
www.rexygen.com

I/O Con�guration of Target Platforms

User guide

REX Controls s.r.o.

Version 3.0.5
2025-07-04

Plze¬ (Pilsen), Czech Republic

www.rexygen.com

Contents

1 Introduction 2

2 Physical connections 3
2.1 WAGO PFC100/200 . 3
2.2 Raspberry Pi . 5
2.3 Monarco HAT . 5
2.4 REX M527, Unipi Patron/Axon/Neuron 5
2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000) 6

3 Adding inputs and outputs to the project 8

4 Working with I/O Signals 9
4.1 General steps for all platforms . 9
4.2 Speci�c parameters for individual platforms 10

4.2.1 WAGO PFC100/200 . 10
4.2.2 Raspberry Pi . 11
4.2.3 Monarco HAT . 12
4.2.4 REX M527, Unipi Patron/Axon/Neuron 13
4.2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000) 14

5 Interacting with the algorithm 16

6 Updating the HMI 17

7 Examples 19

8 Next Steps 20

Bibliography 20

1

Chapter 1

Introduction

To demonstrate the con�guration of inputs and outputs on di�erent platforms, we will
use the project created in the user guide [1] and continue with it. So far, the algorithm
has not interacted with the outside world; it has not been connected to any physical
signal or external data. Now, we will use the platform's input and output signals to
interact with the real world. For the Raspberry Pi, we will use GPIO pins, which can be
con�gured as inputs or outputs.

Two physical switches will be used as inputs, and a software timer will control one
output signal. In other words, this guide is dedicated to transitioning from the general
example 0101-01 to the default project for each platform shown in [2].

2

Chapter 2

Physical connections

This part of the procedure is individual for each target device. Go to the section dedicated
to your platform and continue with Chapter 3 after wiring.

2.1 WAGO PFC100/200

For this example project a simple setup is assumed:

� 1x 750-8102 PFC100 or 750-8202 PFC200 controller with power supply

� 1x 750-430 module (8 digital inputs)

� 1x 750-603 module (24V potential distribution)

� 1x 750-530 module (8 digital outputs)

� 1x 750-604 module (0V potential distribution)

� 1x 750-600 mandatory end module

Connect the switches and an external relay as shown below. The relay is optional, as the
output status is also indicated by the onboard LED of the module.

3

IMPORTANT: Note that numbering of the terminals on the WAGO modules
(above) does not comply with channel numbering (below)! Always follow the DI1..8,
DO1..8, AI1..4, etc. notation as per WAGO documentation.

4

For details and wiring examples for the platform refer to documentation of the WAGO
750/753 modular I/O system.

2.2 Raspberry Pi

Connect the switches, protective resistors (330 Ohm) and a LED indicator as shown
below.

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

2.3 Monarco HAT

Connect the switches as shown below. The motor is optional, as the output status is also
indicated by the onboard LED.

2.4 REX M527, Unipi Patron/Axon/Neuron

Connect the switches as shown below. The motor is optional, as the output status is also
indicated by the onboard LED.

5

2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)

Connect the switches as shown below. The motor is optional, as the output status is also
indicated by the onboard LED.

6

7

Chapter 3

Adding inputs and outputs to the
project

Now when we have everything wired up, it's time to include the physical signals into the
algorithm. You need to expand your project main �le with an additional function block
to access the inputs and outputs from the control algorithm in your project. Insert the
EXEC/IODRV blocks from the Block library and attach it to the EXEC block as shown
below.

In the task �le, delete the CNB_SWITCH1 and CNB_SWITCH3 blocks and replace them
with INOUT/From blocks. These will be the input signals. Also add one INOUT/Goto block,
which will serve as an output and which will be controlled by the timer. Remember that
a new branch of the line is created by dragging with the right mouse button.

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

EXEC

HMI

prev next

IODRV

prev next

myproject_task

U1
U2

Y
NY

AND

on

CNB_RUN

off

CNB_SWITCH2

off

CNB_SWITCH4

???

U1
U2

Y
NY

OR_A

U1
U2

Y
NY

OR_B

U
HLD
R1

Q
et
rt

TIMER

u1
u2
u3
u4
RUN
R1

y1

y2

y3

y4

iE

TRND

8

Chapter 4

Working with I/O Signals

Now we tell the compiler to use a speci�c I/O driver. To do this, edit the IODRV block
parameters according to the following steps:

4.1 General steps for all platforms

1. Set the IODRV block to communicate with the appropriate module for the target
platform by modifying the block parameters:

� module=<module name>

� classname=<class name>

� cfgname � set as needed (see below).

