\\¥# REXYGEN

WWW.rexygen.com

Function Blocks of REXYGEN
Reference manual

REX Controls s.r.o.

Version 3.0.2
2024-09-16
Plzeni (Pilsen), Czech Republic

www.rexygen.com

Contents

1 Introduction
1.1 How to use this manual

1.2 The function block description format
1.3 Conventions for variables, blocks and subsystems naming
1.4 Signal Quality Corresponding with OPC

2 EXEC — Real-time executive configuration

ALARMS — REXYGEN alarms list .
ARC — REXYGEN archive
EXEC — Real-time executive
HMI — HMI configuration

INFO — Additional project information
I0DRV — REXYGEN input/output driver
I0TASK - REXYGEN driver-triggered task

LPBRK — Loop break

MODULE — REXYGEN extension module

OSCALL — Operating system calls .

PROJECT — Additional project settings

QTASK - REXYGEN quick task . .
SLEEP — Timing in Simulink
SRTF — Set run-time flags.

STATELOAD — Load multiple block states and parameters
STATESAVE — Save multiple block states and parameters

SYSEVENT — Read system log
SYSLOG — Write system log
TASK — REXYGEN standard task .

TIODRV — REXYGEN input/output driver with tasks

WWW — Internal webserver content .

3 INOUT - Input and output blocks

Display — Numeric display of input values

FromFile — From File
FromWorkspace — From Workspace

3

17
17
23
24
25

27
29
32
34
36
38
39
41
42
43
44
45
46
47
48
20
92
54
56
o7
29
61

4 CONTENTS

GotoTagVisibility — Visibility of the signal source. 69
INCONN — Block for remote value acquirement 70
INQUAD, INOCT, INHEXD — Multi-input blocks 71
From, INSTD — Signal connection or input 73
I0ASYNC — Asynchronous reading and writing 75
OUTCONN — Block for remote value setting 76
OUTQUAD, QUTOCT, QUTHEXD — Multi-output blocks 7T
OUTRQUAD, OUTROCT, OUTRHEXD — Multi-output blocks with verification . . . 79
OUTRSTD — QOutput block with verification 80
Goto, OUTSTD — Signal source or output 81
Inport, Qutport — Input and output port 83
QFC — Quality flags coding oo oL 85
QFD — Quality flags decoding oL 86
SubSystem — Subsystem block oo oL 87
ToFile —To File o . . o oo 89
ToWorkspace — To Workspace oL 90
VIN — Validation of the input signal 91
VOUT — Validation of the output signal 92
4 MATH — Math blocks 93
ABS — Absolute valueo 95
ADD - Addition of two signals oL oo 96
ADDQUAD, ADDOCT, ADDHEXD — Multi-input addition 97
CNB — Boolean (logic) constant 98
CNE — Enumeration constant 99
CNI — Integer constant 100
CNR — Real constant o 101
DIF — Difference o 102
DIV — Division of two signals L0 103
EAS — Extended addition and subtraction. 104
EMD — Extended multiplication and division 105
FNX — Evaluation of single-variable function 106
FNXY — Evaluation of two-variables function 109
GAIN — Multiplication by a constant 111
GRADS — Gradient search optimization, 112
IADD — Integer addition Lo 114
IDIV — Integer division L 116
IMOD — Remainder after integer division 117
IMUL — Integer multiplication L. 118
ISUB — Integer subtraction L. 120
LIN — Linear interpolation 122
MUL — Multiplication of two signals 123
NANINF — Block for checking NaN and Inf values 124

POL — Polynomial evaluation 126

CONTENTS 5

REC — Reciprocal value o L 127
REL — Relational operator 128
RTOI — Real to integer number conversion 129
SQR — Square value 131
SQRT — SQUaAre 00t oL e e 132
SUB — Subtraction of two signals oo 133
UTOI — Unsigned to signed integer number conversion 134
5 ANALOG — Analog signal processing 135
ABSROT — Absolute rotation (multiturn extension of the position sensor) . 137
ASW — Switch with automatic selection of input 139
AVG — Moving average filter oL 141
AVS — Motion control unit Lo 142
AVSI — Smooth trajectory interpolationo 143
BPF — Band-pass filter oL 146
CMP — Comparator with hysteresis 147
CNDR — Nonlinear conditioner 148
DEL — Delay with initialization L. 150
DELM — Time delay 151
DER — Derivation, filtering and prediction from the last n+1 samples . . . 152
EVAR — Moving mean value and standard deviation 154
INTE — Controlled integrator 155
KDER — Derivation and filtering of the input signal 157
LPF — Low-pass filter 159
MINMAX — Running minimum and maximum 161
NSCL — Nonlinear scaling factor 162
0SD— One Step Delay 163
RDFT — Running discrete Fourier transform 164
RLIM — Rate limiter 166
S10F2 — One of two analog signals selector 167
SAI — Safety analog input 170
SEL — Selector switch for analog signals 173
SELQUAD, SELOCT, SELHEXD — Selector switch for analog signals 174
SHIFTOCT — Data shift register 176
SHLD — Sample and hold 178
SINT — Simple integrator 179
SPIKE — Spike filter 180
SSW — Simple switcho oo 182
SWR — Selector with ramp Lo 183
VDEL — Variable time delay oL 184

ZVAIS — Zero vibration input shaper 185

6 CONTENTS

6 GEN — Signal generators 189
ANLS — Controlled generator of piecewise linear function 190
BINS — Controlled binary sequence generator 192
BIS — Binary sequence generatort 194
BISR — Binary sequence generator with reset 196
MP — Manual pulse generator Lo 198
PRBS — Pseudo-random binary sequence generator 199
SG, SGI — Signal generatorso oL 201

7 REG — Function blocks for control 203
ARLY — Advancerelayo 205
FIWR — Frequence Identification With Reconstructor 206
FLCU — Fuzzy logic controller unit 209
FRID — Frequency response identification 211
I3PM — Identification of a three parameter model 215
LC — Lead compensator 217
LLC — Lead-lag compensator L. 218
LPI — Loop performance index, 219
MCU — Manual control unit0 221
PIDAT — PID controller with relay autotuner 223
PIDE — PID controller with defined static error 226
PIDGS — PID controller with gain scheduling 228
PIDMA — PID controller with moment autotuner 230
PIDU — PID controller unit L 237
PIDUI — PID controller unit with variable parameters 241
POUT — Pulse output 243
PRGM — Setpoint programmer Lo 244
PSMPC — Pulse-step model predictive controller 246
PWM — Pulse width modulation 0. 250
RLY — Relay with hysteresis 252
SAT — Saturation with variable limits 253
SC2FA — State controller for 2nd order system with frequency autotuner. . 255
SCU — Step controller with position feedback 262
SCUV — Step controller unit with velocity input 265
SELU — Controller selector unit 268
SMHCC — Sliding mode heating/cooling controller 270
SMHCCA — Sliding mode heating/cooling controller with autotuner 274
SWU — Switch unit 281
TSE — Three-state element 282

8 LOGIC - Logic control 283
AND — Logical product of two signals 284
ANDQUAD, ANDQCT, ANDHEXD — Multi-input logical product 285

ATMT — Finite-state automaton 286

CONTENTS 7

BDOCT, BDHEXD — Bitwise demultiplexers 288
BITOP — Bitwise operation 289
BMOCT, BMHEXD — Bitwise multiplexers 290
COUNT — Controlled counter 291
EATMT — Extended finite-state automaton 293
EDGE — Falling/rising edge detection in a binary signal 296
EQ — Equivalence two signals Lo oL 297
INTSM — Integer number bit shift and mask 298
ISSW — Simple switch for integer signals L. 299
ITOI — Transformation of integer and binary numbers 300
NOT — Boolean complementation 301
OR — Logical sum of two signals 302
ORQUAD, OROCT, ORHEXD — Multi-input logical sum 303
RS — Reset-set flip-flop circuit 304
SR — Set-reset flip-flop circuit oL 305
TIMER — Multipurpose timer oL 306
9 TIME — Blocks for handling time 309
DATE — Current date 310
DATETIME — Get, set and convert time 311
TC — Timer control and status 314
TIME — Current timeo 316
TS — Current timestamp oL 317
TS2NS — Timestamp difference in nanoseconds 319
WSCH — Week scheduler oo 320
10 ARC — Data archiving 323
ACD — Archive compression using Delta criterion 325
ACLEAR — Forced archive purge 327
AFLUSH — Forced archive flushing 328
ALB, ALBI — Alarms for Boolean value 329
ALM, ALMI — Alarm store value 331
ALN, ALNT — Alarms for numerical value 332
ARS — Archive store value Lo 335
TRND — Real-time trend recording 337
TRNDV — Real-time trend recording (for vector signals) 340
11 STRING — Blocks for string operations 343
CNS — String constant 344
CONCAT — Concat string by pattern 345
FIND — Find substring oL 346
ITOS — Integer number to string conversion 347
LEN — String length oL 348

MID — Substring extraction 349

8 CONTENTS

PJROCT - Parse JSON string (real output) 350
PJSEXOCT — Parse JSON string (string output) 352
PJSOCT - Parse JSON string (string output) 354
REGEXP — Regular expression parser« . v v v .. 356
REPLACE — Replace substring 358
RTOS — Real number to string conversion 359
SELSOCT — Selector switch for string signals 360
STOR — String to real number conversion 362
TRIM — Remove leading and trailing whitechar 363
12 PARAM - Blocks for parameter handling 365
GETPA — Block for remote array parameter acquirement 366
GETPB, GETPI, GETPR — Blocks for remote parameter acquirement 368
GETPS — Block for remote string parameter acquirement 370
GETPX — Block for remote parameter acquirement 371
PARA — Block with input-defined array parameter 373
PARE — Block with input-defined enumeration parameter 375
PARB, PARI, PARR — Blocks with input-defined parameter 376
PARS — Block with input-defined string parameter 378
PARX — Block with input-defined parameter 379
SETPA — Block for remote array parameter setting 381
SETPB, SETPI, SETPR — Blocks for remote parameter setting 383
SETPS — Block for remote string parameter setting 385
SETPX — Block for remote parameter setting 386
SGSLP — Set, get, save and load parameters 388
SILO — Save input value, load output value 392
SILOS — Save input string, load output string 394
13 MODEL — Dynamic systems simulation 397
CDELSSM — Continuous state space model with time delay 399
CSSM — Continuous state space modelo 402
DDELSSM — Discrete state space model with time delay 405
DFIR — Discrete finite input response filter 407
DSSM — Discrete state space model 408
EKF — Extended (nonlinear) Kalman filter 411
FOPDT — First order plus dead-time model 414

IPEN2, IPEN3 — N-link inverted pendulum on cart - Physical parameters . 415
IPEN2pu, IPEN3pu — N-link inverted pendulum on cart - Dynamic parameters418

MDL — Process model 421
MDLI — Process model with input-defined parameters 422
MVD — Motorized valve drive Lo 423
NSSM — Nonlinear State-Space Model 424
NUREACT — Model of nuclear reactor 427

QCOPT — Model of quadrucopter 428

CONTENTS 9

SGEN — Synchronous generator model 430
SGENTX — Synchronous generator model 432
SOPDT — Second order plus dead-time model 434
STMGEN — Model of steam generator 436
STURB — Steam turbine model 438
14 MATRIX — Blocks for matrix and vector operations 441
CNA — Array (vector/matrix) constant 444
MB_DASUM — Sum of the absolute values 446
MB_DAXPY — Performs y := a*x + y for vectors x,y 448
MB_DCOPY — Copies vector x to vector y 450
MB_DDOT — Dot product of two vectors 452
MB_DGEMM — Performs C := alpha*op(A)*op(B) + beta*C, where op(X) =
Xorop(X) =X"T . oo 454
MB_DGEMV — Performs y := alpha*A*x + beta*y or y := alpha®*A~T*x +
beta*y e 456
MB_DGER — Performs A := alpha*x*y"T + A 458
MB_DNRM2 — Euclidean norm of a vector 460
MB_DROT — Plain rotation of a vector 462
MB_DSCAL — Scales a vector by a constant 464
MB_DSWAP — Interchanges two vectors 466
MB_DTRMM — Performs B := alpha*op(A)*B or B := alpha*B*op(A), where
op(X) = X or op(X) = X"T for triangular matrix A 468

MB_DTRMV — Performs x := A*x or x := A"T*x for triangular matrix A . . 470
MB_DTRSV — Solves one of the system of equations A*x = b or A" T*x =

b for triangular matrix A 472
ML_DGEBAK — Backward transformation to ML DGEBAL of left or right
eigenvectors L. Lo 474
ML_DGEBAL — Balancing of a general real matrix 476
ML_DGEBRD — Reduces a general real matrix to bidiagonal form by an or-
thogonal transformation Lo 478
ML_DGECON — Estimates the reciprocal of the condition number of a general
real matrix oL oL 480
ML_DGEES — Computes the eigenvalues, the Schur form, and, optionally,
the matrix of Schur vectors 483
ML_DGEEV — Computes the eigenvalues and, optionally, the left and/or right
elgenvectorso 485

ML_DGEHRD — Reduces a real general matrix A to upper Hessenberg form . 487
ML_DGELQF — Computes an LQ factorization of a real M-by-N matrix A . . 489
ML_DGELSD — Computes the minimum-norm solution to a real linear least

squares problemo 491
ML_DGEQRF — Computes an QR factorization of a real M-by-N matrix A . . 493
ML_DGESDD - Computes the singular value decomposition (SVD) of a real

M-by-N matrix A 495

10 CONTENTS
ML_DLACPY — Copies all or part of one matrix to another matrix 497
ML_DLANGE — Computes one of the matrix norms of a general matrix . . . 499
ML_DLASET — Initilizes the off-diagonal elements and the diagonal elements
of a matrix to given values Lo 501
ML_DTRSYL — Solves the real Sylvester matrix equation for quasi-triangular
matrices Aand B oL oL 503
MX_AT - Get Matrix/Vector element 505
MX_ATSET — Set Matrix/Vector element 506
MX_CNADD — Add scalar to each Matrix/Vector element 507
MX_CNMUL — Multiply a Matrix/Vector by a scalar 508
MX_CTODPA — Discretizes continuous model given by (A B) to (Ad,Bd)
using Pade approximations oo 509
MX_DIM — Matrix/Vector dimensions 511
MX_DIMSET - Set Matrix/Vector dimensions 512
MX_DSAGET — Set subarray of Ainto B 514
MX_DSAREF — Set reference to subarray of Ainto B 516
MX_DSASET — Set A into subarray of B 518
MX_DTRNSP — General matrix transposition: B := alpha*A~"T 520
MX_DTRNSQ — Square matrix in-place transposition: A := alpha*A~T . . . 522
MX_FILL — Fill real matrix or vector 524
MX_MAT — Matrix data storage blocko 525
MX_RAND — Randomly generated matrix or vector 526
MX_REFCOPY — Copies input references of matrices A and B to their output
references L L 528
MX_SLFS — Save or load a Matrix/Vector into file or string 529
MX_VEC — Vector data storage block 532
MX_WRITE — Write a Matrix/Vector to the console/system log 933
RTOV — Vector multiplexer 935
SWVMR — Vector/matrix/reference signal switch 537
VTOR — Vector demultiplexer L. 938

15 OPTIM - Optimization blocks 539
QP_MPC2QP — Conversion of MPC problem to quadratic programming . . . 540
QP_0ASES — Quadratic programming using active set method 547
QP_UPDATE — Update matrices/vectors of quadratic programming 552
SOLNP — Nonlinear optimization solver 557

16 SPEC — Special blocks 561
EPC — External program call L. 562
HTTP - Block for generating HTTP GET or POST requests (obsolete) . . 565
HTTP2 — Block for generating HT'TP requests 567
RDC — Remote data connection 569
REXLANG — User programmable block 573

SMTP — Block for sending e-mail alerts via SMTP 593

CONTENTS 11

STEAM — Steam and water properties 995
UART — UART communication block, 600
17 LANG — Language blocks 603
LUA, LUAQUAD, LUAOCT, LUAHEXD — User programmable blocks in Lua. . . . 604
PYTHON — User programmable block in Python 608
18 DSP — Digital Signal Processing blocks 613
BSFIFO — Binary Structure - Queueing serialize and deserialize 614

BSGET, BSGETOCT — Binary Structure - Get a single value of given type . . 616
BSGETV, BSGETOCTV — Binary Structure - Get matrix (all values of same
GIVEN LYPE) .« o o o e e e 618
BSSET, BSSETOCT — Binary Structure - Set a single value of given type . . . 620
BSSETV, BSSETOCTV — Binary Structure - Set matrix (all values of same

GIVEN BYPE) .« o o o e e e e e 621
FFT — Fast Fourier Transform 622
MOSS — Motion smart senzor 624
PCI — PCI Bus Memory Access 626
PSD — Power Spectral Density 627
19 MQTTDrv — Communication via MQTT protocol 633
MgttPublish — Publish MQTT message 634
MgttSubscribe — Subscribe to MQTT topic 636
20 MC_SINGLE — Motion control - single axis blocks 639
MCP_AccelerationProfile — * Acceleration profile 641
MCP_Halt — * Stopping a movement (interruptible) 643
MCP_HaltSuperimposed — * Stopping a movement (superimposed and in-
terruptible) 644
MCP_Home — * Homing 645
MCP_MoveAbsolute — * Move to position (absolute coordinate) 647
MCP_MoveAdditive — * Move to position (relative to previous motion) . . . 649

MCP_MoveContinuousAbsolute — * Move to position (absolute coordinate) 651
MCP_MoveContinuousRelative — * Move to position (relative to previous

MOLION) . . . o 653
MCP_MoveRelative — * Move to position (relative to execution point) . . . 655
MCP_MoveSuperimposed — * Superimposed move 657
MCP_MoveVelocity — * Move with constant velocity 658
MCP_PositionProfile — * Position profile 660
MCP_SetOverride — * Set override factors 662
MCP_Stop — * Stopping a movement 663
MCP_TorqueControl — * Torque/force control 664

MCP_VelocityProfile — * Velocity profile 666

12 CONTENTS

MC_AccelerationProfile, MCP_AccelerationProfile — Acceleration pro-

file . . . e 668
MC_Halt, MCP_Halt — Stopping a movement (interruptible) 672
MC_HaltSuperimposed, MCP_HaltSuperimposed — Stopping a movement
(superimposed and interruptible) 673
MC_Home, MCP_Home — Homing 674
MC_MoveAbsolute, MCP_MoveAbsolute — Move to position (absolute coor-
dinate) 676
MC_MoveAdditive, MCP_MoveAdditive — Move to position (relative to pre-
VIOUS MOLION) © « o v v v v e e 680
MC_MoveContinuousAbsolute, MCP_MoveContinuousAbsolute — Move to
position (absolute coordinate) Lo 683
MC_MoveContinuousRelative, MCP_MoveContinuousRelative — Move to
position (relative to previous motion) 686
MC_MoveRelative, MCP_MoveRelative — Move to position (relative to ex-
ecution point) 690
MC_MoveSuperimposed, MCP_MoveSuperimposed — Superimposed move . . 693
MC_MoveVelocity, MCP_MoveVelocity — Move with constant velocity . . . 696
MC_PositionProfile, MCP_PositionProfile — Position profile 700
MC_Power — Axis activation (power on/off) 704
MC_ReadActualPosition — Read actual position 705
MC_ReadAxisError — Read axis error 706
MC_ReadBoolParameter — Read axis parameter (bool) 707
MC_ReadParameter — Read axis parameter 708
MC_ReadStatus — Read axis status 710
MC_Reset — Reset axis errors 712
MC_SetOverride, MCP_SetOverride — Set override factors 713
MC_Stop, MCP_Stop — Stopping a movement 715
MC_TorqueControl, MCP_TorqueControl — Torque/force control 717
MC_VelocityProfile, MCP_VelocityProfile — Velocity profile 720
MC_WriteBoolParameter — Write axis parameter (bool) 724
MC_WriteParameter — Write axis parameter 725
RM_Axis — Motion control axis 726
RM_AxisOut — Axisoutput 733
RM_AxisSpline — Commanded values interpolation 734
RM_HomeOffset — * Homing by setting offset 739
RM_Track — Tracking and inching 740
21 MC_MULTI — Motion control - multi axis blocks 743
MCP_CamIn — * Engage thecam 745
MCP_CamTableSelect — Cam definition 747
MCP_CombineAxes — * Combine the motion of 2 axes into a third axis . . . 749
MCP_GearIn — * Engage the master/slave velocity ratio 751

MCP_GearInPos —* Engage the master/slave velocity ratio in defined position753

CONTENTS 13

MCP_PhasingAbsolute — * Create phase shift (absolute coordinate) 755
MCP_PhasingRelative — * Create phase shift (relative to previous motion) 757
MC_CamIn, MCP_CamIn — Engage thecam 759
MC_CamQut — Disengage thecam 763
MC_CombineAxes, MCP_CombineAxes — Combine the motion of 2 axes into
athird axis oL 765
MC_GearIn, MCP_GearIn — Engange the master/slave velocity ratio 768
MC_GearInPos, MCP_GearInPos — Engage the master/slave velocity ratio
in defined positiono 771
MC_GearOut — Disengange the master/slave velocity ratio 776
MC_PhasingAbsolute, MCP_PhasingAbsolute — Phase shift in synchro-
nized motion (absolute coordinates) 778
MC_PhasingRelative, MCP_PhasingRelative — Phase shift in synchro-
nized motion (relative coordinates) L. 781
22 MC_COORD — Motion control - coordinated movement blocks 783
MCP_GroupHalt — * Stopping a group movement (interruptible) 787
MCP_GroupInterrupt — * Read a group interrupt 788
MCP_GroupSetQOverride — * Set group override factors 789
MCP_GroupSetPosition — * Sets the position of all axes in a group 790
MCP_GroupStop — * Stopping a group movement 791
MCP_MoveCircularAbsolute — * Circular move to position (absolute co-
ordinates) L 792
MCP_MoveCircularRelative — * Circular move to position (relative to
execution point) 794

MCP_MoveDirectAbsolute — * Direct move to position (absolute coordinates) 796
MCP_MoveDirectRelative — * Direct move to position (relative to execu-
ton point)o 798
MCP_MoveLinearAbsolute — * Linear move to position (absolute coordinates)800
MCP_MoveLinearRelative — * Linear move to position (relative to execu-

ton point) L 802
MCP_MovePath — * General spatial trajectory generation 804
MCP_MovePath_PH — * General spatial trajectory generation PH 806
MCP_SetCartesianTransform — * Sets Cartesian transformation 808
MCP_SetKinTransform_Arm — * Kinematic transformation robot ARM . . 810
MCP_SetKinTransform_UR — * Kinematic transformation for UR robot . . 812
MC_AddAxisToGroup — Adds one axistoa group 814
MC_GroupContinue — Continuation of interrupted movement 815
MC_GroupDisable — Changes the state of a group to GroupDisabled 816
MC_GroupEnable — Changes the state of a group to GroupEnable 817
MC_GroupHalt — Stopping a group movement (interruptible) 818
MC_GroupInterrupt, MCP_GroupInterrupt — Read a group interrupt . . . 823

