

www.rexygen.com

Konfigurace vstupů a výstupů na cílových platformách

Uživatelská příručka

REX Controls s.r.o.

Verze 3.0.5 4.7.2025 Plzeň

Obsah

1	Úvod	2
2	Fyzická připojení 2.1 WAGO PFC100/200 2.2 Raspberry Pi 2.3 Monarco HAT 2.4 REX M527, Unipi Patron/Axon/Neuron 2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)	3 3 5 5 6
3	Přidání vstupů a výstupů do projektu	8
4	Práce se vstupními a výstupními signály4.1Obecné kroky pro všechny platformy4.2Specifické parametry pro jednotlivé platformy4.2.1WAGO PFC100/2004.2.2Raspberry Pi4.2.3Monarco HAT4.2.4REX M527, Unipi Patron/Axon/Neuron4.2.5Weidmüller u-OS PLC (WL2000, M3000, M4000)	 9 10 10 11 12 13 14
5	Interakce s algoritmem	16
6	Aktualizace HMI	17
7	Příklady	19
8	Další kroky	20
	Literatura	20

Kapitola 1 Úvod

Pro demonstraci konfigurace vstupů a výstupů na různých platformách využijeme projekt vytvořený v uživatelské příručce [1] a budeme v něm pokračovat. Dosud algoritmus neinteragoval s vnějším světem, nebyl připojen k žádnému fyzickému signálu ani externím datům. Nyní budeme používat vstupní a výstupní signály platformy pro interakci se skutečným světem. Pro Raspberry Pi použijeme GPIO piny, které mohou být nakonfigurovány jako vstupy nebo výstupy.

Jako vstupy budou použity dva fyzické spínače a softwarový časovač bude řídit jeden výstupní signál. Jinými slovy, tato příručka je věnována přechodu od obecného příkladu 0101-01 k výchozímu projektu pro každou platformu ukázaném v [2].

Fyzická připojení

Tato část postupu je pro každé cílové zařízení individuální. Přejděte na sekci určenou pro vaši platformu a po zapojení pokračujte Kapitolou 3.

2.1 WAGO PFC100/200

Pro tento ukázkový projekt se předpokládá následující jednoduchá sestava:

- 1x 750-8102 PFC100 nebo 750-8202 PFC200 řadič s napájením
- 1x 750-430 modul (8 digitálních vstupů)
- 1x 750-603 modul (24V potenciálová distribuce)
- 1x 750-530 modul (8 digitálních výstupů)
- 1x 750-604 modul (0V potenciálová distribuce)
- 1x 750-600 povinný koncový modul

Připojte spínače a externí relé, jak je znázorněno níže. Relé je volitelné, jelikož stav výstupu indikuje i vestavěná LED modulu.

DŮLEŽITÉ: Upozorňujeme, že číslování terminálů na modulech WAGO (výše) se neshoduje s číslováním kanálů (níže)! Vždy používejte označení DI1..8, DO1..8, AI1..4 atd. podle dokumentace WAGO.

Pro podrobnosti a příklady zapojení pro platformu se podívejte do dokumentace modulu I/O systému WAGO 750/753.

2.2 Raspberry Pi

Připojte spínače, ochranné odpory (330 Ohm) a indikátor LED, jak je znázorněno níže.

2.3 Monarco HAT

Připojte spínače, jak je znázorněno níže. Motor je volitelný, jelikož stav výstupu indikuje i vestavěná LED.

2.4 REX M527, Unipi Patron/Axon/Neuron

Připojte spínače, jak je znázorněno níže. Motor je volitelný, jelikož stav výstupu indikuje i vestavěná LED.

2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)

Připojte spínače, jak je znázorněno níže. Motor je volitelný, jelikož stav výstupu indikuje i vestavěná LED.