� factor=1

� Leave the other parameters intact.

2. Rename the IODRV block as recommended for each platform (e.g. WG for WAGO,
GPIO for Raspberry Pi, etc.). This name will also serve as a pre�x for all I/O signals
of this driver.

3. If necessary, create the con�guration �le for the I/O driver. Click the Con�gure
button and �ll in the form as shown below. After that, click OK and the �le will
be stored in the project folder.

4. In the From and Goto blocks, set the GotoTag parameter to the appropriate I/O
signal. The GotoTag parameter must be in the format <prefix>__<signal name>,
where the pre�x is the name of the IODRV block. Note the double underscore char-
acters. For example, WG__S1M430C1 for channel 1 of the 750-430 module in memory
slot 1.

At the end of this Chapter, your project should look like the image below with the
IODRV block name and signal pre�xes matching the platform you are using.

9

U1
U2

Y
NY

AND

on

CNB_RUN

off

CNB_SWITCH2

off

CNB_SWITCH4

???

MNR__DI1

MNR__DI3
MNR__DO1

U1
U2

Y
NY

OR_A

U1
U2

Y
NY

OR_B

U
HLD
R1

Q
et
rt

TIMER

u1
u2
u3
u4
RUN
R1

y1

y2

y3

y4

iE

TRND

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

EXEC

HMI

prev next

MNR

prev next

myproject_task

4.2 Speci�c parameters for individual platforms

4.2.1 WAGO PFC100/200

� module=WagoDrv

� classname=WagoDrv

� cfgname � leave blank

� Recommended name IODRV and signals pre�x: WG

For the needs of the project, set the GotoTag parameters for the From blocks as:

� WG__S1M430C1 � The �rst physical switch is connected to channel 1 (DI1) of the
750-430 module, which is in memory slot 1.

� WG__S1M430C3 � The second physical switch is connected to channel 3 of the same
module.

Channel 1 of the 750-530 module in memory slot 2 will serve as control signal for the
external relay. Set the Goto block (GotoTag = WG__S2M530C1).

IMPORTANT: Potential distribution modules do not provide any data, therefore
they do not take up any memory and are not counted in the module slot numbering!

Similarly for other I/Os we could use the following �ags:

� Goto, WG__S2M530C8 � channel 8 of the 750-530 module in slot 2

� From, WG__S3M555C2 � channel 2 of the 750-555 module in slot 3 (not present in
this example)

� etc.

A detailed description of the I/O driver for WAGO PFC100/200 is available in a separate
manual [3].

10

4.2.2 Raspberry Pi

� module=GpioDrv

� classname=GpioDrv

� cfgname=gpio.rio

� Recommended name IODRV and signals pre�x: GPIO

Remember to click the Con�gure button. This will create a default I/O driver con-
�guration �le (.rio). For Raspberry Pi 5, enter parameter GPIO Chip=gpiochip4. For
older versions GPIO Chip=gpiochip0. Then close the dialog.

For the needs of the project, set the GotoTag parameters for the From blocks as:

� GPIO__GPIO23UI � The �rst physical switch is connected to GPIO#23, an internal
pull-up resistor is activated and the input is inverted.

� GPIO__GPIO24UI � The second physical switch is connected to GPIO#24, an in-
ternal pull-up resistor is activated and the input is inverted.

The timer output will be routed to GPIO#25 and it will serve as the output signal. Set
the Goto block (GotoTag = GPIO__GPIO25).

Similarly for other pins we could use the following �ags:

� Goto, GPIO__GPIO22 � digital output 22

� From, GPIO__GPIO7U � digital input 7 with internal pull-up resistor

� From, GPIO__GPIO8D � digital input 8 with internal pull-down resistor

� From, GPIO__GPIO21 � digital input 21 without pull up/down resistor

The pin numbering on Raspberry Pi B+ and newer is shown in the following pictures:

5V

5V

3.3V

3.3V

GND

GND

GND

GND

GND

GND

GND

GND

GPIO2

GPIO3

GPIO4

GPIO17

GPIO27

GPIO22

GPIO10

GPIO9

GPIO11

GPIO5

GPIO6

GPIO13

GPIO19

GPIO14

GPIO15

GPIO18

GPIO23

GPIO24

GPIO25

GPIO8

GPIO7

GPIO12

GPIO16

GPIO26 GPIO20

GPIO21

SDA

SCL

TX

RX

ID_SD ID_SC

MOSI

MISO

SCLK CE0

CE1

Visit the http://elinux.org/RPi_Low-level_peripheralswebpage for detailed in-
formation about individual GPIO pins.