MC_GroupReadActualAcceleration — Read actual acceleration in the se-
lected coordinate systemo 824

14 CONTENTS
MC_GroupReadActualPosition — Read actual position in the selected co-
ordinate systemo 825
MC_GroupReadActualVelocity — Read actual velocity in the selected co-
ordinate systemo Lo 826
MC_GroupReadError — Read a group error 827
MC_GroupReadStatus — Read a group status 828
MC_GroupReset — Reset axeserrors 829
MC_GroupSetOverride — Set group override factors 830
MC_GroupSetPosition, MCP_GroupSetPosition — Sets the position of all
AXES I & ErOUD .+ .« v v v v v e e e e e e 831
MC_GroupStop — Stopping a group movement 833
MC_MoveCircularAbsolute — Circular move to position (absolute coordi-
nates) ... 836
MC_MoveCircularRelative — Circular move to position (relative to exe-
cution point) e 840
MC_MoveDirectAbsolute — Direct move to position (absolute coordinates) 844
MC_MoveDirectRelative — Direct move to position (relative to execution
POINt) « . oL 847
MC_MoveLinearAbsolute — Linear move to position (absolute coordinates) 850
MC_MoveLinearRelative — Linear move to position (relative to execution
point) ... 854
MC_MovePath — General spatial trajectory generation 858
MC_MovePath_PH — * General spatial trajectory generation PH 860
MC_ReadCartesianTransform— Reads the parameter of the cartesian trans-
formationo 862
MC_SetCartesianTransform — Sets Cartesian transformation 863
MC_UngroupAllAxes — Removes all axes from the group 865
RM_AxesGroup — Axes group for coordinated motion control 866
RM_Feed — * MC Feeder 777 869
RM_Gcode — * CNC motion control 870
RM_GroupTrack — T 872

23 CanDrv — Communication via CAN bus 875
CanItem — Secondary received CAN message 876
CanRecv — Receive CAN message 878
CanSend — Send CAN messageo 880

24 OpcUaDrv — Communication using OPC UA 881
OpcUaReadValue — Read value from OPC UA Server 882
OpcUaServerValue — Expose value as an OPC UA Node 884

OpcUaWriteValue — Write value to OPC UA Server 886

CONTENTS

25 UNIPI — Communication blocks for Unipi
IM201CNT — Iris IM201CNT, 4 digital counters
IM201DI — Iris IM201DI, 4 digital inputs
IM203D0 — Iris IM203DO, 8 digital outputs
IM203PWM — Iris IM203PWM, 8 PWM outputs
IM204CNT — Iris IM204CNT, 16 digital counters
IM204DI — Iris IM204DI, 16 digital inputs
IM205D0 — Iris IM205DO, 16 digital outputs
IM205PWM — Iris IM205PWM, 16 PWM outputs
IM301CNT — Iris IM301CNT, 2 digital counters
IM301DI — Iris IM301DI, 2 digital inputs
IM301D0 — Iris IM301DO, 2 digital outputs
IM502A0 — Iris IM502A0, 4 analog outputs
IM503AT — Iris IM503AI, 8 analog inputs
IM504RI — Iris IM504RI, 8 resistance or temperature inputs
IM506AT — Iris IMB06AI, 2 analog inputs
IM506A0 — Iris IM506AO0, 1 analog output
IRIS_MODULE — Iris - Module description info
UNIPI_CHANNEL — Iris module or Patron section info.
UNIPI_PRODUCT — Product description info
UNIPI_S1ATI - Patron section 1, analog input
UNIPI_S1AO0R — Patron section 1, analog output or resistance input
UNIPI_S1CNT — Patron section 1, counters
UNIPI_S1DI — Patron section 1, digital inputs
UNIPI_S1D0 — Patron section 1, digital outputs
UNIPI_S1LED — Patron section 1, LED outputs.
UNIPI_S1PWM — Patron section 1, PWM outputs
UNIPI_S2AT — Patron section 2, analog inputs
UNIPI_S2A0 — Patron section 2, analog outputs
UNIPI_S2CNT — Patron section 2, counters
UNIPI_S2DI — Patron section 2, digital inputs
UNIPI_S2R0 — Patron section 2, relay outputs

A Licensing options

B Licensing of individual function blocks
C Error codes of the REXYGEN system

D Special signals of the REXYGEN system

Bibliography

15

889
891
892
893
894
895
897
898
899
901
902
903
904
905
907
909
911
912
913
915
916

. 917

918
919
920
921
922
923
924
925
926
927

929

931

945

951

953

16

CONTENTS

Index 955

Note: Only a partial documentation is available in blocks marked by * .

Chapter 1

Introduction

The manual “REXYGEN system function blocks” is a reference manual for the REXYGEN
system function block library RexLib. It includes description and detailed information
about all function blocks RexLib consists of.

1.1 How to use this manual

The extensive function block library RexLib, which is a standard part of the REXYGEN
system, is divided into smaller sets of logically related blocks, the so-called categories
(sub-libraries). A separate chapter is devoted to each category, introducing the general
properties of the whole category and its blocks, followed by a detailed description of
individual function blocks.

The content of individual chapters of this manual is as follows:

1 Introduction
This introductory chapter familiarizes readers with the content and ordering of the
manual. A convention used for individual function block descriptions is presented.

2 EXEC — Real-time executive configuration
The EXEC library is essential for setting up the real-time executive in the REXY-
GEN system and includes key blocks like EXEC, TASK, QTASK, and HMI. These blocks
are fundamental for managing task execution, determining process priorities, and
interacting with user interfaces, significantly contributing to the efficiency and con-
trollability of applications within the REXYGEN ecosystem.

3 INOUT — Input and output blocks
The INOUT library serves as a crucial interface in the REXYGEN system, enabling
smooth interaction with input/output drivers. It is designed for efficient simulta-
neous signal processing, essential for fast control tasks. This library simplifies the
connection between control algorithms and hardware, ensuring minimal latency.
Additionally, it provides advanced features, such as virtual linking (flags) of sig-
nals for increased clarity of diagrams and flexibility of subsystems.

17

CHAPTER 1. INTRODUCTION

4 MATH — Math blocks

The MATH library offers a comprehensive collection of mathematical operations
and functions. It includes basic arithmetic blocks like ADD, SUB, MUL, and DIV for
standard calculations, and more specialized blocks such as ABS for absolute values,
SQRT for square roots, and SQR for squaring. Advanced functionalities are pro-
vided by blocks like LIN for linear transformations, POL for polynomial evaluations,
and FNX, FNXY for customizable mathematical functions. The library also features
integer-specific operations through blocks like TADD, IMUL, IDIV, and IMOD.

5 ANALOG - Analog signal processing
Library presents a versatile range of functional blocks, designed for control and
signal processing applications. It includes blocks like ASW, AVG, BPF, and DEL, which
provide functionalities from signal manipulation and averaging to filtering and com-
plex conditional operations, catering to a broad spectrum of system requirements
and scenarios.

6 GEN — Signal generators
The GEN library is specialized in signal generation. It includes blocks like ANLS for
generating a piecewise linear function of time or binary sequence generators BINS,
BIS, BISR. The library also features MP for manual pulse signal generation, PRBS for
pseudo-random binary sequence generation, and SG for periodic signals generation.
This library provides essential tools for creating and manipulating various signal

types.

7 REG — Function blocks for control

The control function blocks form the most extensive sub-library of the RexLib li-
brary. Blocks ranging from simple dynamic compensators to several modifications
of PID (P, I, PI, PD a PID) controller and some advanced controllers are included.
The blocks for control schemes switching and conversion of output signals for var-
ious types of actuators can be found in this sub-library. The involved controllers
include the PIDGS block, enabling online switching of parameter sets (the so-called
gain scheduling), the PIDMA block with built-in moment autotuner, the PIDAT block
with built in relay autotuner, the FLCU fuzzy controller or the PSMPC predictive con-
troller, etc.

8 LOGIC — Logic control

The LOGIC library encompasses a range of blocks for executing logical and sequen-
tial operations. It includes basic Boolean blocks like AND, OR, NOT for fundamental
logical operations, and advanced blocks like ATMT for finite state machines. Blocks
like COUNT and TIMER extend functionality to bidirectional pulse counting and time-
based operations. Additional elements like BITOP, BMOCT, and BDOCT offer bitwise
operations and multiplexing/demultiplexing capabilities, enhancing the library’s
versatility in handling combinational and sequential logic control.

9 TIME — Blocks for handling time
The TIME library is specialized for time-based operations and scheduling in REXY-

1.1. HOW TO USE THIS MANUAL 19

10

11

12

13

GEN system. It includes blocks like DATE, TIME and DATETIME for handling date and
datetime, providing essential tools for working with temporal data. The library
features TC for itnernal timer control. Additionally, WSCH is used for scheduling,
enabling efficient management of time-dependent tasks. This library is particularly
valuable for systems requiring precise time management and scheduling capabili-
ties.

ARC — Data archiving

The RexCore executive of the REXYGEN system consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.).
One of these subsystems is the archiving subsystem. The archiving subsystem takes
care of recording the history of the control algorithm.

STRING — Blocks for string operations

The STRING library is dedicated to string manipulation and analysis in REXYGEN
system. It includes blocks like CONCAT for concatenating strings, FIND for searching
within strings, and REPLACE for replacing string segments. The library offers LEN
and MID for determining string length and extracting substrings, respectively. Ad-
vanced pattern matching is provided by REGEXP. Conversion blocks such as ITOS,
STOR and RTOS convert integers and real numbers to strings, while a simple CNS
block defines a string constant. Additionally, the library features blocks like PJROCT
for JSON parsing. This collection of blocks is essential for handling and processing
string data in various applications.

PARAM - Blocks for parameter handling

The PARAM library is designed for parameter management and signal processing
in the REXYGEN system. It includes blocks like PARR and its variants for defining
and modifying various types of parameters. Blocks for getting parameters of other
blocks like GETPA and GETPS. Conversely, SETPA, SETPR and SETPS are used to
dynamically set parameter values of other blocks. Additionally, the library contains
SILO and SILOS for exporting and importing values from a file. This library is
crucial for systems requiring dynamic parameter manipulation and the ability to
read /save values to a file.

MODEL — Dynamic systems simulation

The MODEL library is centered around system modeling and simulation. It in-
cludes blocks like CSSM and DSSM for continuous and discrete state-space models,
and DFIR for digital finite impulse response filters. The library offers EKF for Ex-
tended Kalman Filter implementations, and FOPDT, SOPDT for first and second order
process time delay models. Additionally, it provides FMUCS and FMUINFO for inter-
facing with Functional Mock-up Units, and MDL, MDLI for generic model interfaces.
Advanced functionalities are covered by blocks like CDELSSM, DDELSSM for contin-
uous and discrete state space models of a linear system with time delay, and MVD
for model variable delays, catering to a wide range of modeling requirements in
REXYGEN system.

20

14

15

16

17

18

CHAPTER 1. INTRODUCTION

MATRIX — Blocks for matrix and vector operations

The MATRIX library is designed for advanced matrix computations and manip-
ulations. It encompasses a wide range of blocks such as MB_DGEMM, MB_DTRMM,
and MB_DGER for matrix-matrix and matrix-vector operations. The library includes
functions for matrix decomposition (ML_DGEBRD, ML_DGEQRF), eigenvalue problems
(ML_DGEEV, ML_DGEES), and singular value decomposition (ML_DGESDD). Addition-
ally, it offers utility blocks like MX_MAT, MX_VEC, and MX_FILL for matrix creation
and manipulation, as well as specialized blocks such as MX_DTRNSP for matrix trans-
position and MX_RAND for generating random matrices. This library is essential for
complex mathematical operations involving matrices in various applications.

OPTIM — Optimization blocks

The OPTIM library is tailored for optimization algorithms and processes. It in-
cludes QCEDPOPT for Quadratic Cost Economic Dispatch Problem optimization,
providing advanced tools for handling complex optimization problems. The library
also features blocks like QP_MPC2QP and QP_O0ASES for Quadratic Programming, es-
sential in Model Predictive Control (MPC) scenarios. Additionally, QP_UPDATE is
available for updating quadratic program parameters. This library is particularly
useful in systems requiring high-level optimization solutions, such as in advanced
control and decision-making algorithms.

SPEC — Special blocks

The SPEC library encompasses a diverse set of functional blocks designed to inte-
grate a wide range of functionalities into automation, control systems, and commu-
nication protocols. From facilitating precise thermodynamic calculations with the
STEAM block to enabling seamless data communication through UART and SMTP, the
library serves as a comprehensive toolkit for engineers and developers. It includes
specialized blocks for executing external programs (EPC), handling web-based re-
quests (HTTP2). Additionally, it offers unique input-output solutions (RDC) and a
versatile programming environment with REXLANG.

LANG — Language blocks

The standard function blocks of the REXYGEN system cover the most typical needs
in control applications. But there still exist situations where it is necessary (or more
convenient) to implement an user-defined function. For these purposes, the blocks
from the LANG library, or the REXLANG block, can be used.

DSP — Digital Signal Processing blocks

The DSP library is tailored for advanced digital signal processing. It includes blocks
like FFT for Fast Fourier Transform operations and PSD for Power Spectral Density
analysis. The library also features BSFIFO, BSGET, BSGETV, BSSET, and BSSETV for
buffer storage and retrieval, enabling efficient data handling in signal processing
tasks. In addition, the library contains a MOSS block - an advanced filter for incre-
mental sensors. This collection of blocks is essential for sophisticated signal analysis
and manipulation in digital systems.

1.1. HOW TO USE THIS MANUAL 21

19 MQTTDrv — Communication via MQTT protocol

The MQTTDrv library is designed for IoT (Internet of Things) communication
using the MQTT (Message Queuing Telemetry Transport) protocol. It consists of
two primary blocks: MgqttPublish and MgttSubscribe. The MgttPublish block is
used for sending messages to an MQTT broker, enabling the publication of data to
MQTT topics. Conversely, the MgttSubscribe block is designed for subscribing to
topics and receiving messages from a broker. This library facilitates efficient and
effective data communication in IoT applications, leveraging the lightweight and
widely-used MQTT protocol for message exchange.

20 MC_SINGLE — Motion control - single axis blocks

The MC_SINGLE library is designed for motion control in single-axis systems. It
features blocks like MC_MoveAbsolute, MC_MoveRelative, and MC_MoveVelocity
for precise positioning and speed control. The library includes MC_Home for homing
operations, and MC_Power for controlling the power state of the axis. Advanced
functionalities are provided by MC_AccelerationProfile, MC_PositionProfile,
and MC_VelocityProfile for customizing motion profiles. It also offers moni-
toring and parameter adjustment capabilities through MC_ReadActualPosition,
MC_ReadAxisError, MC_ReadParameter, and MC_WriteParameter. Additionally, the
library contains blocks like MC_Halt, MC_Reset, and MC_Stop for emergency and
control operations. This library is essential for applications requiring precise and
controlled motion in single-axis configurations.

21 MC_MULTI — Motion control - multi axis blocks

The MC_MULTLI library is specialized for multi-axis motion control. It includes
blocks like MC_CombineAxes for synchronizing multiple axes, MC_GearIn and MC_GearQOut
for gearing operations, and MC_PhasingAbsolute, MC_PhasingRelative for precise

axis phasing. The library offers MC_CamIn and MC_CamQut for camming functionali-
ties, allowing complex motion profiles to be followed. Additionally, MCP_CamTableSelect
provides flexibility in selecting cam tables, and MC_GearInPos enables position-
based gearing. This library is essential for advanced applications requiring coordi-
nated motion control across multiple axes.

22 MC_COORD - Motion control - coordinated movement blocks
The MC_COORD library is specifically designed for the coordination of multi-
axis motion control within complex systems. It encompasses a variety of blocks,
including MC_MoveLinearAbsolute for executing precise linear movements, com-
plemented by MC_MoveLinearRelative for relative linear motion. For the execu-
tion of circular motion, the library incorporates MC_MoveCircularAbsolute along-
side MC_MoveCircularRelative, ensuring detailed circular trajectories. In the con-
text of managing group axis control, this library introduces MC_AddAxisToGroup,
which is further supported by functionalities such as MC_GroupEnable for activa-
tion, MC_GroupDisable for deactivation, and MC_GroupHalt for immediate stopping
of grouped axes. Furthermore, the library provides MC_MoveDirectAbsolute and
MC_MoveDirectRelative, enabling direct control over axis movements. For navi-

22 CHAPTER 1. INTRODUCTION

gating through complex paths, MC_MovePath is made available. Essential monitor-
ing and control features are facilitated by MC_GroupReadActualPosition for posi-
tional data, MC_GroupReadActualVelocity for velocity insights, MC_GroupReadError
for error detection, and MC_GroupReadStatus for status updates. Additionally, the
library integrates MC_ReadCartesianTransform and MC_SetCartesianTransform,
which are vital for Cartesian transformation processes. This collection of func-
tionalities underscores the library’s significance in applications that demand the
synchronized control of multiple axes, particularly in the realms of robotics and
automation systems.

23 CanDrv — Communication via CAN bus
The CanDrv library is dedicated to handling CAN (Controller Area Network) bus
communication in REXYGEN system. It features CanItem for managing CAN data
items, CanRecv for receiving messages from the bus, and CanSend for sending mes-
sages. This library provides essential tools for efficient and reliable communication
over CAN networks, facilitating data exchange and control commands between
various system components.

24 OpcUaDrv — Communication using OPC UA

The OpcUaDrv library is specialized in interfacing with OPC UA (Open Platform
Communications Unified Architecture) servers for industrial automation. The first
block — OpcUaReadValue is designed for reading data from servers, making it pivotal
for data acquisition in automated systems. The OpcUaWriteValue block enables
writing data to servers, allowing for control and command execution. Additionally,
the OpcUaServerValue block facilitates the monitoring and management of server
values. This library serves as a critical tool for seamless communication and inter-
action with OPC UA servers, enhancing the capabilities of automation systems.

25 UNIPI — Communication blocks for Unipi
This library is used to control and monitor Unipi devices. It includes blocks for
reading and writing digital and analog inputs and outputs, blocks for controlling
relays, PWM outputs, LED diodes and reading counters. For reading buses, drivers
such as OwsDrv or MbDrv can be used. The blocks work in accordance with the
manufacturer’s documentation [1], where technical details about individual devices
and their inputs and outputs can be found.

The individual chapters of this reference guide are not much interconnected, which means
they can be read in almost any order or even only the necessary information for specific
block can be read for understanding the function of that block. The electronic version
of this manual (in the .pdf format) is well-suited for such case as it is equipped with
hypertext bookmarks and contents, which makes the look-up of individual blocks very
easy.

Despite of that it is recommended to read the following subchapter, which describes
the conventions used for description of individual blocks in the rest of this manual.

1.2. THE FUNCTION BLOCK DESCRIPTION FORMAT 23

1.2 The function block description format

The description of each function block consists of several sections (in the following order):
Block Symbol — displays the graphical symbol of the block

Function Description — brief description of the block function, omitting too detailed
information.

Inputs — detailed description of all inputs of the block
Outputs — detailed description of all outputs of the block
Parameters — detailed description of all parameters of the block

Examples — a simple example of the use of the block in the context of other blocks and
optional graph with input and output signals for better understanding of the block
function.

If the block function is obvious, the section Examples is omitted. In case of block with
no input or no output the corresponding section is omitted as well.

The inputs, outputs and parameters description has a tabular form:

<name> [nam| Detailed description of the input (output, parameter) <type>
<name>. Mathematical symbol nam on the right side of the
first column is used in the equations in the Function Description
section. It is listed only if it differs from the name more
than typographically. If the variable value is limited to only
enumerated values, the meaning of these values is explained in
this column. [©<def>] [{<min>| [T<max>]|

The meaning of the three columns is quite obvious. The third column contains the
item <type>. The REXYGEN control system supports the types listed in table 1.1. But
the most frequently used types are Bool for Boolean variables, Long (I32) for integer
variables and Double (F64) for real variables (in floating point arithmetics).

Each described variable (input, output or parameter) has a default value <def> in
the REXYGEN system, which is preceded by the ® symbol. Also it has upper and lower
limits, preceded by the symbols | and 1 respectively. All these three values are optional
(marked by [|). If the value ®<def> is not listed in the second column, it is equal to
zero. If the values of |<min> and/or f<max> are missing, the limits are given by the the
minimum and/or maximum of the corresponding type, see table 1.1'.

"Precise range of the Large data type is -9223372036854775808 to 9223372036854775807.

24 CHAPTER 1. INTRODUCTION
Type Meaning Minimum Maximum
Bool Boolean value 0 or 1 0 1
Byte (U8) 8-bit integer number without the sign 0 255
Short (I16) 16-bit integer number with the sign -32768 32767
Long (I32) 32-bit integer number with the sign -2147483648 | 2147483647
Large (I64) 64-bit integer number with the sign —9.2234 - 1018 | 9.2234 - 1018
Word (U16) 16-bit integer number without the sign 0 65535
DWord (U32) 32-bit integer number without the sign 0 | 4294967295
Float (F32) 32-bit real number in floating point arithmetics —3.4-10%8 3.4-10%8
Double (F64) | 64-bit real number in floating point arithmetics —1.7-103%8 1.7 10308
String character string

Table 1.1: Types of variables in the REXYGEN system.

1.3 Conventions for variables, blocks and subsystems nam-

ing

Several conventions are used to simplify the use of the REXYGEN control system. All
used variable types were defined in the preceding chapter. The term variable refers to
function block inputs, outputs and parameters in this chapter. The majority of the blocks
uses only the following three types:

Bool — for two-state logic variables, e.g. on/off, yes/no or true/false. The logic one (yes,
true, on, 1) is referred to as on in this manual. Similarly the logic zero (no, false,
off, 0) is represented by off. This holds also for REXYGEN Studio. Other tools and
3rd party software may display these values as 1 for on and 0 for off. The names

of logic variables consist of uppercase letters, e.g. RUN, YCN, R1, UP, etc.

Long (I32) — for integer values, e.g. set of parameters ID, length of trend buffer, type
of generated signal, error code, counter output, etc. The names of integer variables
use usually lowercase letters and the initial character (always lowercase) is in most
cases {i,k,1,m,n, or o}, e.g. ips, 1, isig, iE, etc. But several exceptions to this
rule exist, e.g. cnt in the COUNT block, btype, ptypel, pfac and afac in the TRND

block, etc.

Double (F64) — for floating point values (real numbers), e.g. gain, saturation limits,
results of the majority of math functions, PID controller parameters, time interval
lengths in seconds, etc. The names of floating point variables use only lowercase

letters, e.g. hilim, y, ti, tt.

The function block names in the REXYGEN system use uppercase letters, numbers
and the ?_? (underscore) character. It is recommended to append a lowercase user-defined
string to the standard block name when creating user instances of function blocks.