Přidání vstupů a výstupů do projektu

Nyní, když máme všechno zapojené, je čas zahrnout fyzické signály do algoritmu. Je třeba rozšířit hlavní soubor projektu o další funkční blok pro přístup k vstupům a výstupům z řídicího algoritmu ve vašem projektu. Vložte blok EXEC/IODRV z Knihovny bloků (Block Library) a připojte jej k bloku EXEC, jak je znázorněno níže.

V TASKu odstraňte bloky CNB_SWITCH1 a CNB_SWITCH3 a nahraď te je bloky INOUT/From, což budou vstupní signály. Také přidejte jeden blok INOUT/Goto, který bude sloužit jako výstup a který bude řízen časovačem. Připomínáme, že nová větev čáry se vytváří tažením pravým tlačítkem myši.

Práce se vstupními a výstupními signály

Nyní řekneme kompilátoru, aby používal konkrétní ovladač I/O. K tomu je třeba upravit parametry bloku IODRV podle následujících kroků:

4.1 Obecné kroky pro všechny platformy

- 1. Nastavte blok IODRV, aby komunikoval s příslušným modulem pro cílovou platformu, upravením parametrů bloku:
 - module=<název modulu>
 - classname=<název třídy>
 - cfgname nastavte podle potřeby (viz níže).
 - factor=1
 - Ostatní parametry nechte beze změny.
- 2. Přejmenujte blok IODRV podle doporučení pro jednotlivé platformy (např. WG pro WAGO, GPIO pro Raspberry Pi). Toto jméno bude zároveň prefixem pro všechny signály I/O tohoto ovladače.
- 3. Pokud bude potřeba, vytvořte konfigurační soubor pro ovladač I/O. Klikněte na tlačítko Configure a vyplňte formulář podle potřeby. Poté klikněte na OK a soubor bude uložen do složky projektu.
- 4. V blocích From a Goto nastavte parametr GotoTag pro vstupní/výstupní signály. Parametr GotoTag musí být ve formátu <prefix>__<název signálu>, kde prefix je název bloku IODRV. Všimněte si dvojitých znaků podtržení. Například WG__S1M430C1 pro kanál 1 modulu 750-430 v paměťovém slotu 1.

Na konci této Kapitoly by Váš projekt měl vypadat, jak je vidět na obrázku níže s tím, že jméno bloku IODRV a prefixy pro signály budou odpovídat platformě, kterou používáte.

4.2 Specifické parametry pro jednotlivé platformy

4.2.1 WAGO PFC100/200

- module=WagoDrv
- classname=WagoDrv
- cfgname prázdné.
- Doporučené jméno IODRV a prefix pro signály: WG

Pro potřeby projektu nastavte pro bloky From parametry GotoTag jako:

- WG__S1M430C1 První fyzický přepínač je připojen ke kanálu 1 (DI1) modulu 750-430, který je ve slotu 1.
- WG__S1M430C3 Druhý fyzický přepínač je připojen ke kanálu 3 stejného modulu.

Kanál 1 modulu 750-530 ve slotu 2 bude sloužit jako řídicí signál pro externí relé. Nastavte tedy pro blok Goto (GotoTag = WG__S2M530C1).

DŮLEŽITÉ: Moduly pro rozdělení potenciálu neposkytují žádná data, proto nezabírají žádnou paměť a nepočítají se při číslování slotů modulů!

Podobně pro ostatní I/O můžeme použít následující vlajky:

- Goto, WG__S2M530C8 kanál 8 modulu 750-530 ve slotu 2
- From, WG__S3M555C2 kanál 2 modulu 750-555 ve slotu 3 (v tomto příkladu není přítomný)
- atd.

Podrobný popis ovladače I/O pro WAGO PFC100/200 je k dispozici v samostatném manuálu [3].