11

http://elinux.org/RPi_Low-level_peripherals

4.2.3 Monarco HAT

� module=MonarcoDrv

� classname=MonarcoHatDrv

� cfgname=monarcohat.rio

� Recommended name IODRV and signals pre�x: MNR

Remember to click the Con�gure button. This will create a default I/O driver con-
�guration �le (.rio). Keep the default values and close the dialog.

For the needs of the project, set the GotoTag parameters for the From blocks as:

� MNR__DI1 � The �rst physical switch is connected to DI1.

� MNR__DI3 � The second physical switch is connected to DI3.

The timer output will be routed to DO1 which will serve as the output signal. Set the
Goto block (GotoTag = MNR__DO1).

Similarly for other inputs and outputs we could use the following �ags:

� Goto, MNR__DO4 � digital output 4

� From, MNR__DI3 � digital input 3

� From, MNR__AI1 � analog input 1

A detailed description of the I/O driver for Monarco HAT is available in a separate
manual [4].

The pinout of the Monarco HAT is shown in the following picture:

12

1

2

25

26

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

P
W

R
 I

N
+

R
S

4
8

5
+

G
N

D

1
W

 5
V

 O
U

T

D
O

U
T

2

D
O

U
T

4

P
W

R
 O

U
T

P
W

R
 O

U
T

D
IN

2

D
IN

4

A
IN

2

P
W

R
 O

U
T

A
O

U
T

2

P
W

R
 G

N
D

R
S

4
8

5

�

G
N

D

1
W

 D
A

T
A

D
O

U
T

1

D
O

U
T

3

G
N

D

D
IN

 C
O

M

�

D
IN

1

D
IN

3

A
IN

1

G
N

D

A
O

U
T

1

4.2.4 REX M527, Unipi Patron/Axon/Neuron

� module=MBDrv

� classname=MtmDrv

� cfgname=patron_cfg.rio

� Recommended name IODRV and signals pre�x: PTN

You need to create the patron_cfg.rio �le. Click the Con�gure button and �ll the form
as shown below. After that, click on OK and the �le will be stored in the project folder.

For the needs of the project, set the GotoTag parameters for the From blocks as:

13

� PTN__DI1_1 � The �rst physical switch is connected to �rst group of Digital Inputs
- input 1.

� PTN__DI1_3 � The second physical switch is connected to Digital Input 1.3.

The timer output will be routed to Digital Output 1.1 and it will serve as the output
signal. Set the Goto block (GotoTag = PTN__DO1_1).

Notice that the communication with the device is mediated by the Modbus TCP
protocol. A detailed description of the driver for Modbus TCP is available in a separate
manual [5].

Note: If you are using an older Unipi Axon or Neuron, the setup is the same. For
clarity, you can use the pre�x AXN, or NRN instead of PTN.

4.2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)

� module=UControlDrv

� classname=UControlDrv

� cfgname=weidmueller_cfg.rio

� Recommended name IODRV and signals pre�x: WM

You need to create the weidmueller_cfg.rio �le. Click the Con�gure button, then in
the catalogue on the right-hand side, select the I/O modules you have connected one by
one and arrange them after the PLC in the middle section in the correct order. Finally,
click OK, and the �le will be saved to the project folder.

14

You should now have a new library prepared in the Block Library with the name of
the driver, namely WM. Inside, you will �nd the generated From and Goto blocks according
to the modules you added to the driver con�guration. Select the From blocks:

� WM__UR20_16DI_P_1_Value_0 � The �rst physical switch is connected to the 16DI_P
module on the �rst input.

� WM__UR20_16DI_P_1_Value_1 � The second physical switch is connected to the
16DI_P module on the second input.

The timer output will be connected to the 16DO_P module on the �rst output. Therefore,
select the block WM__UR20_16DO_P_1_Value_0.

15

Chapter 5

Interacting with the algorithm

After compiling the project and downloading it to the platform, the control algorithm
interacts with the physical world. Again it is possible to switch to Watch mode and
observe the signals in real-time or analyze the trends of signals. Flip the physical switches
and watch the signals.

U1
U2

Y
NY

AND

Y

CNB_RUN

Y

CNB_SWITCH2

Y

CNB_SWITCH4

off

MNR__DI1

MNR__DI3
MNR__DO1

U1
U2

Y
NY

OR_A

 on
 off

on
off

U1
U2

Y
NY

OR_B

 on
 off

on
off

U
HLD
R1

Q
et
rt

TIMER

u1
u2
u3
u4
RUN
R1

y1

y2

y3

y4

iE

TRND

16

Chapter 6

Updating the HMI

It is also necessary to update the HMI. The CNB_SWITCH1 and CNB_SWITCH3 blocks are
no longer present in the algorithm. Moreover, we need to replace virtual input elements
(DW) with indicators (DR). Therefore open the index.hmi.js �le and replace

{type: 'DW', alias: 'switch1', desc: 'Switch 1', cstring: 'myproject_task.

