - Lead compensator
	 LLC - Lead-lag compensator
	 LPI - Loop performance index
	 MCU - Manual control unit
	 PIDAT - PID controller with relay autotuner
	 PIDE - PID controller with defined static error
	 PIDGS - PID controller with gain scheduling
	 PIDMA - PID controller with moment autotuner
	 PIDMAX - PID controller with extended moment autotuner
	 PIDU - PID controller unit
	 PIDUI - PID controller unit with variable parameters
	 POUT - Pulse output
	 PRGM - Setpoint programmer
	 PSMPC - Pulse-step model predictive controller
	 PWM - Pulse width modulation
	 RLY - Relay with hysteresis
	 SAT - Saturation with variable limits
	 SC2FA - State controller for 2nd order system with frequency autotuner
	 SCU - Step controller with position feedback
	 SCUV - Step controller unit with velocity input
	 SELU - Controller selector unit
	 SMHCC - Sliding mode heating/cooling controller
	 SMHCCA - Sliding mode heating/cooling controller with autotuner
	 SWU - Switch unit
	 TSE - Three-state element

	8 LOGIC - Logic control
	 AND - Logical product of two signals
	 ANDQUAD, ANDOCT, ANDHEXD - Multi-input logical product
	 ATMT - Finite-state automaton
	 BDOCT, BDHEXD - Bitwise demultiplexers
	 BITOP - Bitwise operation
	 BMOCT, BMHEXD - Bitwise multiplexers
	 COUNT - Controlled counter
	 EATMT - Extended finite-state automaton
	 EDGE - Falling/rising edge detection in a binary signal
	 EQ - Equivalence two signals
	 INTSM - Integer number bit shift and mask
	 ISSW - Simple switch for integer signals
	 ITOI - Transformation of integer and binary numbers
	 NOT - Boolean complementation
	 OR - Logical sum of two signals
	 ORQUAD, OROCT, ORHEXD - Multi-input logical sum
	 RS - Reset-set flip-flop circuit
	 SR - Set-reset flip-flop circuit
	 TIMER - Multipurpose timer

	9 TIME - Blocks for handling time
	 DATE - Current date
	 DATETIME - Get, set and convert time
	 TC - Timer control and status
	 TIME - Current time
	 TS - Current timestamp
	 TS2NS - Timestamp difference in nanoseconds
	 WSCH - Week scheduler

	10 ARC - Data archiving
	 ACD - Archive compression using Delta criterion
	 ACLEAR - Forced archive purge
	 AFLUSH - Forced archive flushing
	 ALB, ALBI - Alarms for Boolean value
	 ALM, ALMI - Alarm store value
	 ALN, ALNI - Alarms for numerical value
	 ARS - Archive store value
	 TRND - Real-time trend recording
	 TRNDV - Real-time trend recording (for vector signals)

	11 STRING - Blocks for string operations
	 CNS - String constant
	 CONCAT - Concat string by pattern
	 FIND - Find substring
	 ITOS - Integer number to string conversion
	 LEN - String length
	 MID - Substring extraction
	 PJROCT - Parse JSON string (real output)
	 PJSEXOCT - Parse JSON string (string output)
	 PJSOCT - Parse JSON string (string output)
	 REGEXP - Regular expression parser
	 REPLACE - Replace substring
	 RTOS - Real number to string conversion
	 SELSOCT - Selector switch for string signals
	 STOR - String to real number conversion
	 TRIM - Remove leading and trailing whitechar

	12 PARAM - Blocks for parameter handling
	 GETPA - Block for remote array parameter acquirement
	 GETPB, GETPI, GETPR - Blocks for remote parameter acquirement
	 GETPS - Block for remote string parameter acquirement
	 GETPX - Block for remote parameter acquirement
	 PARA - Block with input-defined array parameter
	 PARE - Block with input-defined enumeration parameter
	 PARB, PARI, PARR - Blocks with input-defined parameter
	 PARS - Block with input-defined string parameter
	 PARX - Block with input-defined parameter
	 SETPA - Block for remote array parameter setting
	 SETPB, SETPI, SETPR - Blocks for remote parameter setting
	 SETPS - Block for remote string parameter setting
	 SETPX - Block for remote parameter setting
	 SGSLP - Set, get, save and load parameters
	 SILO - Save input value, load output value
	 SILOS - Save input string, load output string