1.4. SIGNAL QUALITY CORRESPONDING WITH OPC 25

It is explicitly not recommended to use diacritic and special characters like spaces,
CR (end of line), punctuation, operators, etc. in the user-defined names. The use of such
characters limits the transferability to various platforms and it can lead to incompre-
hension. The names are checked by the REXYGEN Compiler compiler which generates
warnings if inappropriate characters are found.

1.4 Signal Quality Corresponding with OPC

Every signal (input, output, parameter) in the REXYGEN system has the so-called quality
flags in addition to its own value of corresponding type (table 1.1). The quality flags
in the REXYGEN system correspond with the OPC (Open Platform Communications)
specification [2]. They can be represented by one byte, whose structure is explained in
the table 1.2.

Bit number 7 6 5 4 3 2 1 0
Bit weight 128 64 32 16 8 4 2 1
Bit field Quality Substatus Limits

Q Q S S S S L L
BAD 0 0 S S S S L L
UNCERTAIN 0 1 S S S S L L
not used in OPC | 1 0 S S S S L L
GOOD 1 1 S S S S L L

Table 1.2: The quality flags structure

The basic quality type is determined by the QQ flags in the two most important
bits. Based on these the quality is distinguished between GO0D, UNCERTAIN and BAD. The
four SSSS bits provide more detailed information about the signal. They have different
meaning for each basic quality. The two least significant bits LL inform whether the
value exceeded its limits or if it is constant. Additional details and the meaning of all
bits can be found in [2], chapter 6.8. The list of blocks propagating signal quality is given
in table 1.3.

The principle of quality propagation between blocks operates as follows: The lowest
quality among all data inputs to a block is determined and applied to all data outputs.
Any unconnected input is considered as good quality (GOOD). Quality on control inputs is
not tracked; however, control inputs can influence the propagation of quality from data
inputs. On status outputs, the quality is invariably set to good (GOOD).

For instance, in a DEL block, the input u is considered data because it carries opera-
tional data. The input R1 is classified as control since it controls the block’s operation.
The output y is data because it conveys the block’s output information. The RDY output
is status as it indicates the operational state of the block.

Except for certain cases (SAI, VIN, S10F2), the quality does not influence the block’s
algorithm (i.e., the actual values at the outputs). Some blocks may assign a lower quality
(UNCERTAIN, BAD) as a result of their algorithm (e.g., DEL prior to buffer filling or DIV

26 CHAPTER 1. INTRODUCTION
ABSROT ABS ADDHEXD | ADD ANDHEXD AND ARLY ASW
ATMT AVG AVSI AVS BDHEXD BITOP BMHEXD BPF
CDELSSM | CMP CNA CNB CNDR CNI CNR CNS
CONCAT COUNT | CSSM DDELSSM | DELM DEL DER DFIR
DIF DIV DSSM EAS EATMT EDGE EMD EQ
EVAR FIND FIWR FLCU FNXY FNX FOPDT FRID
GAIN GETPA | GETPR GETPS GETPX TADD IDIV IMOD
IMUL INTE INTSM TOASYNC | ISSW ISUB ITOI ITOS
KDER LC LEN LIN LLC LPBRK LPF LPI
MCU MDLI MDL MID MINMAX MUL MVD NANINF
NOT NSCL ORHEXD OR 08D PIDAT PIDE PIDGS
PIDMA PIDUI | PIDU POL POUT PSMPC PWM RDFT
REC REL REPLACE | RLIM RLY RS RTOI RTOS
RTOV SAT SC2FA SCUV SCU SELHEXD | SELSOCT | SELU
SETPA SETPR | SETPS SETPX SHIFTOCT | SHLD SINT SMHCCA
SMHCC SOPDT | SPIKE SQRT SQR SR SSW STOR
SUB SWR SwuU TIMER TRIM TSE UTO0I VDEL
VIN VTOR ZV41s

Table 1.3: The list of blocks prapagating signal quality

when dividing by zero).

Chapter 2

EXEC — Real-time executive

configuration
Contents
ALARMS — REXYGEN alarms list o000 v oo 29
ARC — REXYGEN archive i 32
EXEC — Real-time executive o o v vt v vt i e 34
HMI — HMI configuration 36
INFO — Additional project information 38
I0DRV — REXYGEN input/output driver 39
I0TASK — REXYGEN driver-triggered task 41
LPBRK —Loop break ¢ v v v vttt v v v vt v o oo oo 42
MODULE — REXYGEN extension module 43
OSCALL — Operating system calls« v v v v v v v v v v v v oo 44
PROJECT — Additional project settings 45
QTASK — REXYGEN quick task 46
SLEEP — Timing in Simulink, 47
SRTF — Set run-time flags . . . « v v ¢ v ¢t v v v v v v v e v v v v o v 48
STATELOAD — Load multiple block states and parameters. 50
STATESAVE — Save multiple block states and parameters 52
SYSEVENT — Read systemlog 54
SYSLOG — Write system log, . 56
TASK — REXYGEN standard task 57
TIODRV — REXYGEN input/output driver with tasks 59
WWW — Internal webserver content 61

27

28 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

The EXEC library is essential for setting up the real-time executive in the REXY-
GEN system and includes key blocks like EXEC, TASK, QTASK, and HMI. These blocks are
fundamental for managing task execution, determining process priorities, and interact-
ing with user interfaces, significantly contributing to the efficiency and controllability of
applications within the REXYGEN ecosystem.

29

ALARMS — REXYGEN alarms list

Block Symbol Licence: STANDARD

ALARMS

Function Description

The ALARMS is placed in the main project file and allows the user to configure list of
alarms. Alarms are activated by the ALM or ALMI blocks. Alarms are defined in a .csv
(Comma separated variable) file. The afile parameter contains the file name of the
.csv file. An alarm could be activated also by the ALB, ALBI, ALN, ALNT blocks, but these
blocks not use definitions in the ALARMS block.

The configuration file has the following columns:

id ... Unique alarm reference number. The number is used in the ALM
block, in archive records, etc.

level ... The value stored into an archive record (in the level field).

archives ... Bit field — identifies archives for recording events associated with

the alarm (alarm starts, ends, acknowledges). E.g. 0 = not stored
in the archive, 1 = stored in the 1st archive, 2 = stored in the 2nd
archive, 4 = stored in the 3rd archive, 3 = stored in the 1st and
2nd archives, etc.

group ... Reserved for future use, now some number (or bitfield up to 64
bits) to filter alarm’s list in HMI.

name ... Name of the alarm; can be used as the alarm identifier, so it should
be unique.

description ... A text description for the alarm, allowing for multilingual text

formatting and the incorporation of values related to the alarm
within the description.

Multilingual support

REXYGEN supports multilingual alarm description. The description field must be in the
form:
<langl_ID>:<langl text>|<lang2_ID>:<lang2 text>|<lang3_ID>:<lang3 text>

Number of languages is not limited, but total size of the field is limited to 32765 bytes
(english characters). The langl (language 1) is used if the user sets unsupported language.
If the user sets an empty language (i.e. ""), the entire text will be displayed, i.e. all
languages including formatting marks.

Example: Let’s expect the description field in the form: cz:P¥epéti|en:High voltage
alarm. The user will see High voltage alarm if the language is set to en. The user will

30 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

see Prepéti if the language is set to cz. The user will see P¥ep&ti in all other cases (for
example if the language is set to de, cze, EN, en-us, etc.).

Associated values

The description field can contain special marks that is replaced by values from control
algorithm — so-called associated values. The mark has the form:

h<value number>[<format>][:<number of characters>[:<precision>]]
where the format is one of the following characters:

b, B ... binary value (string on or off is shown)

d, D ... integer number shown as decimal string, the default value for integer types

%, X ... integer number shown as hexadecimal string

f, F ... real number in fix point form, the precision of it is a number of digits behind
decimal point (if precision is specified)

e, E ... real number in exponential (scientific) form

g, G ... the same as F or E (depends on actual value), the default format for real
number types

s, S ... text string

The default type is used if the format is not specified or if the type of the value is not
compatible with the specified format. More characters than it is specified is used if it is
necessary to show the correct value.

Format Examples:
h2 ... value of 2nd variable (e.g. av2 in the ALM or ALMI block)
%#1:8:2 ... value of 1st variable (e.g. avl in the ALM or ALMI block), 2 characters behind
decimal point, total 8 characters (leading spaces are used if necessary)
hle ... value of 1st variable (e.g. avl in the ALM or ALMI block) in exponential form

The ALB, ALBI blocks not use associated values. The ALN and ALNI maps it this way:
. value of the u input

. value of the h parameter (input)

. value of the hh parameter (input)

. value of the 1 parameter (input)

. value of the 11 parameter (input)

. value of the tout parameter (input)

SO W N~

Remarks:

e [t is possible to use comma or semicolon as a separator in the .csv file. The first
row with column names is optional.

e Alarms (lines) in the file must be in the ascending order respect to the id.

e The id must be unique including other alarming/archiving blocks (TRND, ALB, ALN,

).

31

e It is possible to use the internal editor (the Configure button in parametric dialog)
or external tool. Internal editor generates a correct example if the .csv file does
not exist.

e The blocks ALB, ALBI, ALN and ALNI regard 1vl > 127 as an event, where only its
begin (nor end nor acknowledge) is stored into archives. The blocks ALM, ALMI do
not implement this event function.

e Alarm’s associated values are stored into alarm’s value when alarm is triggered
(begin). Later changes of the associated values are not updated in an alarm window
in HMT.

e Alarm window in HMI can show also alarm name. It is the name of the block
(without block type if it prefixes the block name) that is connected to the alarm.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

afile Alarms definition CSV filename String

32 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

ARC — REXYGEN archive

Block Symbol Licence: STANDARD
[prev_next}

ARC

Function Description

The ARC block is intended for archives configuration in the REXYGEN control system. The
archives can be used for continuous recording of alarms, events and history trends directly
on the target platform. The output Archives of the EXEC block must be connected to
the prev input of the first archive. The following archives can be added by connecting
the input prev with the preceding archive’s output next. Only one archive block can
be connected to each next output, the output of the last archive remains unconnected.
The resulting archives sequence determines the order of allocation and initialization of
individual archives in the REXYGEN system and also the index of the archive, which
is used in the arc parameter of the archiving blocks (see chapter 10). The archives are
numbered from 1 and the maximum number of archives is limited to 15 (archive no. 0 is
the internal system log).

The atype parameter determines the type of archive from the data-available-after-
restarting point of view. The admissible types depend on the target platform properties,
which can be inspected in the Diagnostics section of the REXYGEN Studio program after
successful connecting to the target device. The following options are usually available:

e 1: RAM memory: The archive is allocated in RAM memory (it is irretrievably
lost after restarting RexCore).

e 2: Permanent memory: The archive is allocated in backup memory, e.g. CMOS
(remains after restarting RexCore).

e 3: Disk: Archive is saved to disk (remains after restarting RexCore).

Archive consists of sequenced variable-length items (memory and disk space opti-
mization) with a timestamp. Therefore the other parameters are the total archive size in
bytes asize and maximum number of timestamps nmarks for speeding-up the sequential
seeking in the archive.

The frequency of writing values can be influenced by the period parameter. For
devices using flash memory or SD cards as a disk, it is not suitable to write values too
often, therefore it is appropriate to set this parameter to a value in the order of minutes.
Furthermore, it is possible to select a suitable source of time stamps with the timesrc
parameter.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

33

Input
prev Input for chaining archives Long (I32)
Parameter
atype Archive type ®1 Long (I32)
1 ... RAM memory
2 ... Permanent memory
3 ... Disk
asize Archive size [bytes] 1256 ©102400 Long (I32)
nmarks Number of time stamps }2 ©720 Long (I32)
ldaymax Maximum size of archive per day [bytes] Large (I64)
41000 12147480000 1048576
period Period of writing data to disk [s] (©60.0 Double (F64)
timesrc Source of timestamps ®1 Long (I32)
1 ..., CORETIMER
2 ... CORETIMER (precise)
3 ... RTC (UTC)
4 ..., RTC (localtime)
5 PFC
6 TSC
Output

next Output for chaining archives Long (I32)

34 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

EXEC — Real-time executive

Block Symbol Licence: STANDARD

Modules

Drivers

Archives

QTask

Level0

Level1

Level2

Level3

EXEC

Function Description

The EXEC block is a cornerstone of the so-called project main file in the .mdl format,
which configures individual subsystems of the REXYGEN system. No similar block can
be found in the Matlab-Simulink system. The EXEC block and all connected configuration
blocks do not implement any mathematic algorithm. Such configuration structure is used
by the REXYGEN Compiler compiler during building of the overall REXYGEN control
system application.

The REXYGEN system configuration consists of modules (Modules), input/output
drivers (Drivers), archive subsystem (Archives) and real-time subsystem, which in-
cludes quick computation tasks (see the QTASK function block description for details)
and four priority levels (LevelO to Level3) for inserting computation tasks (see the
TASK function block description for details).

The base (shortest) period of the application is determined by the tick parameter.
This value is checked by the REXYGEN Compiler compiler as its limits vary by selected
target platform. Generally speaking, the lower period is used, the higher computational
requirements of the REXYGEN system runtime core (RexCore) are.

The periods of individual computation levels (LevelO to Level3) are determined by
multiplying the base period tick by the parameters ntickO to ntick3. Parameters pri0
to pri3 are the logical priorities of corresponding computation levels in the REXYGEN
system. The REXYGEN system uses 32 logical priorities, which are internally mapped to
the target platform operating system dependent priorities. The highest logical priority
of the REXYGEN system is 0, the value 31 means the lowest. Should two tasks with
different priorities run at the same time, the lower priority (higher value) task would be

35

interrupted by the higher priority (lower value) task.

The default priorities pri0O to pri3 reflect the commonly accepted idea that the
"fast" tasks (short sampling period) should have higher priority than the "slow" ones
(the so-called Rate monotonic scheduling). This means that the default priorities need
not to be changed in most cases. Impetuous changes can lead to unpredictable effects!

On multi-core CPUs, the parameters cpu_rt and cpu_other can be used to reserve
a core for real-time tasks (e.g. Drivers and Levels) and a core for other REXYGEN
tasks (e.g. diagnostics or web server). After filling the parameter on a given CPU, only
the defined REXYGEN tasks will run. Furthermore, the parameters cpu0 to cpu3 can
be used to assign a core to a given Level. The CPUs are numbered starting from 0,
where -1 means the default setting. The parameters cpu0-3 have priority over cpu_rt
and cpu_other.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
target target (OGeneric target device String
tick Base tick (period) of the runtime core [s] (0.05 Double (F64)
ntick0..ntick3 Period of tasks in LevelO (tick*ntickO) 11 ®10 Long (I32)
pri0..pri3 Priority of tasks in LevelO 13131 ©®5 Long (I32)
cpu_rt Default CPU core for real-time tasks (-1=default, O=core 0, Long (I32)
1=core 1, ...) -1 1127 ©-1
cpu_other Default CPU core for non real-time tasks (-1=default, 0O=core 0, Long (I32)
1=core 1, ...) -1 1127 ©-1
cpu0. .cpu3d Level0 tasks CPU core (-1=default, 0=core 0, 1=core 1, ...) Long (I32)
1-1 1127 &-1
Output
Modules Anchor for chain of modules Long (I32)
Drivers Anchor for chain of I/O drivers Long (I32)
Archives Anchor for chain of archives Long (I32)
QTask Anchor for connecting a quick task Long (I32)

Level0. .Level3 Anchor for chain of LevelO tasks Long (I32)

36 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

HMI — HMI configuration

Block Symbol Licence: STANDARD
]

HMI

Function Description

The HMI block is a so-called "pseudo-block" which stores additional settings and param-
eters related to the Human-Machine Interface (HMI) and the contents of the internal
web server. The only file where the block can be placed is the main project file with a
single EXEC block and so it belongs to the EXEC category.

The REXYGEN system currently provides three straightforward methods of how to
create Human-Machine Interface:

e WebWatch is an auto-generated HMI from the REXYGEN Studio development
tool during project compilation. It has similar look, attributes and functions as the
online mode of the REXYGEN Studio development tool. The main difference is that
WebWatch is stored on the target device, is available from the integrated web
server and may be viewed with any modern web browser or any application that is
compatible with HTML, SVG and JavaScript. The WebWatch is a perfect tool
for instant creation of HMI that is suitable for system developers or integrators. It
provides a graphical interaction with almost all signals in the control algorithm.

e WebBuDi, which is an acronym for Web Buttons and Displays, is a simple JavaScript
file with several declarative blocks that describe data points which the HMI is con-
nected to and assemble a table in which all the data is presented. It provides a
textual interaction with selected signals and is suitable for system developers and
integrators or may serve as a fall-back mode HMI for non-standard situations.

e RexHMI is a standard SVG file that is edited using REXYGEN HMI Designer. The
REXYGEN HMI Designer is a great tool for creating graphical HMI that is suitable
for operators and other end users.

The IncludeHMI parameter includes or excludes the HMI files from the final binary
form of the project. The HmiDir specifies a path to a directory where the final HMI is
located and from where it is inserted into the binary file during project compilation.
The path may be absolute or relative to the project. The GenerateWebWatch specifies
whether a WebWatch HMI should be generated into HmiDir during compilation. The
GenerateRexHMI specifies whether a RexHMI and WebBuDi should be generated into
HmiDir during compilation.

The logic of generating and including HMI during project compilation is as follows:

37

1. Delete all contents from HmiDir when GenerateWebWatch or GenerateRexHMI is
specified.

2. Generate RexHMI and WebBuDi from SourceDir into HmiDir if GenerateRexHMI
is enabled. All WebBuDi source files should be named in a *.hmi . js format and
all RexHMLI source files should be named in a *.hmi.svg format. The generated
files are then named *.html.

3. Copy all contents from SourceDir except WebBuDi or RexHMI source files into
HmiDir if IncludeHMI is enabled.

4. Insert HMI from HmiDir into binary configuration if IncludeHMI is enabled.

The block does not have any inputs or outputs. The HMI block itself does not become
a part of the final binary configuration, only the files it points to do. Be careful when
inserting big files or directories as the integrated web server is not designed for mas-
sive data transfers. It is possible to shrink the data by enabling gzip compression. The
compression also reduces amount of data transferred to the client, but decompression
must be performed by the server when a client does not support gzip compression, which
brings additional load on the target device.

For a proper operation of the HMI block the compilation must be launched from the
REXYGEN Studio development tool and the REXYGEN HMI Designer must be installed.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

IncludeHMI Include HMI files in the project ®on Bool

HmiDir Output folder for HMI files Ohmi String

SourceDir Source directory Ohmisrc String

GenerateWebWatch Generate WebWatch HMI source files from MDL files Bool
Gon

GenerateRexHMI Build HMI from SVG and JS files when compiling project Bool
®on

RedirectToHMI Webserver will automatically redirect to HMI webpage Bool
(®on

Compression Enable data compression Bool

38 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

INFO — Additional project information

Block Symbol Licence: STANDARD

INFO
Function Description

The INFO block is a so-called "pseudo-block” which stores textual information about a
real-time executive. The only file where the block can be placed is a main project file
with a single EXEC block and so it belongs to the EXEC category.

The block does not have any inputs or outputs. The information specified with this
block becomes a part of the final configuration, is stored on the target device and may
be seen on different diagnostics screens but does not have any impact on execution of
the control algorithm or target’s behaviour.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
Title Project title String
Author Project author String
Description Brief description of the project String

Customer Information about the customer String

39

I0DRV — REXYGEN input/output driver

Block Symbol Licence: STANDARD
v)

IODRV

Function Description

The input /output drivers of the REXYGEN system are implemented as extension modules
(see the MODULE block). A module can contain several drivers, which are added to the
REXYGEN system configuration by using the IODRV blocks. The prev input of the block
must be connected with the Drivers output of the EXEC block or with the next output of
a I0DRV block which is already included in the configuration. There can be only one driver
connected to the next output of the I0DRV block. The next output of the last driver in the
configuration remains unconnected. This means that the drivers create a unidirectional
chain which defines the order of initialization and execution of the individual drivers, see
the MODULE block for more details.

Each driver of the REXYGEN system is identified by its name, which is defined by
the classname parameter (beware, the name is case-sensitive!). If the name of the driver
differs from the name of the module containing the given driver, the module name must
be specified by the module parameter, it is left blank otherwise. Details about these two
parameters can be found in the documentation of the corresponding REXYGEN system
driver.

The majority of drivers stores its own configuration data in files with .rio extension
(REXYGEN Input/Output), whose name is specified by the cfgname parameter. The .rio
files are created in the same directory where the project main file is located (.md1 file with
the EXEC block). Driver is configured (e.g. names of the input/output signals, connection
to physical inputs/outputs, parameters of communication with the input/output device,
etc.) in an embedded editor provided by the driver itself. The editor is opened when the
Configure button is pressed in the parameter dialog of the IODRV block in the REXYGEN
Studio program of the REXYGEN control system. In Matlab/Simulink the editor is opened
upon ticking the "Tick this checkbox to call IOdrv EDIT dialog" checkbox.

The remaining parameters are useful only when the driver implements its own com-
putational task (see the corresponding driver documentation). The factor parameter
defines the driver’s task execution period by multiplying the EXEC block’s tick param-
eter factor times (factor*tick). The stack parameter defines the stack size in bytes.
It is recommended to keep the default setting unless stated otherwise in the driver
documentation. The parameter pri defines the logical priority of the driver’s task. Inap-
propriate priority can influence the overall performance of the control system critically so
it is highly recommended to check the driver documentation and the load of the control
system (drivers, levels and tasks) in the Diagnostics section of the REXYGEN Studio

40 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

program. The cpu parameter can be used to specify where the driver thread should run
on multi-CPU devices.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
prev Input for chaining I/O drivers Long (I32)

Parameter
module Module name String
classname I/O driver class name ©DrvClass String
cfgname Configuration file name @iodrv.rio String
factor Execution factor J1 ®10 Long (I32)
stack Stack size [bytes] 11024 ©®10240 Long (I32)
pri Driver thread logical priority 41131 ®3 Long (I32)
cpu CPU core assigned to driver thread (-l1=default, 0O=core 0, Long (I32)

1=core 1, ...) $-1 1127 ©-1
Output

next Output for chaining I/O drivers Long (I32)

41

I0TASK — REXYGEN driver-triggered task

Block Symbol Licence: STANDARD
[prev_next}

IOTASK

Function Description

Standard tasks of the REXYGEN system are integrated into the configuration using the
TASK or QTASK blocks. Such tasks are executed by the system timer, whose tick is
configured by the EXEC block.