CNB_SWITCH1:YCN'},

with

{type: 'DR', alias: 'switch1', desc: 'Switch 1', cstring: 'myproject_task.OR_A:

U1'},

Similarly for switch no. 3, replace

{type: 'DW', alias: 'switch3', desc: 'Switch 3', cstring: 'myproject_task.

CNB_SWITCH3:YCN'},

with

{type: 'DR', alias: 'switch3', desc: 'Switch 3', cstring: 'myproject_task.OR_B:

U1'},

Save the �le, compile and download the project again and open the web interface.
Push the two physical switches and wait until the timer triggers the output. Alternatively,
you can still use the virtual switches. This demonstrates that you can combine physical
and virtual input elements.

17

18

Chapter 7

Examples

Example projects and a set of all supported I/O �ags are included in the installation
package of the REXYGEN system development tools. In REXYGEN Studio, go to menu
File → Start → Start from an Example Project and select one of the platform's
examples. As mentioned earlier, the most up-to-date information about examples are
available at
https://www.rexygen.com/example-projects/

19

https://www.rexygen.com/example-projects/

Chapter 8

Next Steps

Congratulations on creating your �rst example project from scratch! You've learned how
to develop, compile, and run your algorithms on the platform. You now know how to
con�gure and work with the REXYGEN system's I/O driver to interact with sensors
and actuators. Additionally, you've gained experience in creating user interfaces with
WebBuDi.

Impressive progress in a short time, right? The goal of these tutorials was to quickly
introduce you to the essential steps and tools needed for project development. For the
REXYGEN system, there is also a tool for creating visualizations - REXYGEN HMI De-

signer [6], which is suitable for more complex visualizations in larger projects. Details on
creating visualizations in REXYGEN HMI Designer can be found in a separate manual [7].

Now it's time to focus on your own project and deepen your understanding. There are
functional blocks far more powerful than those introduced in this guide, many inspira-
tional example projects, and additional I/O drivers to expand your project's capabilities.
You'll also discover various ways to exchange data with external systems and devices,
and much more.

Remember, whenever you achieve something you'd like to share, we're always excited
to hear about it. And whenever you run into a challenge, we're here to help. Reach out
to us anytime at support@rexygen.com.

20

mailto:support@rexygen.com

Bibliography

[1] REX Controls s.r.o.. First Project, 2024. →.

[2] REX Controls s.r.o.. Getting started with REXYGEN, 2024. →.

[3] REX Controls s.r.o.. WagoDrv driver of REXYGEN for Wago PFC100/PFC200 �
User guide, 2020. →.

[4] REX Controls s.r.o.. MonarcoDrv driver of REXYGEN � User guide, 2020. →.

[5] REX Controls s.r.o.. Modbus driver of REXYGEN � User guide, 2020. →.

[6] REX Controls s.r.o.. REXYGEN HMI � User manual, 2024. →.

[7] REX Controls s.r.o.. HMI creation in REXYGEN HMI Designer, 2024. →.

Documentation reference number: 17331

21

https://www.rexygen.com/doc/ENGLISH/MANUALS/First_Project/First_Project_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/RexygenGettingStarted/RexygenGettingStarted_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/WagoDrv/WagoDrv_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/MonarcoDrv/MonarcoDrv_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/MbDrv/MbDrv_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/RexHMI/RexHMI_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/HMI_Creation/HMI_Creation_ENG.html

	1 Introduction
	2 Physical connections
	2.1 WAGO PFC100/200
	2.2 Raspberry Pi
	2.3 Monarco HAT
	2.4 REX M527, Unipi Patron/Axon/Neuron
	2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)

	3 Adding inputs and outputs to the project
	4 Working with I/O Signals
	4.1 General steps for all platforms
	4.2 Specific parameters for individual platforms
	4.2.1 WAGO PFC100/200
	4.2.2 Raspberry Pi
	4.2.3 Monarco HAT
	4.2.4 REX M527, Unipi Patron/Axon/Neuron
	4.2.5 Weidmüller u-OS PLC (WL2000, M3000, M4000)

	5 Interacting with the algorithm
	6 Updating the HMI
	7 Examples
	8 Next Steps
	 Bibliography