	13 MODEL - Dynamic systems simulation
	 CDELSSM - Continuous state space model with time delay
	 CSSM - Continuous state space model
	 DDELSSM - Discrete state space model with time delay
	 DFIR - Discrete finite input response filter
	 DSSM - Discrete state space model
	 EKF - Extended (nonlinear) Kalman filter
	 FOPDT - First order plus dead-time model
	 IPEN2, IPEN3 - N-link inverted pendulum on cart - Physical parameters
	 IPEN2pu, IPEN3pu - N-link inverted pendulum on cart - Dynamic parameters
	 MDL - Process model
	 MDLI - Process model with input-defined parameters
	 MVD - Motorized valve drive
	 NSSM - Nonlinear State-Space Model
	 NUREACT - Model of nuclear reactor
	 QCOPT - Model of quadrucopter
	 SGEN - Synchronous generator model
	 SGENTX - Synchronous generator model
	 SOPDT - Second order plus dead-time model
	 STMGEN - Model of steam generator
	 STURB - Steam turbine model

	14 MATRIX - Blocks for matrix and vector operations
	 CNA - Array (vector/matrix) constant
	 MB_DASUM - Sum of the absolute values
	 MB_DAXPY - Performs y := a*x + y for vectors x,y
	 MB_DCOPY - Copies vector x to vector y
	 MB_DDOT - Dot product of two vectors
	 MB_DGEMM - Performs C := alpha*op(A)*op(B) + beta*C, where op(X) = X or op(X) = X^T
	 MB_DGEMV - Performs y := alpha*A*x + beta*y or y := alpha*A^T*x + beta*y
	 MB_DGER - Performs A := alpha*x*y^T + A
	 MB_DNRM2 - Euclidean norm of a vector
	 MB_DROT - Plain rotation of a vector
	 MB_DSCAL - Scales a vector by a constant
	 MB_DSWAP - Interchanges two vectors
	 MB_DTRMM - Performs B := alpha*op(A)*B or B := alpha*B*op(A), where op(X) = X or op(X) = X^T for triangular matrix A
	 MB_DTRMV - Performs x := A*x or x := A^T*x for triangular matrix A
	 MB_DTRSV - Solves one of the system of equations A*x = b or A^T*x = b for triangular matrix A
	 ML_DGEBAK - Backward transformation to ML_DGEBAL of left or right eigenvectors
	 ML_DGEBAL - Balancing of a general real matrix
	 ML_DGEBRD - Reduces a general real matrix to bidiagonal form by an orthogonal transformation
	 ML_DGECON - Estimates the reciprocal of the condition number of a general real matrix
	 ML_DGEES - Computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
	 ML_DGEEV - Computes the eigenvalues and, optionally, the left and/or right eigenvectors
	 ML_DGEHRD - Reduces a real general matrix A to upper Hessenberg form
	 ML_DGELQF - Computes an LQ factorization of a real M-by-N matrix A
	 ML_DGELSD - Computes the minimum-norm solution to a real linear least squares problem
	 ML_DGEQRF - Computes an QR factorization of a real M-by-N matrix A
	 ML_DGESDD - Computes the singular value decomposition (SVD) of a real M-by-N matrix A
	 ML_DLACPY - Copies all or part of one matrix to another matrix
	 ML_DLANGE - Computes one of the matrix norms of a general matrix
	 ML_DLASET - Initilizes the off-diagonal elements and the diagonal elements of a matrix to given values
	 ML_DTRSYL - Solves the real Sylvester matrix equation for quasi-triangular matrices A and B
	 MX_AT - Get Matrix/Vector element
	 MX_ATSET - Set Matrix/Vector element
	 MX_CNADD - Add scalar to each Matrix/Vector element
	 MX_CNMUL - Multiply a Matrix/Vector by a scalar
	 MX_CTODPA - Discretizes continuous model given by (A,B) to (Ad,Bd) using Pade approximations
	 MX_DIM - Matrix/Vector dimensions
	 MX_DIMSET - Set Matrix/Vector dimensions
	 MX_DSAGET - Set subarray of A into B
	 MX_DSAREF - Set reference to subarray of A into B
	 MX_DSASET - Set A into subarray of B
	 MX_DTRNSP - General matrix transposition: B := alpha*A^T
	 MX_DTRNSQ - Square matrix in-place transposition: A := alpha*A^T
	 MX_FILL - Fill real matrix or vector
	 MX_FNX - Matrix and vector scalar functions
	 MX_MAT - Matrix data storage block
	 MX_RAND - Randomly generated matrix or vector
	 MX_REFCOPY - Copies input references of matrices A and B to their output references
	 MX_SLFS - Save or load a Matrix/Vector into file or string
	 MX_VEC - Vector data storage block
	 MX_WRITE - Write a Matrix/Vector to the console/system log
	 RTOV - Vector multiplexer
	 SWVMR - Vector/matrix/reference signal switch
	 VTOR - Vector demultiplexer