But the system timer can be unsuitable in some cases, e.g. when the shortest ex-
ecution period is too long or when the task should be executed by an external event
(input signal interrupt) etc. In such a case the I0OTASK can be executed directly by the
I/O driver configured by the TIODRV block. The user manual of the given driver provides
more details about the possibility and conditions of using the above mentioned approach.
Note: The parameter MDLOPEN is intended for the internal needs of the REXYGEN
system and cannot be changed manually.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
prev Input for chaining I/0 tasks Long (I32)
Parameter
factor Execution factor ®1 Long (I32)
stack Stack size [bytes] ©10240 Long (132)
filename Corresponding MDL file String
MDLOPEN Is the corresponding MDL file open? Bool
Output

next Output for chaining I/O tasks Long (I32)

42 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

LPBRK — Loop break

Block Symbol Licence: STANDARD

Function Description

The LPBRK block is an auxiliary block often used in the control schemes consisting of the
REXYGEN system function blocks. The block is usually placed in all feedback loops in
the scheme. Its behaviour differs in the REXYGEN system and the Simulink system.

The LPBRK block creates a one-sample delay in the Simulink system. If there exists
a feedback loop without the LPBRK block, the Simulink system detects an algebraic loop
and issues a warning (Matlab version 6.1 and above). The simulation fails after some
time.

The REXYGEN Compiler omits the LPBRK block, the only effect of this block is the
breaking of the feedback loop at the block’s position. If there exists a loop without the
LPBRK block, the REXYGEN Compiler compiler issues a warning and breaks the loop at an
automatically determined position. It is recommended to use the LPBRK block in all loops
to achieve the maximum compatibility between the REXYGEN system and the Simulink
system.

Note: Behaviour of the LPBRK block has been changed since the version 3.0. The
block is not removed by the REXYGEN Compiler but is present in the algorithm and
clears the quality flag of the y output. This change is useful and necessary due to the
quality propagation in function blocks. Original behaviour (e.g. the block is removed
from the algorithm) can be forced by the RB = on parameter. The main function of the
block (indication of the feedback signal) remains unchanged in all cases.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal Double (F64)
Parameter

RB Remove block from configuration (loopback indicator only) Bool
Output

y Output signal Double (F64)

43

MODULE — REXYGEN extension module

Block Symbol Licence: STANDARD
o o

MODULE

Function Description

The REXYGEN system has an open architecture thus its functionality can be extended.
Such extension is provided by modules. Each module is identified by its name placed
below the block symbol. The individual modules are added to the project main file by
connecting the prev input with the Modules output of the EXEC block or with the next
output of a MODULE which is already included in the project. There can be only one
module connected to the next output of the MODULE block. The next output of the
last module in the project remains unconnected. This means that the modules create a
unidirectional chain which defines the order of initialization of individual modules.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

prev Input for chaining modules Long (I32)

Output

next Output for chaining modules Long (I32)

44 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

0SCALL — Operating system calls

Block Symbol Licence: STANDARD

Ep
TRG E£p

OSCALL

Function Description

The 0SCALL block is intended for executing operating system functions from within the
REXYGEN system. The chosen action is performed upon a rising edge (off—on) at the
TRG input. However, not all actions are supported on individual platforms. The result of
the operation and the possible error code are displayed by the E and iE outputs.

Note that there is also the EPC block available, which allows execution of external
programs.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
TRG Trigger of the selected action Bool
Parameter
action System function to perform ®1 Long (I32)
1 ..., Reboot system
2 ... System shutdown
i System halt
4 Flush disc caches
5 Lock system partition
6 Unlock system partition
T ... Disable internal webserver
8 Enable internal webserver
cmd Reserved for internal use String
Output
E Error indicator Bool
off ... No error
on An error occurred

iE Error code Long (I32)

45

PROJECT — Additional project settings

Block Symbol Licence: STANDARD

PROJECT

Function Description

The PROJECT block is a so-called "pseudo-block" which stores additional settings and
parameters related to a project and a real-time executive. The only file where the block
can be placed is a main project file with a single EXEC block an so it belongs to the EXEC
category.

The block does not have any inputs or outputs. The information specified with this
block becomes a part of the final configuration, is stored on the target device and may
be seen on different diagnostics screens but does not have any impact on execution of
the control algorithm or target’s behaviour.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
CompileParams RexComp command-line options String
SourcesOnTarget Store source files on target device ®on Bool
TargetURL Default URL address of the target device String
LibraryPath Path to libraries referenced in the project String
PreBuild Command executed (by operating system) before compilation String

PostBuild Command executed (by operating system) after compilation String

46 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

QTASK — REXYGEN quick task

Block Symbol Licence: STANDARD

QTASK

Function Description

The QTASK block is used for including the so-called quick task with high priority into the
executive of the REXYGEN system. This task is used where the fastest processing of the
input signals is necessary, e.g. digital filtering of input signals corrupted with noise or
immediate processing of switches connected via digital inputs. The quick task is added
into the configuration by connecting the prev input with the EXEC block’s QTask output.
The quick task is initialized before the initialization of the LevelO computation level (see
the TASK block).

There can be only one QTASK block in the REXYGEN control system. It runs with the
logical priority no. 2. The algorithm of the quick task is configured the same way as the
standard TASK, it is a separate .md1 file.

The execution period of the task is given by a multiple of the factor parameter and
the tick of the EXEC block. The task is executed with the shortest period of tick seconds
for factor=1. In that case the system load is the highest. Under all circumstances the
QTASK must be executed within tick seconds, otherwise a real-time executive fatal error
occurs and no other tasks are executed. Therefore the QTASK block must be used with
consideration. The block’s execution time is shown in the Diagnostics section of the
REXYGEN Studio program.

Note: The parameter MDLOPEN is intended for the internal needs of the REXYGEN
system and cannot be changed manually.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
prev Connection to EXEC block Long (I32)
Parameter
factor Execution factor ®1 Long (I32)
stack Stack size [bytes] (10240 Long (I32)
filename Corresponding MDL file String

MDLOPEN Is the corresponding MDL file open? Bool

47

SLEEP — Timing in Simulink

Block Symbol Licence: STANDARD

SLEEP

Function Description

The Matlab/Simulink system works natively in simulation time, which can run faster or
slower than real time, depending on the complexity of the algorithm and the computing
power available. Therefore the SLEEP block must be used when accurate timing and
execution of the algorithm in the Matlab/Simulink system is required. In the REXYGEN
system, timing and execution is provided by system resources (see the EXEC block) and
the SLEEP block is ignored.

In order to perform real-time simulation of the algorithm, the SLEEP block must be
included. It guarantees that the algorithm is executed with the period given by the ts
parameter unless the execution time is longer than the requested period.

The SLEEP block is implemented for Matlab/Simulink running in Microsoft Win-
dows operating system. It is recommended to use periods of 100 ms and above. For the
proper functionality the Solver type’ must be set to fixed-step and discrete (no
continuous states) in the ’Solver’ tab of the ’Simulation parameters’ dialog. Further
the Fixed step size parameter must be equal to the ts parameter of the SLEEP block.
There should be at most one SLEEP block in the whole simulation scheme (including all
subsystems).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

ts Sleep time [s] ©0.1 Double (F64)

48 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

SRTF — Set run-time flags

Block Symbol Licence: ADVANCED

EXDIS
EXOSH E
DGEN
DGRES =
DGLOG

SRTF

Function Description

The SRTF block (Set Run-Time Flags) can be used to influence the execution of tasks
, subsystems (sequences) and blocks of the REXYGEN system. This block is not meant
for use in Matlab-Simulink. When describing this block, the term object refers to a
REXYGEN system object running in real-time, i.e. input/output driver, one of the tasks,
subsystem or a simple function block of the REXYGEN system.

All the operations described below affect the object, whose full path is given by the
bname parameter. Should the parameter be left blank (empty string), the operation ap-
plies to the nearest owner of the SRTF object, i.e. the subsystem in which the block is
directly included or the task containing the block. The full path to the block (object) is
case sensitive. Individual layers are separated by dots, object names except tasks (TASK,
QTASK) begin with one of the following special characters:

e " — computational level (Level), e.g. "0 for LevelO
e & — input-output driver (I/O Driver), e.g. &WcnDrv

The name of the task executed by the I/O controller (I0TASK) is entered in the form
&<driver_name>.<task_name>.
The run-time flags allow the following operations:

e Disable execution of the object by setting the EXDIS input to on. The execution
can be enabled again by using the input signal EXDIS = off. The EXDIS input sets
the same run-time flag as the Halt/Run button in the upper right corner of the
Workspace tab in the Diagnostics of the REXYGEN Studio program.

e One-shot execution of the object. If the object execution is disabled by the
EXDIS = on input or by the Diagnostics section of the REXYGEN Studio program,
it is possible to trigger one-shot execution by EX0SH = on.

¢ Enable diagnostics for the given object by DGEN = on. The result is equivalent to
ticking the Enable checkbox in the Diagnostics section of the corresponding tab
(I/0 Driver, Level, Quick Task, Task, I/0 Task, Sequence) of the REXYGEN
Studio program.

49

¢ Reset diagnostic data of the given object by DGRES = on. The same flag can be
set by the Reset button in the Diagnostics section of the corresponding tab in
the REXYGEN Studio program. The flag is automatically set back to O when the
data reset is performed.

The following table shows the flags available for various objects in the REXYGEN
system.

Object type EXDIS EXOSH DGEN DGRES
1/O Driver vV vV Vv V
Level v X V vV
Task v v v
Quick Task vV vV V vV
1/O Task Vv Vv Vv V
Sequence, subsystem V X Vv vV
Block Vv X X X

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
EXDIS Disable execution Bool
EX0SH One-shot execution Bool
DGEN Enable diagnostics Bool
DGRES Reset diagnostic data Bool
DGLOG Enable verbose diagnostics Bool
Parameter
bname Full path to the controlled task or block String
Output
E Error indicator Bool
off ... No error
on An error occurred
iE Error code Long (I32)
0 No error
1 Object not found (invalid bname parameter)
2 ... REXYGEN internal error (invalid pointers)

3 ... Flag could not be set (timeout)

50 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

STATELOAD — Load multiple block states and parameters

Block Symbol Licence: ADVANCED

LOAD
InState DONE

uChain iE
STATELOAD

Function Description

The STATELOAD block reloads values of state and parameters from a file or string. The
file is specified by the filename parameter and must be in JSON format, usually stored
by the STATESAVE block. It is also possible to read data from the InState input, which
is a, JSON string in the same format as the input file. The InState input is used if the
filename parameter is empty.

All values configured by the parameters blocks, depth, and mask that are stored in
the file are loaded. The blocks parameter contains relative paths (starting with a dot) to
the loaded blocks separated by semicolons. If blocks is empty, all blocks of the current
subsystem are loaded. If the loaded block is a subsystem, the depth parameter specifies
how many levels are also loaded:

e (: current level only,
e n: current level and blocks in subsystems of other n levels.

Furthermore, you can use mask to specify which objects will be loaded. Fach bit of a
number means:

e 1: inputs,
e 2: outputs,

e 4: parameters,

8: internal states,

16: array parameters,

32: array states,

64: cyclic (trend) buffers,
e 256: metadata (STATESAVE only).

If the parameter Strict is set to on, the block checks if the configured blocks and values
match those stored in the file, and the file is refused if there is a mismatch.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

LOAD
InState

uChain

Parameter

filename
blocks
depth
mask
LoadOnInit
STRICT

Output

DONE
iE

Trigger to load the state
JSON string to load if the filename parameter is empty
Useful for placing the block in the correct execution order

Filename from which to load

List of blocks to load

Specifies how many levels are loaded 10 165535
10 165535 65535
®on

®on

Select which objects are loaded
The file is loaded during the configuration initialization
The file is checked against the current configuration

State has been loaded
Error code

Bool
String
Long (I32)

String
String
Long (I32)
Long (I32)
Bool

Bool

Bool

Error

52 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

STATESAVE — Save multiple block states and parameters

Block Symbol Licence: ADVANCED

OutState
SAVE DONE

uChain iE
STATESAVE

Function Description

The STATESAVE block stores the values of states and parameters in a file. The file is
specified by the filename parameter and is in JSON format, which can usually be
reloaded by the STATELOAD block. It is also possible to store data in the OutState output,
which is a JSON string in the same format as the file output. The OutState output is
used if the filename parameter is empty.

All values configured by the parameters blocks, depth, and mask are stored. The
blocks parameter contains relative paths (starting with a dot) to the stored blocks
separated by semicolons. If blocks is empty, all blocks of the current subsystem are
saved. If the stored block is a subsystem, the depth parameter specifies how many levels
are also stored:

e (: current level only,
e n: current level and blocks in subsystems of other n levels.

Furthermore, you can use mask to specify which objects will be stored. Each bit of a
number means:

e 1: inputs,
e 2: outputs,
e 4: parameters,

e 8: internal states,

16: array parameters,

32: array states,

64: cyclic (trend) buffers,
e 256: metadata (STATESAVE only).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

SAVE
uChain

Parameter

filename
blocks
depth
mask

Save(OnExit
Output
QutState

DONE
iE

Trigger to save the state
Useful for placing the block in the correct execution order

Filename where to store
List of blocks to store

Specifies how many levels are stored J0 165535
Select which objects are saved J0 165535 ©65535
The file is stored when the configuration is terminated ®on

JSON string where values are stored if the filename parameter
is empty

State has been saved

Error code

23

Bool
Long (I32)

String
String
Long (I32)
Long (I32)
Bool

String

Bool
Error

o4 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

SYSEVENT — Read system log

Block Symbol Licence: STANDARD

VALID
sEvent
sVal
ival

SYSEVENT

Function Description

This block serves to read records from the system log or archive. The archive to be read
is selected by the arc parameter. Not all entries are displayed, but only those that pass
through the filter. It is possible to filter by item ID (in the case of the system log it is
meaningless - currently, all entries have id=1), by the level of alarm/event (in the case
of the system log, categories are encoded there), and in the case of a text item, also by
value.

The filter by ID is set using the idfrom and idto parameters, which select the interval
to be displayed. If both values are the same, only one id is displayed, and if idfrom>idto,
filtering by id is turned off and all ids are displayed.

The filter by level is set using the 1vlfrom and lvlto parameters, with the same
rules as in the previous case applying.

The filter by value applies only to text items (in the system log, these are all entries).
An item is displayed only if it contains the text from the filter parameter. If the
parameter is empty, all items are displayed. This parameter has no effect on other than
text items, and they are always displayed (if they meet the settings of other filters).

As long as there are items in the archive that meet the filter, they are displayed so
that one item is on the output in each tick (in the order they are stored in the archive)
and the VALID output is set to on. When there are no more items, the outputs have the
values corresponding to the last read item, but VALID is set to off.

The output sVal contains the value of the text item (for other types of items, it is
empty). The output iVal contains the value of the integer item (for other types of items,
it is 0). In all cases, all parameters (including the value) are stored in JSON format on
the sEvent output. To retrieve the required values, the PJSOCT block, or possibly the
PJROCT block, can be used.

Note: If multiple sysevent blocks are used, each goes through the respective archive
separately. Depending on the set filter, it can happen that a certain item from the archive
is output by both blocks, but usually at a different moment.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

arc
filter
idfrom
idto
lvlfrom
lvlto

Output
VALID

sEvent
sVal
iVal

Archive to read (0=system log)
String that item must contain
Minimum item ID to show
Maximum item ID to show
Minimum item level to show
Maximum item level to show

Output data are valid (actual)
Whole archive item in JSON
Archive item value (string)
Archive item value (integer)

10 116

10 165535

10 165535 65655
40 1255

10 1255 255

Long (I32)
String

Long (I32)
Long (I32)
Long (I32)
Long (I32)

Bool
String
String
Long (I32)

29

o6 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

SYSLOG — Write system log

Block Symbol Licence: STANDARD

msg
IvI
RUN

SYSLOG

Function Description

The SYSLOG block is intended for writing any messages to the REXYGEN system log. It
can be used for basic logging of user events. To write, it is necessary to have messages
of the given level enabled in the System Logs Configuration (Target -> System Logs
Configuration -> Function block messages).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
msg String writing into system log String
1lvl Message level Long (I32)
0 Error
1 ... Warning
2 ... Information
3 Verbose
Parameter

RUN Enable writing message Bool

o7

TASK — REXYGEN standard task

Block Symbol Licence: STANDARD
prov o

TASK

Function Description

The overall control algorithm of the REXYGEN system consists of individual tasks. These
are included by using the TASK block. There can be one or more tasks in the control
algorithm. The REXYGEN system contains four main computational levels represented
by the LevelO to Level3 outputs of the EXEC block. The individual tasks are added to
the given computational level <i> by connecting the prev input with the corresponding
Level<i> output or with the next output of a TASK, which is already included in the given
level <i>. There can be only one task connected to the next output of the TASK block.
The next output of the last task in the given level remains unconnected. This means that
the tasks in one level create a unidirectional chain which defines the order of initialization
and execution of the individual tasks of the given level in the REXYGEN system. The
individual levels are ordered from LevelO to Level3 (the QTASK block precedes Level0).

All tasks at the given level <i> are executed with the same priority, which is deter-
mined by the pri<i> parameter of the EXEC block. The execution period of the task is
calculated as a multiple of the factor parameter and the base tick of the ntick<i>*tick
in the EXEC block.

The time allocated for task execution starts at the start tick and ends at the stop
tick. The start and stop values can be fixed or left to be controlled by the RexCore. For
RexCore control, the parameters can be filled in as follows:

e start = -1: The execution begins as soon as the previous Task ends.

e start = -2: The execution starts on the next tick after the completion of the
previous task.

e stop — -1: The task execution must finish before the end of ntick<i>*tick.
e stop = -2: The task execution must finish in the next tick.

For fixed execution times, start and stop should be a non-negative integer.

The REXYGEN Compiler compiler additionally verifies that the stop parameter of the
preceding task is less than or equal to the stop parameter of the succeeding task. This
ensures that the allocated time intervals for individual tasks do not overlap. If the timing
of individual levels is inappropriate, tasks may be interrupted by tasks and other events
with higher priority. In such cases, execution is not aborted but delayed (in contrast to
the QTASK block). The Diagnostics section of the REXYGEN Studio program assesses
whether the execution delay is occasional or permanent (the Level and Task tabs).

o8 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

Note: The parameter MDLOPEN is intended for the internal needs of the REXYGEN
system and cannot be changed manually.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
prev Input for chaining tasks Long (I32)
Parameter
factor Execution factor ®1 Long (I32)
start Start tick Long (I32)
stop Stop tick ®1 Long (I32)
stack Stack size [bytes] (©10240 Long (I32)
filename Corresponding MDL file String
MDLOPEN Is the corresponding MDL file open? Bool
Output

next Output for chaining tasks Long (I32)

29

TIODRV — REXYGEN input/output driver with tasks

Block Symbol Licence: STANDARD
-

TIODRV

Function Description

The TIODRV block is used for configuration of special drivers of the REXYGEN system
which are able to execute tasks defined by the IOTASK blocks. See the corresponding
driver documentation. The prev input of the I0TASK block must be connected with the
Tasks output of the TIODRV block. If the driver allows so, the next output of a TIODRV
block which is already included in the configuration can be used to add more tasks. The
next output of the last task remains unconnected. On the contrary to standard tasks,
the number and order of the driver’s tasks are not checked by the REXYGEN Compiler
compiler but by the input-output driver itself.

If the driver cannot guarantee periodic execution of some task (e.g. task is triggered
by an external event), a corresponding flag is set for the given task. Such a task cannot
contain blocks which require constant sampling period (e.g. the majority of controllers).
If some of these restricted blocks are used, the executive issues a task execution error,
which can be traced using the Diagnostics section of the REXYGEN Studio program. The
cpu parameter can be used to specify where the driver thread should run on multi-CPU
devices.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
prev Input for chaining drivers (with tasks) Long (I32)
Parameter
module Module name String
classname I/O driver class name ®DrvClass String
cfgname Configuration file name @iodrv.rio String
factor Execution factor J1 ®10 Long (I32)
stack Stack size [bytes] 41024 ©10240 Long (I32)
pri Driver thread logical priority 41131 ©®3 Long (I32)
cpu CPU core assigned to driver thread (-1=default, O=core 0, Long (I32)

1=core 1, ...) -1 1127 ©-1

60 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

Output

next Output for chaining drivers (with tasks) Long (I32)
Tasks Anchor for chain of I/O tasks Long (I32)

61

WWW — Internal webserver content

Block Symbol Licence: STANDARD
[]

Www
Function Description

The WWW block is a so-called "pseudo-block" which stores additional information about a
contents of an internal web server. The only file where the block can be placed is a main
project file with a single EXEC block an so it belongs to the EXEC category.

The block does not have any inputs or outputs. The block itself does not become
a part of a final binary configuration but the data it points to does. Be careful when
inserting big files or directories as the integrated web server is not optimized for a large
data. It is possible to shrink the data by enabling gzip compression. The compression
also reduces amount of data transferred to the client, but decompression must be per-
formed on the server side when a client does not support gzip compression which brings
additional load on the target device.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
Source Source directory String
Target Target directory String

Compression Enable data compression Bool

62 CHAPTER 2. EXEC - REAL-TIME EXECUTIVE CONFIGURATION

Chapter 3

INOUT — Input and output blocks

Contents
Display — Numeric display of input values. 65
FromFile — From File 0.0, 67
FromWorkspace — From Workspace 68
GotoTagVisibility — Visibility of the signal source 69
INCONN — Block for remote value acquirement « « 70
INQUAD, INOCT, INHEXD — Multi-input blocks 71
From, INSTD — Signal connection or input . . « « « v v v v ¢ ¢ v v v s 73
I0ASYNC — Asynchronous reading and writing 75
OUTCONN — Block for remote value setting 76
OUTQUAD, OUTOCT, OUTHEXD — Multi-output blocks 7T
OUTRQUAD, OUTROCT, OUTRHEXD — Multi-output blocks with verification 79
OUTRSTD — Output block with verification 80
Goto, OUTSTD — Signal source or output 81
Inport, Outport — Input and output port. 83
QFC — Quality flags coding 0oL, 85
QFD — Quality flags decoding « v v v v v v i e v e e e e 86
SubSystem — Subsystem block 0000, 87
ToFile —To File o . i i i i i i i it ittt et e et e e 89
ToWorkspace — To Workspace 90
VIN — Validation of the input signal. 000 91
VOUT — Validation of the output signal 92

The INOUT library serves as a crucial interface in the REXYGEN system, enabling
smooth interaction with input/output drivers. It is designed for efficient simultaneous
signal processing, essential for fast control tasks. This library simplifies the connection
between control algorithms and hardware, ensuring minimal latency. Additionally, it

63

64 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

provides advanced features, such as virtual linking (flags) of signals for increased clarity
of diagrams and flexibility of subsystems.

65

Display — Numeric display of input values

Block Symbol Licence: STANDARD

27??

Function Description

The Display block shows input value in a selected format. A text suffix may be ap-
pended to the value by specifying the suffix parameter. An actual value is immediately
displayed in REXYGEN Studio after turning on Watch mode. The conversion of the input
into its text representation is performed on the target device at each Decimation period,
so the displayed value can also be retrieved via the REST interface or used in the user
interface.