4.2.2 Raspberry Pi

- module=GpioDrv
- classname=GpioDrv
- cfgname=gpio.rio
- Doporučené jméno IODRV a prefix pro signály: GPIO

Nezapomeňte kliknout na tlačítko *Configure*. Tím vytvoříte výchozí soubor konfigurace s názvem (.rio). Pro Raspberry Pi 5 zadejte parametr GPIO Chip=gpiochip4. Pro starší verze GPIO Chip=gpiochip0. Poté zavřete dialog.

Pro potřeby projektu nastavte pro bloky From parametry GotoTag jako:

- GPIO__GPIO23UI První fyzický přepínač bude připojen k GPIO#23, bude aktivován interní pull-up rezistor a logika vstupů bude invertována.
- GPIO__GPIO24UI Druhý fyzický přepínač bude připojen k GPIO#24, bude aktivován interní pull-up rezistor a logika vstupů bude invertována.

Výstup časovače bude připojen k GPIO#25 a bude sloužit jako výstupní signál. Nastavte tedy pro blok Goto (GotoTag = GPIO__GPI025).

Podobně pro ostatní piny můžeme použít následující vlajky:

- Goto, GPIO__GPIO22 digitální výstup22
- From, GPIO__GPI07U digitální vstup 7 s interním pull-up rezistorem
- From, GPIO__GPIO8D digitální vstup 8 s interním pull-down rezistorem
- From, GPI0__GPI021 digitální vstup 21 bez pull-up/down rezistoru

Číslování pinů na Raspberry Pi B+ a novějších je zobrazeno na následujících obrázcích:

Navštivte stránku http://elinux.org/RPi_Low-level_peripherals pro podrobné informace o jednotlivých GPIO pinech.

4.2.3 Monarco HAT

- module=MonarcoDrv
- classname=MonarcoHatDrv
- cfgname=monarcohat.rio
- Doporučené jméno IODRV a prefix pro signály: MNR

Nezapomeňte kliknout na tlačítko *Configure*. Tím vytvoříte výchozí soubor konfigurace s názvem (.rio). Ponechte výchozí hodnoty a zavřete dialog.

Monarco Driver	— 🗆 X
	RS-485 Configuration
	Baudrate 9600
	Parity none 🗸
	Data bits 8 \checkmark
	Stop bits one
	SPI Configuration
\mathbf{v}	SPI Device /dev/spidev0.0
MONARCO	SPI Clock 4000000
	OK Cancel

Pro potřeby projektu nastavte pro bloky From parametry GotoTag jako:

- MNR_DI1 První fyzický přepínač je připojen k DI1.
- MNR_DI3 Druhý fyzický přepínač je připojen k DI3.

Výstup časovače bude připojen k DO1 a bude sloužit jako výstupní signál. Nastavte tedy pro blok Goto (GotoTag = MNR__DO1).

Podobně pro ostatní piny můžeme použít následující vlajky:

- Goto, MNR__DO4 digitální výstup 4
- From, MNR_DI3 digitální vstup 3
- From, MNR__AI1 analogový vstup 1

Podrobný popis ovladače I/O pro Monarco HAT je k dispozici v samostatném manuálu [4].

Pinout zařízení Monarco HAT je vyobrazen na následujícím obrázku:

4.2.4 REX M527, Unipi Patron/Axon/Neuron

- module=MBDrv
- classname=MtmDrv
- cfgname=patron_cfg.rio
- Doporučené jméno IODRV a prefix pro signály: PTN

Musíte vytvořit soubor patron_cfg.rio. Klikněte na tlačítko *Configure* a vyplňte formulář, jak je uvedeno níže. Poté klikněte na *OK* a soubor bude uložen do složky projektu.