	15 OPTIM - Optimization blocks
	 QP_MPC2QP - Conversion of MPC problem to quadratic programming
	 QP_OASES - Quadratic programming using active set method
	 QP_UPDATE - Update matrices/vectors of quadratic programming
	 SOLNP - Nonlinear optimization solver

	16 SPEC - Special blocks
	 EPC - External program call
	 HTTP - Block for generating HTTP GET or POST requests (obsolete)
	 HTTP2 - Block for generating HTTP requests
	 RDC - Remote data connection
	 REXLANG - User programmable block
	 SMTP - Block for sending e-mail alerts via SMTP
	 STEAM - Steam and water properties
	 UART - UART communication block

	17 LANG - Language blocks
	 LUA, LUAQUAD, LUAOCT, LUAHEXD - User programmable blocks in Lua
	 PYTHON - User programmable block in Python

	18 DSP - Digital Signal Processing blocks
	 BSFIFO - Binary Structure - Queueing serialize and deserialize
	 BSGET, BSGETOCT - Binary Structure - Get a single value of given type
	 BSGETV, BSGETOCTV - Binary Structure - Get matrix (all values of same given type)
	 BSSET, BSSETOCT - Binary Structure - Set a single value of given type
	 BSSETV, BSSETOCTV - Binary Structure - Set matrix (all values of same given type)
	 FFT - Fast Fourier Transform
	 MOSS - Motion smart senzor
	 PCI - PCI Bus Memory Access
	 PSD - Power Spectral Density
	 RAWCOPY - Raw vector copy: 1, 2, or 4 Bytes per Copy

	19 MQTTDrv - Communication via MQTT protocol
	 MqttPublish - Publish MQTT message
	 MqttSubscribe - Subscribe to MQTT topic

	20 MC_SINGLE - Motion control - single axis blocks
	 MCP_AccelerationProfile - * Acceleration profile
	 MCP_Halt - * Stopping a movement (interruptible)
	 MCP_HaltSuperimposed - * Stopping a movement (superimposed and interruptible)
	 MCP_Home - * Homing
	 MCP_MoveAbsolute - * Move to position (absolute coordinate)
	 MCP_MoveAdditive - * Move to position (relative to previous motion)
	 MCP_MoveContinuousAbsolute - * Move to position (absolute coordinate)
	 MCP_MoveContinuousRelative - * Move to position (relative to previous motion)
	 MCP_MoveRelative - * Move to position (relative to execution point)
	 MCP_MoveSuperimposed - * Superimposed move
	 MCP_MoveVelocity - * Move with constant velocity
	 MCP_PositionProfile - * Position profile
	 MCP_SetOverride - * Set override factors
	 MCP_Stop - * Stopping a movement
	 MCP_TorqueControl - * Torque/force control
	 MCP_VelocityProfile - * Velocity profile
	 MC_AccelerationProfile, MCP_AccelerationProfile - Acceleration profile
	 MC_Halt, MCP_Halt - Stopping a movement (interruptible)
	 MC_HaltSuperimposed, MCP_HaltSuperimposed - Stopping a movement (superimposed and interruptible)
	 MC_Home, MCP_Home - Homing
	 MC_MoveAbsolute, MCP_MoveAbsolute - Move to position (absolute coordinate)
	 MC_MoveAdditive, MCP_MoveAdditive - Move to position (relative to previous motion)
	 MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute - Move to position (absolute coordinate)
	 MC_MoveContinuousRelative, MCP_MoveContinuousRelative - Move to position (relative to previous motion)
	 MC_MoveRelative, MCP_MoveRelative - Move to position (relative to execution point)
	 MC_MoveSuperimposed, MCP_MoveSuperimposed - Superimposed move
	 MC_MoveVelocity, MCP_MoveVelocity - Move with constant velocity
	 MC_PositionProfile, MCP_PositionProfile - Position profile
	 MC_Power - Axis activation (power on/off)
	 MC_ReadActualPosition - Read actual position
	 MC_ReadAxisError - Read axis error
	 MC_ReadBoolParameter - Read axis parameter (bool)
	 MC_ReadParameter - Read axis parameter
	 MC_ReadStatus - Read axis status
	 MC_Reset - Reset axis errors
	 MC_SetOverride, MCP_SetOverride - Set override factors
	 MC_Stop, MCP_Stop - Stopping a movement
	 MC_TorqueControl, MCP_TorqueControl - Torque/force control
	 MC_VelocityProfile, MCP_VelocityProfile - Velocity profile
	 MC_WriteBoolParameter - Write axis parameter (bool)
	 MC_WriteParameter - Write axis parameter
	 RM_Axis - Motion control axis
	 RM_AxisOut - Axis output
	 RM_AxisSpline - Commanded values interpolation
	 RM_HomeOffset - * Homing by setting offset
	 RM_Track - Tracking and inching