The Format parameter allows selecting from various value display styles. The display
modes differ for non-integer and integer values. The offered display styles include: For
non-integer values:

e 1: Best fit: Default display of most numbers in the "Full Precision" style, switches
to "Scientific Long" style for extremely small or large values.

2: short: Displays values with a maximum of 3 decimal places.

3: long: Displays values with the maximum number of decimal places (up to 15).

4: short _e: Exponential (scientific) display of values with a maximum of 3 decimal
places.

5: long _e: Exponential (scientific) display of values with the maximum number
of decimal places (up to 15).

e 6: bank: Displays values with 2 decimal places.
For integer values:
e 7: hex: The number in hexadecimal format.
e 8: bin: The number in binary format.
e 9: dec: Standard display of numbers in decimal format.

e 10: oct: The number in octal format.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

66 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Input
u Input signal Any
Parameter
Format Format of displayed value ®1 Long (I32)
Best fit
short
long ..
short_e
long_e
bank ..
hex ...
bin ...
det ...
Decimation Value is evaluated in each <Decimation> period Long (I32)
11 1100000 1
Suffix A string to append to the value String

DispValue Displayed value String

67

FromFile — From File

Block Symbol Licence: STANDARD

value p

FromFile
Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

FileName MAT file name or path to MAT file String

Output

value Output signal Any

68 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

FromWorkspace — From Workspace

Block Symbol Licence: STANDARD

FromWorkspace

Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

VariableName Name of the variable to load String

Output

value Output signal Any

69

GotoTagVisibility — Visibility of the signal source

Block Symbol Licence: STANDARD

GotoTagVisibility

Function Description

The GotoTagVisibility blocks specify the visibility of the Goto blocks with scoped vis-
ibility. The symbol (tag) defined in the Goto block by the GotoTag parameter is available
for all From blocks in the subsystem which contains the appropriate GotoTagVisibility
block and also in all subsystems below in the hierarchy.

The GotoTagVisibility block is required only for Goto blocks whose TagVisibility
parameter is set to scoped. There is no need for the GotoTagVisibility block for local
or global visibility.

The GotoTagVisibility block is used only during project compilation by the REXY-
GEN Compiler compiler. It is not included in the binary configuration file for real-time
execution.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

GotoTag Goto tag String

70 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

INCONN — Block for remote value acquirement

Block Symbol Licence: STANDARD
>
Function Description

The INCONN block allows for remote reading of parameter values (as well as inputs and
outputs) of other blocks, similar to GETPR, GETPS, GETPA, and others. Its use is particularly
suitable in situations requiring a quick response, such as in time-critical tasks.

The sc parameter, which specifies the path to the target parameter, must be given
as either a relative path or a relative to task path (see the documentation for the GETPR
block). This means the INCONN block must be placed within the same task as the target
parameter, regardless of their hierarchical levels. Unlike the GETP blocks, the sc param-
eter cannot be modified during runtime.

The data type of the val output is determined by the type of the read value. Unlike
the GETP blocks, the INCONN block does not allow for a one-time read setting. The value
is refreshed in every execution period.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter

sc String connection to the parameter String

Output

val Parameter value Any

71

INQUAD, INOCT, INHEXD — Multi-input blocks

Block Symbols Licence: STANDARD
valo
vall
val2
val3
val4
valb
valé
val7

valo val8

vall val9

val2 val10

val3 val11

valo val4 val12
val1 val5 val13
val2 valé val14
val3 val7 val15
INQUAD INOCT INHEXD

Function Description

The REXYGEN system allows not only reading of a single input signal but also simulta-
neous reading of multiple signals through just one block (for example all signals from one
module or plug-in board). The blocks INQUAD, INOCT and INHEXD are designed for these
purposes. They differ only in the maximum number of signals (4, 8 and 16, respectively).

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks.
E.g. the digital inputs of a Modbus I/O device might be referenced by MBM__DI. Detailed
information about signal naming can be found in the user manual of the corresponding
I/0O driver.

The overhead necessary for data acquisition through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are read simultane-
ously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the name MBM__module<id> will refer to module 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

72 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Output

valO..valls Signal coming from I/O driver Any

73

From, INSTD — Signal connection or input

Block Symbols Licence: STANDARD

> [DRV__signal >

Function Description

The From (signal connection) and INSTD (standard input) blocks share the same symbol
and are used to connect an input signal to the control algorithm at the value output.
The output type is determined by the type of the input signal.

In the function block library, you can only find the From block. It is converted to the
INSTD block at compile time if necessary. The following rules define how the REXYGEN
Compiler compiler distinguishes between the two block types:

e If the parameter GotoTag contains the __ delimiter (two successive > _? characters),
then the block is of the INSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
IODRYV type block contained in the main file of the project. The REXYGEN Compiler
compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the corresponding
driver. This name is validated by the driver and in the case of success, an instance
of the INSTD block is created. This instance collects real-time data from the driver
and feeds the data into the control algorithm at each execution of the task it is
included in.

o If there is no __ delimiter in the GotoTag parameter, the block is of type From.
A matching Goto block with the same GotoTag parameter and required visibility
given by the TagVisibility parameter (see the Goto block description) is searched.
In case it is not found, the REXYGEN Compiler compiler issues a warning and
deletes the From block. Otherwise an "invisible" connection is created between the
corresponding blocks. The From block is removed also in this case and thus it is

not contained in the resulting control system configuration.

In the case of INSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver:

<DRV>__<signal>

E.g. the first digital input of a Modbus I/O device might be referenced by MBM__DI1.
Detailed information about signal naming can be found in the user manual of the corre-
sponding I/O driver.

74 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Since version 2.50.5 it is possible to use placeholders in names of I/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the flag MBM__DI<id> will refer to digital input 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Output

value Signal coming from I/O driver or Goto block Any

75

I0ASYNC — Asynchronous reading and writing

Block Symbol Licence: STANDARD

u y
RF BUSY
WF DONE
I0ASYNC

Function Description

The I0ASYNC block is designed for asynchronous reading and writing of inputs and out-
puts. Unlike the INSTD, QUTSTD, INOCT, OUTOCT blocks and their variants, the operation
of the I0ASYNC block is not controlled by the periodic timing of the driver. The main
difference is that reading and writing occur exclusively at the moment of detecting a
rising edge off—on signal on the respective inputs. Writing the value from the input u
is triggered by a rising edge on the input WF, while reading to the output y is triggered
by a rising edge on the input RF.

Unlike other blocks, where writing can be canceled by setting a special signal _WriteEnable
to off (see documentation for the respective driver), the IOASYNC block ensures that at
the startup of the executive, not even a one-time initialization of the value to be written
occurs. This initialization may be undesirable in some applications.

To establish a connection with a specific driver signal, it is necessary to rename the
block instance according to the established format of driver signal names, which uses a
pair of underscores, similarly to the INSTD block.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Signal going to I/O driver Any
RF Read force Bool
WF Write force Bool
Output
y Signal coming from I/O driver Any
BUSY Busy flag Bool

DONE Operation done Bool

76 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

OUTCONN — Block for remote value setting

Block Symbol Licence: STANDARD

Function Description

The OUTCONN block enables remote setting of parameter values of other blocks, similar to
SETPR, SETPS, SETPA, and others. Its use is particularly suitable in situations requiring
a quick response, such as in time-critical tasks.

The sc parameter, which specifies the path to the target parameter, must be given
as either a relative path or a task-relative path (see the documentation for the SETPR
block). This means the OUTCONN block must be placed within the same task as the target
parameter, regardless of their hierarchical levels. For details on formatting the path to
the parameter, see the documentation for the SETPR block. Unlike the SETP blocks, the
sc parameter cannot be modified during runtime.

The data type of the val input is determined by the type of the connected value.
Unlike the SETP blocks, the OUTCONN block does not allow for a one-time setting. The
value is set in every execution period.

Warning: Setting the connected input of a remote block may lead to undefined behavior.
Similarly, setting a block parameter inside a subsystem when this parameter is set in the
subsystem’s mask.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

val Parameter value Any

Parameter

sc String connection to the parameter String

77

OQUTQUAD, OUTOCT, OUTHEXD — Multi-output blocks

Block Symbols Licence: STANDARD
valo
vall
val2
val3
val4
val5
valé
val7

valo val8
val1 val9
val2 val10
val3 vall1
val0 val4 val12
val1 val5 val13
val2 valé val14
val3 val7 val1s

OUTQUAD OUTOCT OUTHEXD

Function Description

The REXYGEN system allows not only writing of a single output signal but also simul-
taneous writing of multiple signals through just one block (for example all signals of
one module or plug-in board). The blocks OUTQUAD, OUTOCT and OUTHEXD are designed
for these purposes. They differ only in the maximum number of signals (4, 8 and 16,
respectively). These blocks are not included in the RexLib function block library for
Matlab-Simulink.

The name of the block instance includes the symbol of the driver <DRV> and the name
of the signal <signal> of the given driver:

<DRV>__<signal>

It is created the same way as the GotoTag parameter of the INSTD and OUTSTD blocks. E.g.
the digital outputs of a Modbus 1/O device might be referenced by MBM__DO. Detailed
information about signal naming can be found in the user manual of the corresponding
I/O driver.

The overhead necessary for setting the outputs through input/output drivers is mini-
mized when using these blocks, which is important mainly for very fast control algorithms
with sampling period of 1 ms and lower. Moreover, all the inputs are written simulta-
neously or as successively as possible. Detailed information about using these blocks for
particular driver can be found in the user manual for the given driver.

Since version 2.50.5 it is possible to use placeholders in names of I/O driver signals.
This is useful inside subsystems where this placeholder is replaced by the value of sub-
system parameter. E.g. the name MBM__module<id> will refer to signals of module 1, 2,
3 etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

78 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

Input

valO..valls Signal going to I/O driver Any

79

OUTRQUAD, OUTROCT, OUTRHEXD — Multi-output blocks with veri-
fication

Block Symbols Licence: ADVANCED
val0 raw0
val1 raw1
val2 raw2
val3 raw3
vald raw4
val5 raws
valé raw6
val7 raw7

val0 rawQ val8 raw8
vall raw1 val9 raw9
val2 raw2 val10 raw10
val3 raw3 val11 raw11
val0 raw0 val4 rawd val12 raw12
vall raw1 vals5 rawb val13 raw13
val2 raw2 valé raw6 val14 raw14
val3 raw3 val7 raw7 val15 raw15
OUTRQUAD OUTROCT OUTRHEXD

Function Description

The OUTRQUAD, OUTROCT and OUTRHEXD blocks allow simultaneous writing of multiple
signals, they are similar to the OUTQUAD, OUTOCT and OUTHEXD blocks. Additionally they
provide feedback information about the result of write operation for the given output.

There are two ways to inform the control algorithm about the result of write operation
through the raw: output:

e Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of A/D converter (thus the raw notation).

e Through reading the quality flags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The rawi outputs are not always refreshed right at the moment of block execution, there
is some delay given by the properties of the driver, communication line and/or target
platform.

The type and location of individual val and raw signals are described in the user
manual of the corresponding driver.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

valO..valls Signal going to I/O driver Any

Output

raw0..rawl5 Write operation result (see documentation) Any

80 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

OUTRSTD — Output block with verification

Block Symbol Licence: ADVANCED
<___ranp

OUTRSTD

Function Description

The OUTRSTD block is similar to the OUTSTD block. Additionally it provides feedback
information about the result of write operation for the output signal.

There are two ways to inform the control algorithm about the result of write operation
through the raw output:

e Through the value of the output, which can e.g. contain the real bit value in case
of exceeding the limits of A/D converter (thus the raw notation).

e Through reading the quality flags of the signal. This information can be separated
from the signal by the VIN and QFD blocks.

The raw outputs is not refreshed right at the moment of block execution, there is some
delay given by the properties of the driver, communication line and/or target platform.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

value Signal going to I/O driver Any

Output

raw Write operation result (see documentation) Any

81

Goto, OUTSTD — Signal source or output

Block Symbols Licence: STANDARD
S —

Function Description

The Goto (signal source) and OUTSTD (standard output) blocks have the same symbol
and are used to connect the output signal from the control algorithm.

In the function block library, you can only find the Goto block. It is converted to the
OUTSTD block at compile time if necessary. The following rules define how the REXYGEN
Compiler compiler distinguishes between the two block types:

e If the parameter GotoTag contains the __ delimiter (two successive > _? characters),
then the block is of the OUTSTD type. The part (substring) of the parameter before
the delimiter (DRV in the block symbol above) is considered to be the name of an
I0DRYV type block contained in the main file of the project. The REXYGEN Compiler
compiler returns an error when such block does not exist. If the driver exists in the
project, the other part of the GotoTag parameter (following the delimiter, signal
in this case) is considered to be the name of a signal within the appropriate driver.
This name is validated by the driver and in the case of success, an instance of the
QUTSTD block is created. This instance collects real-time data from the driver and
feeds the data into the control algorithm at each execution of the task it is included
in.

o If there is no __ delimiter in the GotoTag parameter, the block is of type Goto. A
matching From block with the same GotoTag parameter for which the Goto block is
visible is searched. In case it is not found, the REXYGEN Compiler compiler issues a
warning and deletes the Goto block. Otherwise an "invisible" connection is created
between the corresponding blocks. The Goto block is removed also in this case thus
it is not contained in the resulting control system configuration.

The second parameter TagVisibility of the Goto block determines the visibility of
the given block within the .md1 file. It can have the following values:

e local: Both blocks must be located at the same hierarchical level.
e global: Blocks can be placed anywhere in the given .mdl file.

e scoped: Blocks must be placed within the same subsystem or at any hierarchi-
cal level beneath the placement of the GotoTagVisibility block with the same
GotoTag parameter.

82 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

If the given block is compiled as an OUTSTD block, this parameter is ignored.

In the case of OUTSTD block, the GotoTag parameter includes the symbol of the driver
<DRV> and the name of the signal <signal> of the given driver <DRV>__<signal>. E.g. the
first digital output of a Modbus I/O device might be referenced by MBM__D01. Detailed
information about signal naming can be found in the user manual of the corresponding
I/0O driver.

Since version 2.50.5 it is possible to use placeholders in names of 1/O driver sig-
nals. This is useful inside subsystems where this placeholder is replaced by the value
of subsystem parameter. E.g. the flag MBM__D0<id> will refer to digital output 1, 2, 3
etc. depending on the parameter id of the subsystem the block is contained in. See the
SubSystem function block for information on defining subsystem parameters.

This block does not propagate the signal quality. More information can be found in the
1.4 section.
Input

value Signal going to I/O driver or From block Any

83

Inport, Outport — Input and output port

Block Symbols Licence: STANDARD
> (O

Inport Outport

Function Description

The Inport and Outport blocks are used for connecting signals over individual hierar-
chical levels. There are two possible ways to use these blocks in the REXYGEN system:

1. To connect inputs and outputs of the subsystem. The blocks create an interface
between the symbol of the subsystem and its inner algorithm (sequence of blocks
contained in the subsystem). The Inport or Outport blocks are located inside the
subsystem, the name of the given port is displayed in the subsystem symbol in the
upper hierarchy level.

2. To provide connection between various tasks. The port blocks are located in the
highest hierarchy level of the given task (.mdl file) in this case. The corresponding
Inport and Outport blocks should have the same Block name. The connection
between blocks in various tasks is checked and created by the REXYGEN Compiler
compiler.

The ordering of the blocks to be connected is based on the Port parameter of the
given block. The numberings of the input and output ports are independent on each
other. The numbering is automatic in REXYGEN Studio and it starts at 1. The numbers
of ports must be unique in the given hierarchy level, in case of manual modification of
the port number the other ports are re-numbered automatically. Be aware that after
re-numbering in an already connected subsystem the inputs (or outputs) in the upper
hierarchy level are re-ordered, which results in probably unintended change in signal
mapping!

In the Inport and Outport blocks, it’s also possible to explicitly specify the data type
of the transferred value using the OutDataTypeStr parameter. If no value is selected, or
the option Inherit: auto is chosen, the value type is determined automatically.

The Description parameter can be used to add a textual description of the block.
This description is displayed in the properties of the subsystem and library block if
Inport or Outport is used to define the inputs and outputs of the subsystem.

Warning: The blocks Inport and Outport should not be use to connect arrays
and other references between tasks (references often have ref in name and have a type
intptr in the Diagnostics section of the REXYGEN Studio program). Consistence is
not guaranteed in this case; incorrect value could be get and runtime code can crash
in worst case scenario. Typical behaviour is that some array members are from one
period of execution and other members of array from next period.The blocks SETPA and

84 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

GETPA ensure consistent read and write of the array between task. Some blocks guarantee
consistence of references over task boundary (for example RM_AxisSpline). In this case,
this is explicitly stated in the block manual.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

value Value going to the output pin or Inport Any

Parameter

OutDataTypeStr Data type of item String
Inherit auto
double
single
uint8
int16
uint16
int32
uint32
boolean
float
int64
atragg

Description Description of the port String
Port Ordering of the output pins Long (132)

85

QFC — Quality flags coding

Block Symbol Licence: STANDARD

iq

is iqgf
il
QFC

Function Description

The QFC block creates the resulting signal iqf representing the quality flags by combining
three components iq, is and i1. The quality flags are part of each input or output signal
in the REXYGEN system. Further details about quality flags can be found in chapter 1.4
of this manual. The RexLib function block library for Matlab-Simulink does not use any
quality flags.

It is possible to use the QFC block together with the VOUT block to force arbitrary
quality flags for a given signal. Reversed function to the QFC block is performed by the
QFD block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
iq Basic quality type flags Long (I32)
is Substatus flags Long (I32)
il Limits flags Long (I32)
Output

iqf Bit combination of the input signals Long (I32)

86 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

QFD — Quality flags decoding

Block Symbol Licence: STANDARD

iq
iaf is

QFD

Function Description

The QFD decomposes quality flags to individual components iq, is and il. The quality
flags are part of each input or output signal in the REXYGEN system. Further details
about quality flags can be found in chapter 1.4 of this manual. The RexLib function block
library for Matlab-Simulink does not use any quality flags.

It is possible to use the QFD block together with the VIN block for detailed processing
of quality flags of a given signal. Reversed function to the QFD block is performed by the
QFC block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
iqf Quality flags to be decomposed Long (I32)
Output
iq Basic quality type flags Long (I32)
is Substatus flags Long (I32)

il Limits flags Long (I32)

87

SubSystem — Subsystem block

Block Symbol Licence: STANDARD

SubSystem

Function Description

The SubSystem block is a cornerstone of hierarchical organization of block diagrams in
REXYGEN. A subsystem is a container for a group of function blocks and their con-
nections, which then appear as a single block. Nesting of subsystems is allowed, i.e. a
subsystem can include additional subsystems.

The runtime core or REXYGEN executes the subsystem as an ordered sequence of
blocks. Therefore the subsystem is sometimes referred to as sequence. All blocks from
the surroundings of the subsystem are executed strictly before or strictly after the whole
subsystem is executed.

- 222

CNR_myvalue Subsystemiambiiﬂe{

ut
u GAIN u2 v
ADD
CNR

A subsystem can be created in two ways:

e By copying the SubSystem block from the INOUT library into the given schematic
(file .md1). After opening the created subsystem, blocks can be added to it, includ-
ing input ports Inport and output ports Qutport.

e By selecting a group of blocks and choosing the Create Subsystem command from
the Edit menu. The selected blocks are replaced by a subsystem, which, when
opened, shows the original blocks and Inport and Outport blocks facilitating con-
nections with blocks at the higher (original) level.

Once the subsystem is created, it can be entered by double-clicking.

For SubSystenm, it is possible to create a so-called subsystem mask and define param-
eters whose values can be used inside the subsystem. Select the subsystem and go to the
menu Edit—Declaration of parameters. A dialog will appear where you can define
parameters and their labels (meanings). Once a mask is defined for a subsystem, it starts
behaving like a standard block — double-clicking it will open the Block properties dialog.

88 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

This dialog contains the parameters defined in the subsystem mask. If you need to edit
the content of a masked subsystem, select it and go to the menu Edit—0pen Subsystem.

Subsystems are also used for creating user-defined reusable components, which are
then placed in user libraries. A library reference can be distinguished from a standard
subsystem by the style of the upper border. See image below.

Standard subsystem Library reference

ul outt ul outt

u2 u2
SW out2 SW out2
MyBlock2 MyBlock1

Please refer to [3] for details on using subsystems and creating reusable components
in REXYGEN.

Also see examples 0101-02 and 0101-03 demonstrating the use of subsystems. The
examples are included in REXYGEN.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

89

ToFile — To File

Block Symbol Licence: STANDARD

b

ToFile
Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal Any

Parameter

FileName MAT file name or path to MAT file String

90 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

ToWorkspace — To Workspace

Block Symbol Licence: STANDARD

ToWorkspace

Function Description

This block corresponds to the block of the same name in Matlab/Simulink. For more
information, see the Matlab/Simulink documentation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal Any

Parameter

VariableName Name of the variable String

91

VIN — Validation of the input signal

Block Symbol Licence: STANDARD

y9
helc
sv igf

VIN

Function Description

The VIN block can be used for verification of the input signal quality in the REXYGEN
system. Further details about quality flags can be found in chapter 1.4 of this manual.