	time [s]:	1.00 ÷			- 5	1	0	db	us		
aves						•					
	Name		Address		Port	N	Лах. requ	iests	Subaddres	s	C
L	slaveMB		127.0.0.1		502		16		0		-0
											1
											 1.11
											V
ems) She	ow Hexa (for Ite	m Addresses a	nd Init Valu	es) 🗌 Advanc	ed mode		1				
ems) Shi	ow Hexa (for Ite Name	m Addresses a	nd Init Value Item Address	es) 🗌 Advand Type	ced mode	Init Value	Flags		Function code		
ems) Shr	ow Hexa (for Ite Name DO1_1	m Addresses a Slave slaveMB	nd Init Value Item Address 0	es) 🗌 Advano Type COIL	ced mode	Init Value	Flags		Function code 5 - write single co	il	
ems) Sho L	ow Hexa (for Ite Name DO1_1 DI1_1	m Addresses a Slave slaveMB slaveMB	nd Init Value Item Address 0 4	es) 🗌 Advanc Type COIL COIL	ced mode Count 1 1	Init Value	Flags W R		Function code 5 - write single coi 1 - read coils	îl	
ems) Sho L	ow Hexa (for Ite Name DO1_1 DI1_1 DI1_3	m Addresses a Slave slaveMB slaveMB slaveMB	nd Init Value Item Address 0 4 6	es) Advano Type COIL COIL COIL	ced mode Count 1 1 1	Init Value	Flags W R R		Function code 5 - write single coi 1 - read coils 1 - read coils	il	

Pro potřeby projektu nastavte pro bloky From parametry GotoTag jako:

- PTN_DI1_1 První fyzický přepínač je připojen k první skupině digitálních vstupů
 vstup 1.
- PTN_DI1_3 Druhý fyzický přepínač je připojen k digitálnímu vstupu 1.3.

Výstup časovače bude připojen k digitálnímu výstupu 1.1 a bude sloužit jako výstupní signál. Nastavte tedy pro blok Goto (GotoTag = PTN_DO1_1).

Všimněte si, že komunikace se zřízením probíhá pomocí protokolu Modbus TCP. Podrobný popis ovladače pro Modbus TCP je k dispozici v samostatném manuálu [5].

Poznámka: Pokud používáte starší Unipi Axon nebo Neuron, je nastavení stejné. Můžete pro přehlednost použít prefix AXN, resp. NRN místo PTN.

4.2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)

- module=UControlDrv
- classname=UControlDrv
- cfgname=weidmueller_cfg.rio
- Doporučené jméno IODRV a prefix pro signály: WM

Musíte vytvořit soubor weidmueller_cfg.rio. Klikněte na tlačítko *Configure*, v katalogu po pravé straně postupně vyberte I/O moduly, které máte připojené a naskládejte je za PLC v prostřední části ve správném pořadí. Poté klikněte na *OK* a soubor bude uložen do složky projektu.

Nyní byste měli mít v Knihovně bloků připravenu novou knihovnu se jménem driveru, tedy WM. Uvnitř najdete vygenerované bloky From a Goto podle modulů, které jste přidali do konfigurace driveru. Vyberte From bloky:

- WM__UR20_16DI_P_1_Value_0 První fyzický přepínač je připojen k modulu 16DI_P k prvnímu vstupu.
- WM__UR20_16DI_P_1_Value_1 Druhý fyzický přepínač je připojen k modulu 16DI_P k druhému vstupu.

Výstup časovače bude připojen k modulu 16D0_P k prvnímu výstupu. Vyberte tedy pro blok WM__UR20_16D0_P_1_Value_0.

Interakce s algoritmem

Po kompilaci projektu a jeho stažení na platformu interaguje řídicí algoritmus s fyzickým světem. Opět je možné přepnout do Watch mode a pozorovat signály v reálném čase nebo analyzovat trendy signálů. Přepněte fyzické přepínače a sledujte signály.