	21 MC_MULTI - Motion control - multi axis blocks
	 MCP_CamIn - * Engage the cam
	 MCP_CamTableSelect - Cam definition
	 MCP_CombineAxes - * Combine the motion of 2 axes into a third axis
	 MCP_GearIn - * Engage the master/slave velocity ratio
	 MCP_GearInPos - * Engage the master/slave velocity ratio in defined position
	 MCP_PhasingAbsolute - * Create phase shift (absolute coordinate)
	 MCP_PhasingRelative - * Create phase shift (relative to previous motion)
	 MC_CamIn, MCP_CamIn - Engage the cam
	 MC_CamOut - Disengage the cam
	 MC_CombineAxes, MCP_CombineAxes - Combine the motion of 2 axes into a third axis
	 MC_GearIn, MCP_GearIn - Engange the master/slave velocity ratio
	 MC_GearInPos, MCP_GearInPos - Engage the master/slave velocity ratio in defined position
	 MC_GearOut - Disengange the master/slave velocity ratio
	 MC_PhasingAbsolute, MCP_PhasingAbsolute - Phase shift in synchronized motion (absolute coordinates)
	 MC_PhasingRelative, MCP_PhasingRelative - Phase shift in synchronized motion (relative coordinates)

	22 MC_COORD - Motion control - coordinated movement blocks
	 MCP_GroupHalt - * Stopping a group movement (interruptible)
	 MCP_GroupInterrupt - * Read a group interrupt
	 MCP_GroupSetOverride - * Set group override factors
	 MCP_GroupSetPosition - * Sets the position of all axes in a group
	 MCP_GroupStop - * Stopping a group movement
	 MCP_MoveCircularAbsolute - * Circular move to position (absolute coordinates)
	 MCP_MoveCircularRelative - * Circular move to position (relative to execution point)
	 MCP_MoveDirectAbsolute - * Direct move to position (absolute coordinates)
	 MCP_MoveDirectRelative - * Direct move to position (relative to execution point)
	 MCP_MoveLinearAbsolute - * Linear move to position (absolute coordinates)
	 MCP_MoveLinearRelative - * Linear move to position (relative to execution point)
	 MCP_MovePath - * General spatial trajectory generation
	 MCP_MovePath_PH - * General spatial trajectory generation PH
	 MCP_SetCartesianTransform - * Sets Cartesian transformation
	 MCP_SetKinTransform_Arm - * Kinematic transformation robot ARM
	 MCP_SetKinTransform_UR - * Kinematic transformation for UR robot
	 MC_AddAxisToGroup - Adds one axis to a group
	 MC_GroupContinue - Continuation of interrupted movement
	 MC_GroupDisable - Changes the state of a group to GroupDisabled
	 MC_GroupEnable - Changes the state of a group to GroupEnable
	 MC_GroupHalt - Stopping a group movement (interruptible)
	 MC_GroupInterrupt, MCP_GroupInterrupt - Read a group interrupt
	 MC_GroupReadActualAcceleration - Read actual acceleration in the selected coordinate system
	 MC_GroupReadActualPosition - Read actual position in the selected coordinate system
	 MC_GroupReadActualVelocity - Read actual velocity in the selected coordinate system
	 MC_GroupReadError - Read a group error
	 MC_GroupReadStatus - Read a group status
	 MC_GroupReset - Reset axes errors
	 MC_GroupSetOverride - Set group override factors
	 MC_GroupSetPosition, MCP_GroupSetPosition - Sets the position of all axes in a group
	 MC_GroupStop - Stopping a group movement
	 MC_MoveCircularAbsolute - Circular move to position (absolute coordinates)
	 MC_MoveCircularRelative - Circular move to position (relative to execution point)
	 MC_MoveDirectAbsolute - Direct move to position (absolute coordinates)
	 MC_MoveDirectRelative - Direct move to position (relative to execution point)
	 MC_MoveLinearAbsolute - Linear move to position (absolute coordinates)
	 MC_MoveLinearRelative - Linear move to position (relative to execution point)
	 MC_MovePath - General spatial trajectory generation
	 MC_MovePath_PH - * General spatial trajectory generation PH
	 MC_ReadCartesianTransform - Reads the parameter of the cartesian transformation
	 MC_SetCartesianTransform - Sets Cartesian transformation
	 MC_UngroupAllAxes - Removes all axes from the group
	 RM_AxesGroup - Axes group for coordinated motion control
	 RM_Feed - * MC Feeder ???
	 RM_Gcode - * CNC motion control
	 RM_GroupTrack - T