The block continuously separates the quality flags from the input u and feeds them to
the iqf output. Based on these quality flags and the GU parameter (Good if Uncertain),
the input signals are processed in the following manner:

e For GU = off the output QG is set to on if the quality is GOOD. It is set to QG = off
in case of BAD or UNCERTAIN quality.

e For GU = on the output QG is set to onif the quality is GOOD or UNCERTAIN. It is set
to QG = off only in case of BAD quality.

if the input signal u is evaluated as Quality Good QG = on, it is fed to the output yg.
In case of signal quality problems, a substitute signal from the input sv (substitution
variable) is used for the output.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Any
sV Substitute value for an error case Any
Parameter
GU Acceptability of UNCERTAIN quality Bool
off ... Uncertain quality unacceptable
on Uncertain quality acceptable
Output
vEg Validated signal Any
QG Input signal acceptability indicator Bool

iqf Complete quality flag of the input signal Long (I32)

92 CHAPTER 3. INOUT - INPUT AND OUTPUT BLOCKS

VOUT — Validation of the output signal

Block Symbol Licence: STANDARD

u
iqf yqp

VOUT

Function Description

It is possible to use the VOUT block to force arbitrary quality flags for a given signal. The
desired quality flags are given by the input signal iqf. Further details about quality flags
can be found in chapter 1.4 of this manual.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal requiring quality flags modification Any

iqf Desired quality flags Long (I32)
Output

yq Resulting composed signal Any

Chapter 4

MATH — Math blocks

Contents
ABS — Absolute value. o o oo o oL 95
ADD — Addition of two signals v v i it e et e e e 96
ADDQUAD, ADDOCT, ADDHEXD — Multi-input addition 97
CNB — Boolean (logic) constant, 98
CNE — Enumeration constant 99
CNI —Integer constant 100
CNR —Realconstant00000iiieee.n. 101
DIF — Difference i i ittt i ittt 102
DIV — Division of two signals . . .« v v v v vt v v v v v vt o v 0 v 103
EAS — Extended addition and subtraction 104
EMD — Extended multiplication and division 105
FNX — Evaluation of single-variable function 106
FNXY — Evaluation of two-variables function 109
GAIN — Multiplication by aconstant 111
GRADS — Gradient search optimization ¢ oo 112
IADD — Integer addition00, 114
IDIV — Integer diviSIOn .+ v v v ¢ v ¢« 4 v v v o o o o o v o 0 o s o o o 116
IMOD — Remainder after integer division 117
IMUL — Integer multiplication 118
ISUB — Integer subtraction v v v v v v o v v v v oo o oo 120
LIN — Linear interpolation 122
MUL — Multiplication of two signals ¢ ¢« v v v v v v v v v v v 123
NANINF — Block for checking NaN and Inf values 124
POL — Polynomial evaluation 126
REC — Reciprocal value v v v vt vt vttt ot oo 127
REL — Relational operator 128

94 CHAPTER 4. MATH - MATH BLOCKS

RTOI — Real to integer number conversion . . . « « « « + « v v 4 + 129
SQR—Square value e e 131
SQRT — SQUAre root . « « & v v v v v v it e e e e e e e e e e e 132
SUB — Subtraction of two signals . . . « « v v v v v v v v v 0w 133
UTOI — Unsigned to signed integer number conversion 134

The MATH library offers a comprehensive collection of mathematical operations and
functions. It includes basic arithmetic blocks like ADD, SUB, MUL, and DIV for standard
calculations, and more specialized blocks such as ABS for absolute values, SQRT for square
roots, and SQR for squaring. Advanced functionalities are provided by blocks like LIN for
linear transformations, POL for polynomial evaluations, and FNX, FNXY for customizable
mathematical functions. The library also features integer-specific operations through
blocks like TADD, IMUL, IDIV, and IMOD.

95

ABS — Absolute value

Block Symbol Licence: STANDARD

y

ABS

Function Description

The ABS block computes the absolute value of the analog input signal u. The output y
is equal to the absolute value of the input and the sgn output denotes the sign of the
input signal.
-1, for u <0,
sgn = 0, foru =0,
1, for u > 0.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Output

y Absolute value of the input signal Double (F64)

sgn Indication of the input signal sign Long (I32)

96 CHAPTER 4. MATH - MATH BLOCKS

ADD — Addition of two signals

Block Symbol Licence: STANDARD

Function Description

The ADD blocks sums two analog input signals. The output is given by
y =ul +u2.
Consider using the ADDOCT block for addition or subtraction of multiple signals.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Output

y Sum of the input signals Double (F64)

97

ADDQUAD, ADDOCT, ADDHEXD — Multi-input addition

Block Symbols Licence: STANDARD

03 vp
u4

ADDQUAD ADDOCT ADDHEXD

Function Description

The ADDQUAD, ADDOCT and ADDHEXD blocks sum (or subtract) up to 16 input signals. The
nl parameter defines the inputs which are subtracted instead of adding. For an empty nl
parameter the block output is given by y = ul +u2+u3+ud +us+u6+u7+...+ul6.
For e.g. n1=2,5,7, the block implements the function y = ul —u2 +u3 +u4 — ub +u6 —
u7 4 ...+ ulé.

Note that the ADD and SUB blocks are available for simple addition and subtraction
operations.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

ul..ulé Analog input of the block Double (F64)
Parameter

nl List of signals to subtract Long (I32)
Output

y Sum of the input signals Double (F64)

98 CHAPTER 4. MATH - MATH BLOCKS

CNB — Boolean (logic) constant

Block Symbol Licence: STANDARD
[on

CNB

Function Description

The CNB block stands for a Boolean (logic) constant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter
YCN Boolean constant ®on Bool
off ... Disabled
on Enabled
Output

Y Logical output of the block Bool

99

CNE — Enumeration constant

Block Symbol Licence: STANDARD
[toptiona >

CNE
Function Description

The CNE block allows selection of a constant from a predefined popup list. The popup list
of constants is defined by the pupstr string, whose syntax is obvious from the default
value shown below. The output value corresponds to the number at the beginning of the
selected item. In case the pupstr string format is invalid, the output is set to 0.

There is a library called CNEs in Simulink, which contains CNE blocks with the most
common lists of constants.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
yenum Enumeration constant ®1: option A String
pupstr Popup list definition String
®1: option A|2: option B|3: option C
Output

iy Integer output of the block Long (I32)

100 CHAPTER 4. MATH - MATH BLOCKS

CNI — Integer constant

Block Symbol Licence: STANDARD
KN

CNI

Function Description

The CNI block stands for an integer constant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter
icn Integer constant ®1 Long (I32)
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
Output

iy Integer output of the block Long (I32)

101

CNR — Real constant

Block Symbol Licence: STANDARD
Cp

CNR

Function Description

The CNR block stands for a real constant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Parameter
ycn Real constant ©®1.0 Double (F64)

Output
y Analog output of the block Double (F64)

102 CHAPTER 4. MATH - MATH BLOCKS

DIF — Difference

Block Symbol Licence: STANDARD

Function Description

The DIF block differentiates the input signal u according to the following formula

Ve = Uk — Uk—1,

where u; = u, y, = y and uj_; is the value of input u in the previous cycle (delay T,
which is the execution period of the block).

The parameter ISSF sets the behavior of the block in the first cycle of task execution.
If off, y = u will be output in the first cycle. For the value on, the output will be y =0
in the first cycle.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
R1 Block reset Bool
HLD Hold Bool
Parameter
ISSF Zero output at start-up Bool
off ... Non-zero output in the first cycle
on Zero output in the first cycle
Output

y Difference of the input signal Double (F64)

DIV — Division of two signals

Block Symbol
P

DIV

Function Description

103

Licence: STANDARD

The DIV block divides two analog input signals y = ul/u2. In case u2 = 0, the output E

is set to onand the output y is substituted by y = yerr.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
ul First analog input of the block
u2 Second analog input of the block
Parameter
yerr Substitute value for an error case
Output
y Quotient of the inputs
E Error flag - division by zero

off ... No error
on An error occurred

1.0

Double
Double

Double

Double
Bool

(F64)
(F64)

(F64)

(F64)

104 CHAPTER 4. MATH - MATH BLOCKS

EAS — Extended addition and subtraction

Block Symbol Licence: STANDARD

ul
2
us VP
u4

EAS

Function Description

The EAS block sums input analog signals ul, u2, u3 and u4 with corresponding weights
a, b, ¢ and d. The output y is then given by

y=a*ul +b*xu2+c*xu3+dxud+ y0.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul..u4 Analog input of the block Double (F64)
Parameter
a Weighting coefficient of the ul input ®1.0 Double (F64)
b Weighting coefficient of the u2 input ©1.0 Double (F64)
c Weighting coefficient of the u3 input ©®1.0 Double (F64)
d Weighting coefficient of the u4 input ©1.0 Double (F64)
yo Additive constant (bias) Double (F64)
Output

y Analog output of the block Double (F64)

105

EMD — Extended multiplication and division

Block Symbol Licence: STANDARD

1
uz Yp
u3
u4 Ep
EMD

Function Description

The EMD block multiplies and divides analog input signals ul, u2, u3 and u4 with corre-
sponding weights a, b, ¢ and d. The output y is then given by

(a*ul 4 a0)(b * u2 + b0)

y= (c*u3+ c0)(d * ud +d0)’ (41)

The output E is set to on in the case that the denominator in the equation (4.1) is equal
to 0 and the output y is substituted by y = yerr.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul..u4d Analog input of the block Double (F64)
Parameter
a Weighting coefficient of the ul input ®1.0 Double (F64)
a0 Additive constant for ul input Double (F64)
b Weighting coefficient of the u2 input ®1.0 Double (F64)
b0 Additive constant for ul input Double (F64)
c Weighting coefficient of the u3 input ©®1.0 Double (F64)
c0 Additive constant for ul input Double (F64)
d Weighting coefficient of the u4 input ©®1.0 Double (F64)
do Additive constant for ul input Double (F64)
yerr Substitute value for an error case ©®1.0 Double (F64)
Output
y Analog output of the block Double (F64)
E Error flag - division by zero Bool

off ... No error
on An error occurred

106 CHAPTER 4. MATH - MATH BLOCKS

FNX — Evaluation of single-variable function

Block Symbol Licence: STANDARD

Function Description

The FNX block evaluates basic math functions of single variable. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.

List of functions:

ifn: shortcut | function constraints on u
1: acos arccosine ue< —1.0,1.0 >
2: asin arcsine ue< —1.0,1.0 >
3: atan arctangent -

4: ceil rounding towards the nearest higher integer -

5: cos cosine —

6: cosh hyperbolic cosine -

7: exp exponential function e* -

8: expl0 exponential function 10" -

9: fabs absolute value -

10: floor rounding towards the nearest lower integer -

11: log logarithm u>0

12: logl0 decimal logarithm u>0

13: random | arbitrary number z €< 0,1 > (u independent) -

14: sin sine -

15: sinh hyperbolic sine -

16: sqr square function -

17: sqrt square root u>0

18: srand changes the seed for the random function to u ueN

19: tan tangent -

20: tanh hyperbolic tangent -

Note: All trigonometric functions process data in radians.

The error output is activated (E = on) in the case when the input value u falls out of
its bounds or an error occurs during evaluation of the selected function (implementation
dependent), e.g. square root of negative number. The output is set to substitute value
in such case (y = yerr).

107

This block propagates the signal quality. More information can be found in the 1.4
section.

108 CHAPTER 4. MATH - MATH BLOCKS

Input
u Analog input of the block Double (F64)
Parameter
ifn Function type ®1 Long (I32)
1 ... acos
2 ... asin
3 ... atan
4 ceil
5 ... cos
6 cosh
7 ... exp
8 expl0
9 fabs
10 . floor
11 log
12 loglO
13 random
14 sin
15 sinh
16 sqr
17 ... sqrt
18 srand
19 tan
20 tanh
yerr Substitute value for an error case Double (F64)
Output
y Result of the selected function Double (F64)
E Error indicator Bool
off ... No error

on An error occurred

109

FNXY — Evaluation of two-variables function

Block Symbol Licence: STANDARD
2

FNXY

Function Description

The FNXY block evaluates basic math functions of two variables. The table below shows
the list of supported functions with corresponding constraints. The ifn parameter de-
termines the active function.

List of functions:

ifn: shortcut | function constraints on ul, u2
1: atan2 arctangent ul/u2 -

2: fmod remainder after division ul/u2 u2 # 0.0

3: pow exponentiation of the inputs y = u1%2 -

The atan2 function result belongs to the interval (—m, 7). The signs of both inputs
ul a u2 are used to determine the appropriate quadrant.

The fmod function computes the remainder after division ul/u2 such that ul =7 -u2 +y,
where ¢ is an integer, the signs of the y output and the ul input are the same and the
following holds for the absolute value of the y output: |y| < [u2|.

The error output is activated (E = on) in the case when the input value u2 does
not meet the constraints or an error occurs during evaluation of the selected function
(implementation dependent), e.g. division by zero. The output is set to substitute value
in such case (y = yerr).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Parameter
ifn Function type ®1 Long (I32)
1 atan2
2 ... fmod
3 ... pow

yerr Substitute value for an error case Double (F64)

110 CHAPTER 4. MATH - MATH BLOCKS

Output
y Result of the selected function Double (F64)
E Error indicator Bool

off ... No error
on An error occurred

111

GAIN — Multiplication by a constant

Block Symbol Licence: STANDARD
P

GAIN

Function Description

The GAIN block multiplies the analog input u by a real constant k. The output is then

y = ku.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

k Gain ®1.0 Double (F64)
Output

y Analog output of the block Double (F64)

112 CHAPTER 4. MATH - MATH BLOCKS

GRADS — Gradient search optimization

Block Symbol Licence: ADVANCED

i X
xopt
x0 fopt

BSY
START iter
E

BRK iE
GRADS

Function Description

The GRADS block performs one-dimensional optimization of the f(x,v) function by gra-
dient method, where x € (xmin,xmax) is the optimized variable and v is an arbitrary
vector variable. It is assumed that the value of the function f(x,v) for given x at time
k is enumerated and fed to the £ input at time k + n x T, where Tg is the execution
period of the GRADS block. This means that the individual optimization iterations have
a period of n * T5. The length of step of the gradient method is given by

grad = (f;—f;1)*(dz),_,

(dz); = —gamma * grad,

where ¢ stands for ¢-th iteration. The step size is restricted to lie within the interval
(dmin,dmax). The value of the optimized variable for the next iteration is given by

Tit1 = xi + (dx);

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
f Value of the optimized function f(.) for given x Double (F64)
x0 Optimization starting point Double (F64)
START Starting signal (rising edge) Bool
BRK Termination signal Bool
Parameter
xmin Lower limit for the x variable Double (F64)
Xmax Upper limit for the x variable (®10.0 Double (F64)
gamma Step size coeflicient ©0.3 Double (F64)

do Initial step size (®0.05 Double (F64)

dmin
dmax

n
itermax

Output

X
xopt
fopt
BSY
iter
E

iE

Minimum step size

Maximum step size

Iteration period (in sampling periods Ts)
Maximum number of iterations

Current value of the optimized variable
Resulting optimal value of the x variable
Resulting optimal value of the function f
Busy flag

Number of current iteration

Error indicator

off ... No error

on An error occurred
Error code

1 ... x out of limits

2 ... x at the limit

©0.01
©®1.0
100
20

113

Double (F64)
Double (F64)
Long (I32)
Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool

Long (I32)
Bool

Long (I32)

114 CHAPTER 4. MATH - MATH BLOCKS

IADD — Integer addition

Block Symbol Licence: STANDARD

IADD

Function Description

The IADD block sums two integer input signals n = i1 4 i2. The range of integer num-
bers in a computer is always restricted by the variable type. This block uses the vtype
parameter to specify the type. If the sum fits in the range of the given type, the result
is the ordinary sum. In the other cases the result depends on the SAT parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 + 2770 = -32766.

For SAT = on the overflow results in setting the error output to E = on and the n
output to the nearest displayable value. For the above mentioned example we get 30000
+ 2770 = 32767.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
Parameter
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (T16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
SAT Saturation (overflow) checking Bool
off ... Overflow is not checked
on Overflow is checked
Output

n Integer sum of the input signals Long (I32)

115

Error indicator Bool
off ... No error
on An error occurred

116 CHAPTER 4. MATH - MATH BLOCKS

IDIV — Integer division

Block Symbol Licence: STANDARD

IDIV

Function Description

The IDIV block performs an integer division of two integer input signals, n = i1 + 12,
where + stands for integer division operator. If the ordinary (non-integer, normal) quo-
tient of the two operands is an integer number, the result of integer division is the same.
In other cases the resulting value is obtained by trimming the non-integer quotient’s
decimals (i.e. rounding towards lower integer number). In case i2 = 0, the output error
is set to on and the output n is substituted by n = nerr.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
Parameter
vtype Numeric type ®4 Long (I32)
2 ..., Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 Word (U16)
6 DWord (U32)
10 Large (I64)
nerr Substitute value for an error case ®1 Long (I32)
Output
n Integer quotient of the inputs Long (I32)
E Error flag - division by zero Bool
off ... No error

on An error occurred

117

IMOD — Remainder after integer division

Block Symbol Licence: STANDARD

i1 np
i2 Ep

IMOD

Function Description

The IMOD block divides two integer input signals, n = i1%i2, where % stands for remain-
der after integer division operator (modulo). If both numbers are positive and the divisor
is greater than one, the result is either zero (for commensurable numbers) or a positive
integer lower than the divisor. In the case that one of the numbers is negative, the result
has the sign of the dividend, e.g. 15%10 = 5, 15%(—10) = 5, but (—15)%10 = —5. In
case i2 = 0, the output E is set to on and the output n is substituted by n = nerr.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block }-9.22E+18 19.22E+18 Long (I132)
Parameter
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 Word (U16)
6 DWord (U32)
10 Large (I64)
nerr Substitute value for an error case ®1 Long (I32)
Output
n Remainder after integer division Long (I32)
E Error flag - division by zero Bool
off ... No error

on An error occurred

118 CHAPTER 4. MATH - MATH BLOCKS

IMUL — Integer multiplication

Block Symbol Licence: STANDARD

Function Description

The IMUL block multiplies two integer input signals n = il * 12. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the multiple fits in the range of the given type,
the result is the ordinary multiple. In the other cases the result depends on the SAT
parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 2000 * 20 = -25536.

For SAT = on the overflow results in setting the error output to E = on and the n
output to the nearest displayable value. For the above mentioned example we get 2000
* 20 = 32767.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
Parameter
vtype Numeric type ®4 Long (I32)
2 ..., Byte (U8)
3. Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
SAT Saturation (overflow) checking Bool
off ... Overflow is not checked

on Overflow is checked

119

Output
n Integer product of the input signals Long (I32)
E Error indicator Bool
off ... No error

on An error occurred

120 CHAPTER 4. MATH - MATH BLOCKS

ISUB — Integer subtraction

Block Symbol Licence: STANDARD

Function Description

The ISUB block subtracts two integer input signals n = i1 — i2. The range of integer
numbers in a computer is always restricted by the variable type. This block uses the
vtype parameter to specify the type. If the difference fits in the range of the given
type, the result is the ordinary sum. In the other cases the result depends on the SAT
parameter.

The overflow is not checked for SAT = off, i.e. the output E = off and the output
value n corresponds with the arithmetics of the processor. E.g. for the Short type, which
has the range of -32768..+32767, we obtain 30000 - -2770 = -32766

For SAT = on the overflow results in setting the error output to E = on and the n
output to the nearest displayable value. For the above mentioned example we get 30000
- =2770 = 32767.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
i1 First integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
i2 Second integer input of the block 1-9.22E+18 19.22E+18 Long (I32)
Parameter
vtype Numeric type ®4 Long (I32)
2 ..., Byte (U8)
3. Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
SAT Saturation (overflow) checking Bool
off ... Overflow is not checked

on Overflow is checked

121

Output
n Integer difference between the input signals Long (I32)
E Error indicator Bool
off ... No error

on An error occurred

122 CHAPTER 4. MATH - MATH BLOCKS

LIN — Linear interpolation

Block Symbol Licence: STANDARD
[u yp

LIN

Function Description

The LIN block performs linear interpolation. The following figure illustrates the influence
of the input u and given interpolation points [ul, y1| and [u2, y2| on the output y.

y2

y1

U-1 U ué

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
Parameter
ul x-coordinate of the 1st interpolation node Double (F64)
y1 y-coordinate of the 1st interpolation node Double (F64)
u2 x-coordinate of the 2nd interpolation node ®1.0 Double (F64)
y2 y-coordinate of the 2nd interpolation node ©®1.0 Double (F64)
Output

v Analog output of the block Double (F64)

123

MUL — Multiplication of two signals

Block Symbol Licence: STANDARD

Function Description

The MUL block multiplies two analog input signals y = ul - u2.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul First analog input of the block Double (F64)
u?2 Second analog input of the block Double (F64)
Output

y Product of the input signals Double (F64)

124 CHAPTER 4. MATH - MATH BLOCKS

NANINF — Block for checking NaN and Inf values

Block Symbol Licence: STANDARD

P
u 2F
NANINF

Function Description

The NANINF block serves to detect and correct unusual values on an analog input u. If the
input value is a standard number, it is directly forwarded to the output y (y = u), and
the output is is set to 0. In cases where the input value is infinity (£Inf) or is of the type
"not a number" (NaN), a replacement value defined in the respective parameter infp,
infn or nan is sent to the output y with a bad quality (BAD) label. Simultaneously, a
code indicating the type of abnormality of the input value is sent to the output is.

Note: From the perspective of a mathematical coprocessor, Inf or NaN values are
almost normal values that can be operated with in all operations. They may arise, for
example, when dividing by zero or when taking the square root of a negative number.
From the perspective of the control system, however, these are nonsensical values that
definitely cannot be set to a physical output. The REXYGEN system understands this and
such values are not generated by its blocks (e.g., the SQRT block has a replacement value
for negative numbers, similarly the DIV block for division by 0). However, sometimes
such non-standard values occur, and then it is necessary to have the means to deal with
them, which is where this block comes into play.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul Analog input of the block Double (F64)
Parameter
infp Substitute value for +Inf Double (F64)
infn Substitute value for -Inf Double (F64)
nan Substitute value for NaN Double (F64)
Output

y Analog output of the block Double (F64)

125

is Status (0:0K, 1:+Inf, 2:-Inf, 3:NaN) Long (I32)
0 OK
1 ... +Inf
2 ... -Inf

126 CHAPTER 4. MATH - MATH BLOCKS

POL — Polynomial evaluation

Block Symbol Licence: STANDARD
[u yp

POL

Function Description
The POL block evaluates the polynomial of the form:

y=ap+au-+ a2u2 + agu3 + a4u4 + a5u5 + aﬁu6 + a7u7 + aguS.
The polynomial is internally evaluated by using the Horner scheme to

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

a0. .a8 Coefficient of the polynomial Double (F64)
Output

y Analog output of the block Double (F64)

127

REC — Reciprocal value

Block Symbol Licence: STANDARD

P

REC

Function Description

The REC block computes the reciprocal value of the input signal u. The output is then
y= -
u
In case u = 0, the error indicator is set to E = on and the output is set to the substitu-

tional

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

yerr Substitute value for an error case ©®1.0 Double (F64)
Output

v Analog output of the block Double (F64)

E Error flag - division by zero Bool

off ... No error
on An error occurred

128 CHAPTER 4. MATH - MATH BLOCKS

REL — Relational operator

Block Symbol Licence: STANDARD
»

Function Description

The REL block evaluates the binary relation ul o u2 between the values of the input
signals and sets the output Y according to the result of the relation "o". The output
is set to Y = on when relation holds, otherwise it is zero (relation does not hold). The
binary operation codes are listed below.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Parameter
irel Relation type ®1 Long (I32)
1 ..., equality (==)
2 ... inequality (=)
3 ... less than (<)
4 ... greater than (>)
5 less or equal (<=)
6 greater or equal (>=)
Output

Y Logical output of the block Bool

129

RTOI — Real to integer number conversion

Block Symbol Licence: STANDARD

Function Description

The RTOI block converts the real number r to a signed integer number i. The resulting
rounded value is defined by:

—2147483648, for r < —2147483648.0,
i= round(r), for —2147483648.0 < r < 2147483647.0,
2147483647, for T > 2147483647.0,

where round(r) stands for rounding to the nearest integer number. The number of the
form n+0.5 (n is integer) is rounded to the integer number with the higher absolute
value, i.e. round(1.5) = 2, round(—2.5) = —3.