Aktualizace HMI

Je také nutné aktualizovat HMI. Bloky CNB_SWITCH1 a CNB_SWITCH3 již nejsou v algoritmu přítomné. Navíc je potřeba nahradit virtuální vstupní prvky (DW) indikátory (DR). Otevřete tedy soubor index.hmi.js a nahraďte

```
{type: 'DW', alias: 'switch1', desc: 'Spinac 1', cstring: 'myproject_task.
    CNB_SWITCH1:YCN'},
tímto
{type: 'DR', alias: 'switch1', desc: 'Spinac 1', cstring: 'myproject_task.OR_A:
    U1'},
    Podobně pro přepínač č. 3, nahraďte
{type: 'DW', alias: 'switch3', desc: 'Spinac 3', cstring: 'myproject_task.
    CNB_SWITCH3:YCN'},
tímto
{type: 'DR', alias: 'switch3', desc: 'Spinac 3', cstring: 'myproject_task.OR_B:
    U1'},
```

Uložte soubor, zkompilujte a stáhněte projekt znovu a otevřete webové rozhraní. Stiskněte dva fyzické přepínače a čekejte, až časovač spustí výstup. Alternativně můžete stále používat virtuální přepínače. To ukazuje, že můžete kombinovat fyzické a virtuální vstupní prvky.

Příklady

Ukázkové projekty a sada všech podporovaných I/O vlajek jsou zahrnuty v instalačním balíčku vývojových nástrojů REXYGEN. V REXYGEN Studio přejděte do nabídky File → Start → Start from an Example Project a vyberte jeden z příkladů platformy. Jak již bylo zmíněno, nejaktuálnější informace o příkladech jsou k dispozici na https://www.rexygen.com/example-projects/

Kapitola 8 Další kroky

Gratulujeme, vytvořili jste svůj první ukázkový projekt od začátku! Naučili jste se, jak vyvíjet, kompilovat a spouštět algoritmy na své platformě. Zvládli jste konfiguraci a práci s vstupně-výstupním ovladačem systému REXYGEN pro interakci se senzory a aktuátory. Také jste získali zkušenosti s tvorbou uživatelských rozhraní pomocí WebBuDi.

Impozantní pokrok za tak krátkou dobu, nemyslíte? Cílem těchto tutoriálů bylo rychle vás seznámit s klíčovými kroky a nástroji potřebnými k rozvoji projektů. Pro systém REXYGEN existuje také nástroj pro tvorbu vizualizací - REXYGEN HMI Designer [6], který je vhodný pro složitější vizualizace u větších projektů. Podrobnosti o tvorbě vizualizací v REXYGEN HMI Designer naleznete v samostatném manuálu [7].

Nyní je čas zaměřit se na svůj vlastní projekt a prohloubit své znalosti. Existují funkční bloky mnohem výkonnější než ty zmíněné v této příručce, mnoho inspirativních příkladových projektů a další vstupně-výstupní ovladače, které můžete využít k rozšíření vašeho projektu. Objevíte také různé způsoby výměny dat s externími systémy a zařízeními, a mnoho dalšího.

Pamatujte, že kdykoliv dosáhnete nějakého úspěchu, o který se chcete podělit, rádi si o něm poslechneme. A kdykoliv narazíte na nějaké potíže, rádi vám pomůžeme. Kontaktujte nás kdykoliv na support@rexygen.com.

Literatura

- [1] REX Controls s.r.o.. První projekt, 2024. \rightarrow .
- [2] REX Controls s.r.o.. Začínáme s řídicím systémem REXYGEN, 2024. \rightarrow .
- [3] REX Controls s.r.o.. Ovladač WagoDrv systému REXYGEN pro Wago PFC100/PFC200 - Uživatelská příručka, 2020. →.
- [4] REX Controls s.r.o.. Ovladač MonarcoDrv systému REXYGEN Uživatelská příručka, 2020. →.
- [5] REX Controls s.r.o.. Ovladač systému REXYGEN pro komunikaci Modbus Uživatelská příručka, 2020. →.
- [6] REX Controls s.r.o., REXYGEN HMI Uživatelská příručka, 2024. \rightarrow .
- [7] REX Controls s.r.o.. Tvorba HMI v REXYGEN HMI Designer, 2024. \rightarrow .

Referenční číslo dokumentace: 17331