	23 CanDrv - Communication via CAN bus
	 CanItem - Secondary received CAN message
	 CanRecv - Receive CAN message
	 CanSend - Send CAN message

	24 OpcUaDrv - Communication using OPC UA
	 OpcUaReadValue - Read value from OPC UA Server
	 OpcUaServerValue - Expose value as an OPC UA Node
	 OpcUaWriteValue - Write value to OPC UA Server

	25 UNIPI - Communication blocks for Unipi
	 IM201CNT - Iris IM201CNT, 4 digital counters
	 IM201DI - Iris IM201DI, 4 digital inputs
	 IM203DO - Iris IM203DO, 8 digital outputs
	 IM203PWM - Iris IM203PWM, 8 PWM outputs
	 IM204CNT - Iris IM204CNT, 16 digital counters
	 IM204DI - Iris IM204DI, 16 digital inputs
	 IM205DO - Iris IM205DO, 16 digital outputs
	 IM205PWM - Iris IM205PWM, 16 PWM outputs
	 IM301CNT - Iris IM301CNT, 2 digital counters
	 IM301DI - Iris IM301DI, 2 digital inputs
	 IM301DO - Iris IM301DO, 2 digital outputs
	 IM502AO - Iris IM502AO, 4 analog outputs
	 IM503AI - Iris IM503AI, 8 analog inputs
	 IM504RI - Iris IM504RI, 8 resistance or temperature inputs
	 IM506AI - Iris IM506AI, 2 analog inputs
	 IM506AO - Iris IM506AO, 1 analog output
	 IRIS_MODULE - Iris - Module description info
	 UNIPI_CHANNEL - Iris module or Patron section info
	 UNIPI_PRODUCT - Product description info
	 UNIPI_S1AI - Patron section 1, analog input
	 UNIPI_S1AOR - Patron section 1, analog output or resistance input
	 UNIPI_S1CNT - Patron section 1, counters
	 UNIPI_S1DI - Patron section 1, digital inputs
	 UNIPI_S1DO - Patron section 1, digital outputs
	 UNIPI_S1LED - Patron section 1, LED outputs
	 UNIPI_S1PWM - Patron section 1, PWM outputs
	 UNIPI_S2AI - Patron section 2, analog inputs
	 UNIPI_S2AO - Patron section 2, analog outputs
	 UNIPI_S2CNT - Patron section 2, counters
	 UNIPI_S2DI - Patron section 2, digital inputs
	 UNIPI_S2RO - Patron section 2, relay outputs

	A Licensing policy
	B Licensing of individual function blocks
	C Error codes of the REXYGEN system
	D Special signals of the REXYGEN system
	 Bibliography
	 Index