Note that the numbers —2147483648 and 2147483647 correspond with the lowest and
the highest signed number representable in 32-bit format respectively (0x7FFFFFFF and
0x80000000 in hexadecimal form in the C language). This limits are valid if the vtype
parameter has default value.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
T Analog input of the block Double (F64)
Parameter
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (I16)
4 Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
SAT Saturation (overflow) checking Gon Bool
off ... Overflow is not checked

on Overflow is checked

130 CHAPTER 4. MATH - MATH BLOCKS

Output

i Rounded and converted input signal Long (I32)

131

SQR — Square value

Block Symbol Licence: STANDARD
P

SQR

Function Description
The SQR block raises the input u to the power of 2. The output is then

y = u’.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Output

y Square of the input signal Double (F64)

132 CHAPTER 4. MATH - MATH BLOCKS

SQRT — Square root

Block Symbol Licence: STANDARD

Function Description

The SQRT block computes the square root of the input u. The output is then

y =V

In case u < 0, the error indicator is activated (E = on) and the output y is set to the
substitute value.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

yerr Substitute value for an error case ©®1.0 Double (F64)
Output

y Square root of the input signal Double (F64)

E Error indicator Bool

off ... No error
on An error occurred

133

SUB — Subtraction of two signals

Block Symbol Licence: STANDARD

Function Description

The SUB block subtracts two input signals. The output is given by
y =ul —u2.
Consider using the ADDOCT block for addition or subtraction of multiple signals.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul Analog input of the block Double (F64)
u?2 Analog input of the block Double (F64)
Output

y Difference between input signals Double (F64)

134 CHAPTER 4. MATH - MATH BLOCKS

UTOI — Unsigned to signed integer number conversion

Block Symbol Licence: STANDARD
lu ip

uTol

Function Description

The UTOT block facilitates the conversion of an unsigned integer to a signed integer using
two’s complement representation, which is the common representation used in processors.
For instance, in 8-bit representation, the number -1 is represented as 255, and in 16-bit
representation as 65535. The parameter bits determines which bit representation is
assumed.

This block is primarily used in scenarios where a value from a driver contains multiple
signals extracted by masking (typically using INTSM or BITOP blocks). The result of this
masking is always an unsigned (positive) number. However, if the signal from the driver
is meant to be interpreted as a signed number, this block is used to obtain the correct
value.

Since processors may vary in how they store multi-byte numbers (most commonly
in little-endian format, where the less significant byte is stored at a lower address, but
big-endian format processors also exist, where the opposite is true), the UTOI block
offers the option to swap the byte order if it has not been handled by the driver. This
adjustment is facilitated by the SWAP parameter.

Caution: Swapping the byte order (by setting SWAP=on) typically addresses issues
with different byte orders in the processor only for bits=16 or bits=32 values.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Unsigned input signal $-9.22337E+18 19.22337E+18 Large (I64)
Parameter

bits Valid (LSB) bits in input signal 12164 ®16 Long (I32)

SWAP Swap input byte order Bool
Output

i Converted (signed) input signal Large (164)

Chapter 5

ANALOG — Analog signal
processing

Contents

ABSROT — Absolute rotation (multiturn extension of the position

SEIMSOT) v v v v v v v e e e it e e e e e e e e e e e e e e e e e e 137
ASW — Switch with automatic selection of input 139
AVG — Moving average filter o000 0oL 141
AVS — Motion control unit 00000 142
AVSI — Smooth trajectory interpolation 143
BPF — Band-pass filter ¢ ot v i v i i i e e e e 146
CMP — Comparator with hysteresis. 147
CNDR — Nonlinear conditioner 148
DEL — Delay with initialization . . . « « « ¢ ¢ ¢ v v v v v v e 0 v 0 v 150
DELM — Time delayt 151
DER — Derivation, filtering and prediction from the last n+1 samples152
EVAR — Moving mean value and standard deviation 154
INTE — Controlled integrator . . . « « v v v v v ¢ ¢t v v v v o o o oo 155
KDER — Derivation and filtering of the input signal 157
LPF —Low-pass filter ¢ o i i i i i i it i e oo 159
MINMAX — Running minimum and maximum 161
NSCL — Nonlinear scaling factoro v v v v 162
0SD—Omne StepDelay 0., 163
RDFT — Running discrete Fourier transform 164
RLIM — Rate limiter 0ttt 166
S10F2 — One of two analog signals selector 167
SAT — Safety analog input . « + « v v v v ¢t v v v b b bt e e e e e 170
SEL — Selector switch for analog signals 173

135

136 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SELQUAD, SELOCT, SELHEXD — Selector switch for analog signals . . . 174
SHIFTOCT — Data shift register 176
SHLD — Sampleand hold 0000, 178
SINT — Simple Integrator ¢ v v v v v v o o v o v o s o oo 179
SPIKE — Spike filter . . .« & v v v v v v i i i e e e e e e e 180
SSW—Simple switch 0 0000 o L. 182
SWR — Selector withramp 00000, 183
VDEL — Variable time delay . . . « v v v ¢t v v v v v v v o v v v v a0 v 184
ZVAIS — Zero vibration input shaper 185

Library presents a versatile range of functional blocks, designed for control and sig-
nal processing applications. It includes blocks like ASW, AVG, BPF, and DEL, which provide
functionalities from signal manipulation and averaging to filtering and complex condi-
tional operations, catering to a broad spectrum of system requirements and scenarios.

137

ABSROT — Absolute rotation (multiturn extension of the posi-
tion sensor)

Block Symbol Licence: ADVANCED

y

U irev
MP!

R1 oLl

ABSROT

Function Description

The ABSROT function block is intended for processing the data from absolute position
sensor on rotary equipment, e.g. a shaft. The absolute sensor has a typical range of 5°
to 355° (or -175° to +175°) but in some cases it is necessary to control the rotation
over a range of more than one revolution. The function block assumes a continuous
position signal, therefore the transition from 355° to 5° in the input signal means that
one revolution has been completed and the angle is in fact 365°.

In the case of long-term unidirectional operation the precision of the estimated po-
sition y deteriorates due to the precision of the double data type. For that case the R1
input is available to reset the position y to the base range of the sensor. If the RESR flag
is set to RESR = on, the irev revolutions counter is also reset by the R1 input. In all cases
it is necessary to reset all accompanying signals (e.g. the sp input of the corresponding
controller).

The MPI output indicates that the absolute sensor reading is near to the middle of
the range, which may be the appropriate time to reset the block. On the other hand, the
OLI output indicates that the sensor reached the so-called dead-angle where it cannot
report valid data.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Signal from the absolute position sensor Double (F64)
R1 Block reset Bool
Parameter
lolim Lower limit of the sensor reading (©-3.14159265 Double (F64)
hilim Upper limit of the sensor reading (3.14159265 Double (F64)
tol Tolerance for the mid-point indicator ®0.5 Double (F64)

hys Hysteresis for the mid-point indicator Double (F64)

138

RESR

Output

irev
MPI
OLI

CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

Flag for resetting the revolutions counter
off ... Reset only the estimated position
on Reset also the revolutions counter

Position output
Number of revolutions
Mid-point indicator
Off-limits indicator

Bool

Double (F64)
Long (I32)
Bool

Bool

139

ASW — Switch with automatic selection of input

Block Symbol Licence: ADVANCED

Function Description

The ASW block copies one of the inputs ul, ..., u4 or one of the parameters pi, ..., p4
to the output y. The appropriate input signal is copied to the output as long as the
input signal iSW belongs to the set {1,2,3,4} and the parameters are copied when iSW
belongs to the set {—1,—2, -3, —4} (i.e. y = p1 for iSW = —1, y = u3 for iSW = 3 etc.).
If the iSW input signal differs from any of these values (i.e. iSW = 0 or iSW < —4 or
iSW > 4), the output is set to the value of input or parameter which has changed the
most recently. The signal or parameter is considered changed when it differs by more
than delta from its value at the moment of its last change (i.e. the changes are measured
integrally, not as a difference from the last sample). The following priority order is used
when changes occur simultaneously in more than one signal: p4, p3, p2, pl, u4, u3, u2,
ul. The identifier of input signal or parameter which is copied to the output y is always
available at the oSW output.

The ASW block has one special feature. The updated value of y is copied to all the
parameters pi, ..., p4. This results in all external tools reading the same value y. This is
particularly useful in higher-level systems which use the set&follow method (e.g. a slider
in Iconics Genesis). This feature is not implemented in Simulink as there are no ways to
read the values of inputs by external programs.

ATTENTION! One of the inputs ul, ..., u4 can be delayed by one step when the
block is contained in a loop. This might result in an illusion, that the priority is broken
(the oSW output then shows that the most recently changed signal is the delayed one).
In such a situation the LPBRK block(s) must be used in appropriate positions.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul..u4 Analog input of the block Double (F64)
isw Active signal or parameter selector Long (I32)
Parameter

delta Threshold for detecting a change (©le-06 Double (F64)

140 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

pl..p4 Parameter to be selected Double (F64)
Output
y The selected signal or parameter Double (F64)

oSW Identifier of the selected signal or parameter Long (I32)

141

AVG — Moving average filter

Block Symbol Licence: STANDARD
P

AVG

Function Description

The AVG block computes a moving average from the last n samples according to the
formula 1
Yk = (ke +up—1+ o Weng)-

There is a limitation n < N, where N depends on the implementation. If the last n
samples are not yet known, the average is computed from the samples available.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be filtered Double (F64)
Parameter

n Number of samples for averaging 1 710000000 ®10 Long (I32)

nmax Allocated size of array 410 110000000 ®100 Long (I32)
Output

y Filtered output signal Double (F64)

142 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

AVS — Motion control unit

Block Symbol Licence: ADVANCED

START a
SET v
am S
dm it
vm RDY
sm BSY

AVS

Function Description

The AVS block generates time-optimal trajectory from initial steady position 0 to a final
steady position sm while respecting the constraints on the maximal acceleration am,
maximal deceleration dm and maximal velocity vm. When rising edge (off—on) occurs
at the SET input, the block is initialized for current values of the inputs am, dm, vm and
sm. The RDY output is set to offbefore the first initialization and during the initialization
phase, otherwise it is set to 1. When rising edge (off—on) occurs at the START input, the
block generates the trajectory at the outputs a, v, s and tt, where the signals correspond
to acceleration, velocity, position and time respectively. The BSY output is set to on while
the trajectory is being generated, otherwise it is off.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
START Starting signal (rising edge) Bool
SET Initialize/compute the trajectory Bool
am Maximal allowed acceleration [m/s?| Double (F64)
dm Maximal allowed deceleration [m /s?] Double (F64)
vm Maximum allowed velocity [m/s] Double (F64)
sm Desired final position [m)] Double (F64)
Output
Acceleration [m/s?] Double (F64)
v Velocity [m/s] Double (F64)
Position [m] Double (F64)
tt Time [s] Double (F64)
RDY Outputs valid (ready flag) Bool

BSY Busy flag Bool

143

AVSI — Smooth trajectory interpolation

Block Symbol Licence: ADVANCED
;L:ET Rp:S

Function Description

The functional block AVSI - Acceleration (A), Velocity (V'), Distance (S) Interpolation
(I) - is designed for signal interpolation, especially in motion control applications. Its
main purpose is to generate smooth sequences of position (distance), velocity, and ac-
celeration based on discrete input values. This block is inspired by the functionality of
RM_AxisSpline and offers similar interpolation methods.

The AVSI block accepts inputs sn (position), va (velocity), and an (acceleration),
which are generated by an external function (outside this block) with a certain period
defined by the RemTs parameter. The values at the block’s input are updated on the
rising edge of the SET signal.

Interpolation between individual inputs is carried out with the aim of creating smooth
transitions and ensuring continuous motion control or other applications requiring signal
regulation and its derivatives. The block supports various interpolation methods deter-
mined by the Mode parameter, corresponding to the options in RM_AxisSpline. The
supported methods include:

e 1: linear: Position is interpolated linearly, velocity as the derivative of position,
acceleration is 0 (i.e., velocity is a piecewise constant function with jumps).

e 2: cubic spline: Position is a 3rd order polynomial calculated based on the position
and velocity at the beginning and end of the interval; velocity is the derivative of
position, acceleration is the derivative of velocity.

e 3: quintic spline: Position is a 5th order polynomial calculated based on the
position, velocity, and acceleration at the beginning and end of the interval; velocity
is the derivative of position, acceleration is the derivative of velocity.

e 4: cubic aproximation (B-spline): Position is a 3rd order polynomial calculated
based on two positions before and two positions after the current interval; the
interpolated function may not exactly pass through the given points; velocity is
the derivative of position, acceleration is the derivative of velocity.

e 5: quintic aproximation (B-spline): Position is a 5th order polynomial calcu-
lated based on three positions before and three positions after the current interval;

144 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

the interpolated function may not exactly pass through the given points; velocity
is the derivative of position, acceleration is the derivative of velocity.

e 6: all linear: Position, velocity, and acceleration are independently interpolated
linearly, i.e., velocity does not precisely correspond to the derivative of position,
and acceleration does not precisely correspond to the derivative of velocity.

e 7: all cubic: Both position and velocity are interpolated by a 3rd order polyno-
mial independently, i.e., velocity does not exactly correspond to the derivative of
position.

8: reserved for future use.
e 9: reserved for fulure use.

Due to its operating principle, the AVSI block introduces signal delay, where active
generation of values begins only after two complete RemTs periods from the first rising
edge of the SET signal. For B-spline interpolation methods, a larger number of samples
is required to start interpolation.

The AVST block is primarily intended for motion control applications but can also be
used for other types of signals and their derivatives. Its implementation allows for more
efficient and smoother transitions between individual state values without the need for
complex external control.

When using it, it is important to correctly set the RemTs period corresponding to the
input value generator and choose the appropriate Mode for the desired type of interpola-
tion.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
an Next (remote) period acceleration [m/s?] Double (F64)
vn Next (remote) period velocity [m/s] Double (F64)
sn Next (remote) period position [m] Double (F64)
SET Accept input on rising edge Bool
R1 Block reset Bool
dm Maximal allowed deceleration in case of error [m/s?] Double (F64)
Parameter

RemTs Remote signal generator period ®0.0 Double (F64)

Mode

RDY
iE

Algorithm for interpolation

4 ... cubic approximation (B-spline)
5 quintic approximation (B-spline)

1..... linear

2 ... cubic spline
3 ... quintic spline
6 all linear

7 ... all cubic

8 ... —

9 —

Acceleration [m/s?]
Velocity [m/s]

Position [m]

Outputs valid (ready flag)
Error code

145

®9 Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool
Bool

146 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

BPF — Band-pass filter

Block Symbol Licence: STANDARD
Function Description

The BPF implements a second order filter in the form

_ 2€as
a2s? +2¢as+ 1’

s

where a and & are are the block parameters fm and xi respectively. The fm parameter
defines the middle of the frequency transmission band and xi is the relative damping
coefficient.

If ISSF = on, then the state of the filter is set to the steady value at the block
initialization according to the input signal u.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Input signal to be filtered Double (F64)
R1 Block reset Bool
HLD Hold Bool
Parameter
fm Peak frequency [Hz| ®1.0 Double (F64)
xi Relative damping coefficient ©0.707 Double (F64)
ISSF Steady state at start-up Bool
off ... Zero initial state
on Initial steady state
Output

y Filtered output signal Double (F64)

147

CMP — Comparator with hysteresis

Block Symbol Licence: STANDARD

ul
4 v

CMP

Function Description

The CMP block compares the inputs ul and u2 with the hysteresis h as follows:

Y1 =0,
Y. = hyst(er), k=0,1,2,...
where
€ = ulk — u2k
and
0 for e < —h
hyst(ex) = Yip—1 for ey € (—h,h)

1 for ey >h (ex > hfor h=0)

The indexed variables refer to the values of the corresponding signal in the cycle defined
by the index, i.e. Y;_1 denotes the value of output in the previous cycle/step. The value
Y_; is used only once when the block is initialized (k = 0) and the difference of the input
signals e is within the hysteresis limits.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

ul First analog input of the block Double (F64)

u?2 Second analog input of the block Double (F64)
Parameter

hys Hysteresis J0.0 ©®0.5 Double (F64)
Output

Y Logical output of the block Bool

148 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

CNDR — Nonlinear conditioner

Block Symbol
i

CNDR

Function Description

Licence: STANDARD

The CNDR block can be used for compensation of complex nonlinearities by a piecewise

linear transformation which is depicted below.

is: 0 1 2

n-1

Y1

Upg
=1

SATE

/ Uy U Un-2
Y

0
SATF=0

It is important to note that in the case of u < ug or u > u,_; the output depends on

the SATF parameter.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Analog input of the block
Parameter
nmax Allocated size of array
SATF Saturation flag
off ... Signal not limited
on Saturation limits active
up Vector of increasing u-coordinates

14 ®10
®on

®[0.0 3.9 3.9 9.0 14.5 20.0]

Double (F64)

Long (I32)
Bool

Double (F64)

149

yp Vector of y-coordinates ©[0.0 0.0 15.8 38.4 72.0 115.0] Double (F64)
Output
y Analog output of the block Double (F64)

is Active sector of nonlinearity Long (I32)

150 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

DEL — Delay with initialization

Block Symbol Licence: STANDARD

u

y0 RDY
DEL

Function Description

The DEL block implements a delay of the input signal u. The signal is shifted n samples
backwards, i.e.
Yk = Uk—n-
The corresponding time delay is n - T, where T is the block trigger period.
If the last n samples are not yet known, the output is set to

Yk = Yo,

where y is the initialization input signal. This can happen after restarting the control
system or after resetting the block (R1: off—on—off) and it is indicated by the output
RDY = off.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

R1 Block reset Bool

yO Initial output value Double (F64)
Parameter

n Delay [samples] 10 110000000 ®10 Long (I32)

nmax Allocated size of array 410 710000000 ©®100 Long (I32)
Output

y Delayed input signal Double (F64)

RDY Outputs valid (ready flag) Bool

151

DELM — Time delay

Block Symbol Licence: STANDARD
P

DELM
Function Description

The DELM block implements a time delay of the input signal. The length of the delay
is given by rounding the del parameter to the nearest integer multiple of the block
execution period. The output signal is y = 0 for the first del seconds after initialization.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

del Time delay [s] ©1.0 Double (F64)

nmax Allocated size of array 410 110000000 ®100 Long (I32)
Output

y Delayed input signal Double (F64)

152 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

DER — Derivation, filtering and prediction from the last n+1
samples

Block Symbol Licence: STANDARD

u y
RUN Z|
tp RDY

DER

Function Description

The DER block interpolates the last n + 1 samples (n < N — 1, N is implementation
dependent) of the input signal u by a line y = at + b using the least squares method.
The starting point of the time axis is set to the current sampling instant.

In case of RUN = on the outputs y and z are computed from the obtained parameters
a and b of the linear interpolation as follows:

Derivation: y = a

Filtering: z = b fort,=0
Prediction: z = at,+0, fort, >0
Retrodiction: z = at,+0b, fort, <0

In case of RUN = off or n+1 samples of the input signal are not yet available (RDY = off),
the outputs are set toy =0, z = u.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog output of the block Double (F64)
RUN Enable execution Bool
off ... Tracking
on Filtering
tp Time instant for prediction/filtering Double (F64)
Parameter
n Number of samples for interpolation J1 110000000 ®10 Long (I32)
nmax Allocated size of array 410 710000000 ©®100 Long (I32)
Output
y Estimate of input signal derivative Double (F64)

z Predicted /filtered input signal Double (F64)

153

RDY Outputs valid (ready flag) Bool

154 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

EVAR — Moving mean value and standard deviation

Block Symbol Licence: STANDARD

mu p
’

EVAR

Function Description

The EVAR block estimates the mean value mu (1) and standard deviation si (o) from the
last n samples of the input signal u according to the formulas

1
e = 1 Uk—i
i=0
1n—1
_ - 2 2
Ok = 1 E :uk—i My
i=0

where k stands for the current sampling instant.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

n Number of samples for statistics 12 110000000 ®100 Long (I32)

nmax Allocated size of array 410 710000000 ®200 Long (I32)
Output

mu Mean value Double (F64)

si Standard deviation Double (F64)

155

INTE — Controlled integrator

Block Symbol Licence: STANDARD
o

Function Description

The INTE block implements a controlled integrator with variable integral time constant
ti and two indicators of the output signal level (ymin a ymax). If RUN = on and R1 = off

then .
1
o) =7 [undr .
Ti Jo
where C' = y0. If RUN = off and R1 = off then the output y is frozen to the last value
before the falling edge at the RUN input signal. If R1 = on then the output y is set to the

initial value y0. The integration uses the trapezoidal method as follows

Ts
Yk = Yp—1 + Tﬂ(uk + U—1),
where Tg is the block execution period. If 7; = 0, the block realize summation by
following equation
Yk = Yk—1 T Ug-

If T; < 0, the block behaviour is undefined.

Consider using the SINT block, whose simpler structure and functionality might be
sufficient for elementary tasks.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
RUN Enable execution Bool
off ... Integration stopped
on Integration running
R1 Block reset Bool
yO Initial output value Double (F64)

ti Integral time constant Double (F64)

156

Parameter

ymin
ymax
SAT

Output

y
q
LY

HY

CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

Lower level definition
Upper level definition
Limit output if level limit is reach

Integrator output

Running integration indicator
Lower saturation indicator
Upper saturation indicator

©®-1.0
1.0

Double (F64)
Double (F64)
Bool

Double (F64)
Bool
Bool
Bool

157

KDER — Derivation and filtering of the input signal

Block Symbol Licence: ADVANCED

Function Description

The KDER block is a Kalman-type filter of the norder-th order aimed at estimation of
derivatives of locally polynomial signals corrupted by noise. The order of derivatives
ranges from 0 to norder — 1. The block can be used for derivation of almost arbitrary
input signal u = uo(t) + v(t), assuming that the frequency spectrums of the signal and
noise differ.

The block is configured by only two parameters pbeta and norder. The pbeta pa-
rameter depends on the sampling period T, frequency properties of the input signal u
and also the noise to signal ratio. An approximate formula pbeta ~ Tswy can be used.
The frequency spectrum of the input signal u should be located deep down below the
cutoff frequency wg. But at the same time, the frequency spectrum of the noise should
be as far away from the cutoff frequency wqg as possible. The cutoff frequency wg and
thus also the pbeta parameter must be lowered for strengthening the noise rejection.

The other parameter norder must be chosen with respect to the order of the estimated
derivations. In most cases the 2nd or 3rd order filter is sufficient. Higher orders of the
filter produce better derivation estimates for non-polynomial signals at the cost of slower
tracking and higher computational cost.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be filtered Double (F64)
Parameter

norder Order of the derivative filter 42 110 ®3 Long (I32)

pbeta Bandwidth of the derivative filter J0.0 ®0.1 Double (F64)
Output

y Filtered input signal Double (F64)

dy Estimated 1st order derivative Double (F64)

158 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

d2y Estimated 2nd order derivative Double (F64)
d3y Estimated 3rd order derivative Double (F64)
d4y Estimated 4th order derivative Double (F64)

d5y Estimated 5th order derivative Double (F64)

159

LPF — Low-pass filter

Block Symbol Licence: STANDARD
.
HLD
LPF

Function Description

The LPF block implements a second order filter in the form

1
F.o—
T a?2s2 4+ 2as+ 17

where

\/\/i\/m—%?—i—l
a =
27 fo

and fb and £ = xi are the block parameters. The fb [Hz| parameter defines the filter
bandwidth and xi is the relative damping coefficient. Attenuation at frequency fb is
3 dB, at 10 - fb approximately 40 dB. For the correct function of the filter, f; < ﬁ
must hold, where T is the block triggering period. The recommended value is xi = 0.71
for the Butterworth filter and xi = 0.87 for the Bessel filter.

If ISSF = on, then the state of the filter is set to the steady value at the block
initialization according to the input signal u.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Input signal to be filtered Double (F64)
R1 Block reset Bool
HLD Hold Bool
Parameter
fb Filter bandwidth [Hz] ©®1.0 Double (F64)
xi Relative damping coefficient ©0.707 Double (F64)
ISSF Steady state at start-up Bool

off ... Zero initial state
on Initial steady state

160 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

Output

y Filtered output signal Double (F64)

MINMAX — Running minimum and maximum

Block Symbol

u ymin
ymax
R1 RDY

MINMAX

Function Description

161

Licence: STANDARD

The MINMAX function block evaluates minimum and maximum from the last n samples
of the u input signal. The output RDY = off indicates that the buffer contains less than
n samples. In such a case the minimum and maximum are found among the available

samples.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Analog input of the block
R1 Block reset
Parameter
n Number of samples for analysis
nmax Allocated size of array
Output
ymin Minimal value found
ymax Maximal value found

RDY Outputs valid (ready flag)

11 110000000 ®100
110 110000000 ©200

Double (F64)
Bool

Long (I32)
Long (I32)

Double (F64)
Double (F64)
Bool

162 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

NSCL — Nonlinear scaling factor

Block Symbol Licence: STANDARD
[u yp

NSCL

Function Description

The NSCL block compensates common nonlinearities of the real world (e.g. the servo
valve nonlinearity) by using the formula

u
+(1—ze)-u’

= a'
y=galns o

where gain and ze are the parameters of the block. The choice of ze within the interval
(0,1) leads to concave transformation, while ze > 1 gives a convex transformation.

gainf

output y

0 02 04 06 08 1
input u

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)
Parameter

gain Signal gain ©®1.0 Double (F64)

ze Shaping parameter ®1.0 Double (F64)
Output

y Analog output of the block Double (F64)

163

0SD — One Step Delay

Block Symbol Licence: STANDARD
P

0OsD

Function Description

The 08D block implements a one step delay of the input signal u. The length of the step
delay (in seconds) is given by the task period (see the EXEC function block description
for details).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Any
Parameter

LB Act as loopbreak Bool
Output

y Analog output of the block Any

164 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

RDFT — Running discrete Fourier transform

Block Symbol Licence: ADVANCED

amp
thd
vAmp
vPhi
VRe

vim
HLD E

RDFT

Function Description

The RDFT function block analyzes the analog input signal using the discrete Fourier
transform with the fundamental frequency freq and optional higher harmonic frequen-
cies. The computations are performed over the last m samples of the input signal u, where
m = nper/freq/Tys, i.e. from the time-window of the length equivalent to nper periods
of the fundamental frequency.

If nharm > 0 the number of monitored higher harmonic frequencies is given solely by
this parameter. On the contrary, for nharm = 0 the monitored frequencies are given by
the user-defined vector parameter freq?2.

For each frequency the amplitude (vAmp output), phase-shift (vPhi output), real/co-
sine part (vRe output) and imaginary/sine part (vIm output). The output signals have
the vector form, therefore the computed values for all the frequencies are contained
within. Use the VTOR function block to disassemble the vector signals. The output thd
indicates the total harmonic distortion, i.e. the part of fundamental and higher harmonic
frequencies (only if nharm > 1).

This block propagates the signal quality. More information can be found in the 1.4

section.

Input
u Analog input of the block Double (F64)
HLD Hold Bool

Parameter
freq Fundamental frequency J1e-09 11e+09 ®1.0 Double (F64)
nper Number of periods to calculate upon 41 110000 ®10 Long (I32)
nharm Number of monitored harmonic frequencies JO 116 ®3 Long (I32)
ifrunit Frequency units ®1 Long (I32)

iphunit

nmax

freq2

Output

amp
thd
vAmp
vPhi
vRe
vIm

iE

Phase shift units o1
1 ..., degrees
2 ... radians

Allocated size of array 410 110000000 8192

Vector of user-defined monitored frequencies ©[2.0 3.0 4.0]

Amplitude of the fundamental frequency
Total harmonic distortion

Vector of amplitudes at given frequencies
Vector of phase-shifts at given frequencies
Vector of real parts at given frequencies
Vector of imaginary parts at given frequencies
Error indicator

Error code

165

Long (I32)

Long (I32)
Double (F64)

Double (F64)
Double (F64)
Reference
Reference
Reference
Reference
Bool

Error

166 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

RLIM — Rate limiter

Block Symbol Licence: STANDARD
»

RLIM

Function Description

The RLIM block copies the input signal u to the output y, but the maximum allowed rate
of change is limited. The limits are given by the time constants tp and tn:

the steepest rise per second: 1/tp
the steepest descent per second: —1/tn

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be filtered Double (F64)
Parameter

tp Time constant - maximum rise ©2.0 Double (F64)

tn Time constant - maximum descent ®2.0 Double (F64)
Output

y Filtered output signal Double (F64)

167

S10F2 — One of two analog signals selector

Block Symbol Licence: ADVANCED

Function Description

The S10F2 block assesses the validity of two input signals ul and u2 separately. The
validation method is equal to the method used in the SAI block. If the signal ul (or u2)
is marked invalid, the output E1 (or E2) is set to on and the error code is sent to the iE1
(or iE2) output. The S10F2 block also evaluates the difference between the two input
signals. The internal flag D is set to on if the differences [ul — u2| in the last nd samples
exceed the given limit, which is given by the following inequation:

vmax — vmin

1 —u2| > pd)
|ul — u2| > pdev 100

where vmin and vmax are the minimal and maximal limits of the inputs ul and u2 and
pdev is the allowed percentage difference with respect to the overall range of the input
signals. The value of the output y depends on the validity of the input signals (flags E1
and E2) and the internal difference flag D as follows:

(i) If E1 = off and E2 = off and D = off , then the output y depends on the mode

parameter:
%, for codemode = 1,
y = min(ul,u2), for mode = 2,

max(ul,u2), for mode = 3.

and the output E is set to off unless set to on earlier.
(ii) If E1 = off and E2 = off and D = on , then y = sv and E = on.

(iii) If E1 = on and E2 = off (E1 = off and E2 = on) , then y = u2 (y = ul) and the
output E is set to off unless set to on earlier.

(iv) If E1 = on and E2 =on , then y = sv and E = on.

The input R resets the inner error flags F1-F4 (see the SAI block) and the D flag. For
the input R set permanently to on, the invalidity indicator E1 (E2) is set to on for only
one cycle period whenever some invalidity condition is fulfilled. On the other hand, for
R = 0, the output E1 (E2) is set to on and remains true until the reset (R: off—on). A

168 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

similar rule holds for the E output. For the input R set permanently to on, the E output
is set to on for only one cycle period whenever a rising edge occurs in the internal D flag
(D = off — on). On the other hand, for R = 0, the output E is set to on and remains
true until the reset (rising edge R: off—on). The output W is set to on only in the (iii)
or (iv) cases, i.e. at least one input signal is invalid.

The parameter nb specifies the number of samples after restart during which signal
validity detection for ul and u2 is suppressed. The parameter nc indicates the number
of samples for testing immutability (see the SAI block, condition F2). The number of
samples for testing variability (see the SAT block, condition F3) is given by the parameter
nr. The maximum expected percentage change in input ul (u2) from the total range
vmax — vmin over nr samples of input ul (u2) (see the SAI block) is determined by
prate. The parameter nv represents the number of samples for testing range exceedance
(see the SAI block, condition F4).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
SV Substitute value for an error case Double (F64)
HF1 Hardware error flag for signal ul Bool

off ... The input module of the signal works normally

on Hardware error of the input module occurred
HF2 Hardware error flag for signal u2 Bool

off ... The input module of the signal works normally

on Hardware error of the input module occurred
R Reset inner error flags Bool

Parameter

nb Number of samples to skip at startup ©®10 Long (I32)
nc Number of samples for invariability testing ©®10 Long (I32)
nbits Number of A/D converter bits ®12 Long (I32)
nr Number of samples for variability testing ®10 Long (I32)
prate Maximum allowed percentage change (®10.0 Double (F64)
nv Number of samples for out-of-range testing ®1 Long (I32)
vmin Lower limit for the input signal ®-1.0 Double (F64)
vmax Upper limit for the input signal ®1.0 Double (F64)
nd Number of samples for deviation testing ®5 Long (I32)
pdev Maximum allowed percentage deviation of inputs ©10.0 Double (F64)
mode Computation of output when both inputs are valid ®1 Long (I32)

1 ..., Average

2 ... Minimum

3 ... Maximum

Output

E1l
E2

iE1l

iE2

Analog output of the block
Output signal invalidity indicator
off ... Signal is valid
on Signal is invalid
Invalidity indicator for input ul
off ... Signal is valid

on Signal is invalid
Invalidity indicator for input u2
off ... Signal is valid
on Signal is invalid
Reason of input ul invalidity
0 Signal valid
1 ... Signal out of range
2 ... Signal varies too much
3 ... Signal varies too much and signal out of range
4 ... Signal varies too little
5 Signal varies too little and signal out of range
6 Signal varies too much and too little
7T ... Signal varies too much and too little and signal out
of range
8 Hardware error
Reason of input u2 invalidity
0 Signal valid
1 ... Signal out of range
2 ... Signal varies too much
3 ... Signal varies too much and signal out of range
4 ... Signal varies too little
5 Signal varies too little and signal out of range
6 Signal varies too much and too little
7T ... Signal varies too much and too little and signal out
of range
8 Hardware error

Warning flag (invalid input signal)

off ... Both input signals are valid
on At least one of the input signals is invalid

169

Double (F64)
Bool

Bool

Bool

Long (I32)

Long (I32)

Bool

170 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SAI — Safety analog input

Block Symbol Licence: ADVANCED

y
sV yf
HWF E
R E

SAl

Function Description

The SAT block tests the input signal u and assesses its validity. The input signal u is
considered invalid (the output E = on) in the following cases:

F1: Hardware error. The input signal HWF = on.

F2: The input signal u varies too little. The last nc samples of the input u lies within
the interval of width du,

du — ‘mz}flb;il’sm, for nbits € {8,9,...,16}
N 0, for nbits ¢ {8,9,...,16}.

where vmin and vmax are the lower and upper limits of the input u, respectively,
and nbits is the number of A/D converter bits. The situation when the input
signal u varies too little is shown in the following picture:

) max - min < du
max - min > du .

k-nc+1 k

/

A 4

k-nc+1 k

Sufficient changes in the signal u, The signal u varies too little,
F2=0 F2=1

If the parameter nc is set to nc = 0, the condition F2 is never fulfilled.

F3: The input signal u varies too much. The last nr samples of the input u filtered by
the SPIKE filter have a span which is greater than rate,

vmax — vmin

te = t
rate = prate 100)

where prate defines the allowed percentage change in the input signal u within the
last nr samples (with respect to the overall range of the input signal u € (vmin, vmax)).

vmax—vmin

The block includes a SPIKE filter with fixed parameters mingap = ** ;7" and

171

q = 2 suppressing peaks in the input signal to avoid undesirable fulfilling of this
condition. See the SPIKE block description for more details. The situation when
the input signal u varies too much is shown in the following picture:

max - min > rate

max - min < rate

h 4

L v
/M

k-nr+1 k

k-nr+1 k

Acceptable changes in the signal u, The signal u varies too much,
F3=0 F3=1

If the parameter nr is set to nr = 0, the condition F3 is never fulfilled.

F4: The input signal u is out of range. The last nv samples of the input signal u lie
out of the allowed range (vmin,vmax). If the parameter nv is set to nv = 0, the
condition F4 is never fulfilled.

The signal u is copied to the output y without any modification when it is considered
valid. In the other case, the output y is determined by a substitute value from the sv
input. In such a case the output E is set to on and the output iE provides the error code.
The input R resets the inner error flags F1-F4. For the input R set permanently to on,
the invalidity indicator E is set to on for only one cycle period whenever some invalidity
condition is fulfilled. On the other hand, for R = off, the output E is set to on and
remains true until the reset (rising edge R: off—on).

The table of error codes iE resulting from the inner error flags F1-F4:

F1 F2 F3 F4

[
3]

o N e B e B e i e
¥ = O = O = O = O
N OO W N = O

¥ = =P OO == OO
oo

_ o O o O o O o o

The nb parameter defines the number of samples which are not included in the validity
assessment after initialization of the block (restart). Recommended setting is nb > 5 to
allow the SPIKE filter initial conditions to fade away.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

172

Input

sV
HWF

Parameter

nb

nc
nbits
nr
prate
nv
vmin
vmax

Output

yt

iE

CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

Analog input of the block
Substitute value for an error case
Hardware error indicator

off ... The input module of the signal works normally

on Hardware error of the input module occurred

Reset inner error flags

Number of samples to skip at startup
Number of samples for invariability testing
Number of A/D converter bits

Number of samples for variability testing
Maximum allowed percentage change
Number of samples for out-of-range testing
Lower limit for the input signal

Upper limit for the input signal

Analog output of the block
Filtered output signal (SPIKE)
Output signal invalidity indicator

off ... Signal is valid

on Signal is invalid
Reason of invalidity

0 Signal valid

1 ... Signal out of range

2 ... Signal varies too much

®10
®10
®12
®10
10.0
1
©-1.0
©1.0

3 ... Signal varies too much and signal out of range

4 Signal varies too little

5 Signal varies too little and signal out of range

6 Signal varies too much and too little

T ... Signal varies too much and too little and signal out

of range
8 Hardware error

Double (F64)
Double (F64)
Bool

Bool

Long (I32)
Long (I32)
Long (I32)
Long (I32)
Double (F64)
Long (I32)
Double (F64)
Double (F64)

Double (F64)
Double (F64)
Bool

Long (I32)

173

SEL — Selector switch for analog signals

Block Symbol Licence: STANDARD

Function Description

The SEL block is obsolete, replace it by the SELQUAD, SELOCT or SELHEXD block. Note the
difference in binary selector signals SWn.

The SEL block selects one of the four input signals ul, u2, u3 and u4 and copies it to
the output signal y. The selection is based on the iSW input or the binary inputs SW1 and
SW2. These two modes are distinguished by the BINF binary flag. The signal is selected
according to the following table:

iSW SW1 Sw2 y
off off ul
off on u2
on off u3
on on u4

W N = O

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
ul..u4 Analog input of the block Double (F64)
isw Active signal selector Long (I32)
Swi Binary signal selector Bool
Sw2 Binary signal selector Bool
Parameter
BINF Enable the binary selectors Bool
off ... Disabled (analog selector)
on Enabled (binary selectors)
Output

y The selected input signal Double (F64)

174 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SELQUAD, SELOCT, SELHEXD — Selector switch for analog signals

Block Symbols

u0

ul

u2

ud y
iSW
SWo
SW1

Sw2

SELQUAD

Function Description

SELOCT

SELHEXD

Licence: STANDARD

The SELQUAD, SELOCT and SELHEX blocks select one of the input signals and copy it to
the output signal y. Please note that the only difference among the blocks is the number
of inputs. The selection of the active signal u0...ul5 is based on the iSW input or the
binary inputs SWO...SW3. These two modes are distinguished by the BINF binary flag.
The signal is selected according to the following table:

iSW SWO SWi SW2 SW3 y
0 off off off off w0
1 on off off off ul
2 off on off off wu2
3 on on off off u3
4 off off on off u4
5) on off on off ub
6 off on on off ub
7 on on on off u7
8 off off off on u8
9 on off off on u9

10 off on off on ulld
11 on on off on ull
12 off off on on ul2
13 on off on on ul3
14 off on on on ul4
15 on on on on ulb

This block propagates the signal quality. More information can be found in the 1.4

section.

Input

u0..ulb Analog input of the block
isw Active signal selector
SW0..SW3 Binary signal selector

Parameter

BINF Enable the binary selectors

Output

y The selected input signal

175

Any
Long (I32)
Bool

Bool

Any

176 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SHIFTOCT — Data shift register

Block Symbol Licence: STANDARD

SHIFTOCT

Function Description

The SHIFTOCT block works as a shift register with eight outputs of arbitrary data type.
If the RUN input is active, the following assignment is performed with each algorithm
tick:

Vi = Vi1, t=1.7
yO = u

Thus the value on each output yO to y6 is shifted to the following output and the value
on input u is assigned to output yO.

The block works with any data type of signal connected to the input u. Data type
has to be specified by the vtype parameter. Outputs yO to y7 then have the same data

type.
If you need a triggered shift register, place the EDGE block in front of the RUN input.

This block propagates the signal quality. More information can be found in the 1.4
section.
Input

u Analog input of the block Any
RUN Enables outputs shift Bool

177

Parameter
vtype Output data type ©®8 Long (I32)

1 ... Bool
2 ... Byte (U8)
3 ... Short (T16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
7 . Float (F32)
8 Double (F64)
10 Large (I64)

Output

yO..y7 Analog output of the block Any

178 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SHLD — Sample and hold

Block Symbol Licence: STANDARD

u
SETH y|
R1

SHLD

Function Description

The SHLD block is intended for holding the value of the input signal. It processes the
input signal according to the mode parameter.

In Triggered sampling mode the block sets the output signal y to the value of the
input signal u when rising edge (off—on) occurs at the SETH input. The output is held
constant unless a new rising edge occurs at the SETH input.

If Hold last value mode is selected, the output signal y is set to the last value of the
input signal u before the rising edge at the SETH input occured. It is kept constant as
long as SETH = on. For SETH = off the input signal u is simply copied to the output y.

In Hold current value mode the u input is sampled right when the rising edge
(off—on) occurs at the SETH input. It is kept constant as long as SETH = on. For
SETH = off the input signal u is simply copied to the output y.

The binary input R1 sets the output y to the value y0, it overpowers the SETH input
signal.

See also the PARR block, which can be used for storing a numeric value as well.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
SETH Set and hold the output signal Bool
R1 Block reset Bool
Parameter
yO Initial output value Double (F64)
mode Sampling mode ®3 Long (I32)
1 ..., Triggered sampling
2 ... Hold last value
3 ... Hold current value
Output

y Analog output of the block Double (F64)

SINT — Simple integrator

Block Symbol

u_vp

SINT

Function Description

179

Licence: STANDARD

The SINT block implements a discrete integrator described by the following difference

equation

Yk = Yk—1 2T

(up + up—1),

where T is the block execution period and Tj; is the integral time constant. If T; = 0,

the block realize summation by following equation

Yk = Yk—1 + .

If T; < 0, the block behaviour is undefined.

If y; falls out of the saturation limits ymin and ymax, the output and state of the

block are appropriately modified.

For more complex tasks, consider using the INTE block, which provides extended

functionality.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Analog input of the block
Parameter
ti Integral time constant
yO Initial output value
ymax Upper limit of the output signal
ymin Lower limit of the output signal
Output

v Analog output of the block

®1.0

1.0
©®-1.0

Double

Double
Double
Double
Double

Double

(Fe4)

(F64)
(F64)
(F64)
(F64)

(F64)

180 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SPIKE — Spike filter

Block Symbol Licence: ADVANCED
[u yp

SPIKE

Function Description

The SPIKE block implements a nonlinear filter for suppressing isolated peaks (pulses) in
the input signal u. One cycle of the SPIKE filter performs the following transformation

(0,y) =y

delta := y - u;
if abs(delta) < gap

then

begin

y = u;
gap := gap/q;
ifgap < mingap then gap:= mingap;

end
else

begin

if delta < 0

then y := y + gap
else y := y - gap;
gap := gap * q;
end

where mingap and q are the block parameters.

The signal passes through the filter unaffected for sufficiently large mingap parameter,
which defines the minimal size of the tolerance window. By lowering this parameter it
is possible to find an appropriate value, which leads to suppression of the undesirable
peaks but leaves the input signal intact otherwise. The recommended value is 1 % of
the overall input signal range. The q parameter determines the adaptation speed of the
tolerance window.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Input signal to be filtered Double (F64)

181

Parameter
mingap Minimum size of the tolerance window ©0.01 Double (F64)
q Tolerance window adaptation speed 41.0 ®2.0 Double (F64)
Output

y Filtered output signal Double (F64)

182

CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

SSW — Simple switch

Block Symbol

ul
u2 y
SW

SsSwW

Function Description

Licence: STANDARD

The SSW block selects one of two input signals ul and u2 with respect to the binary input
SW. The selected input is copied to the output y. If SW = off (SW = on), then the selected
signal is ul (u2).

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

ul
u2
SwW

Output

First analog input of the block
Second analog input of the block

Signal selector
off ... The ul signal is selected
on The u2 signal is selected

Analog output of the block

Any
Any
Bool

Any

183

SWR — Selector with ramp

Block Symbol Licence: STANDARD

ul
u2 y
SW

SWR

Function Description

The SWR block selects one of two input signals ul and u2 with respect to the binary
input SW. The selected input is copied to the output y. If SW = off (SW = on), then
the selected signal is ul (u2). The output signal is not set immediately to the value of
the selected input signal but tracks the selected input with given rate constraint (i.e. it
follows a ramp). This rate constraint is configured independently for each input ul, u2
and is defined by time constants t1 and t2. As soon as the output reaches the level of
the selected input signal, the rate limiter is disabled and remains inactive until the next
signal switching.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul First analog input of the block Double (F64)
u2 Second analog input of the block Double (F64)
Sw Signal selector Bool
off ... The ul signal is selected
on The u2 signal is selected
Parameter
t1 Rate limiter time constant, u2 —> ul ®1.0 Double (F64)
t2 Rate limiter time constant, ul —> u2 ®1.0 Double (F64)
yO Initial output value Double (F64)
Output

y Analog output of the block Double (F64)

184 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

VDEL — Variable time delay

Block Symbol Licence: STANDARD

Function Description

The VDEL block delays the input signal u by the time defined by the input signal d.
More precisely, the delay is given by rounding the input signal d to the nearest integer
multiple of the block execution period (n - Ts). A substitute value yO0 is used until n
previous samples are available after the block initialization.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
d Time delay [s] Double (F64)
Parameter
yO Initial output value Double (F64)
nmax Allocated size of array 410 710000000 ©1000 Long (I32)
Output

y Delayed input signal Double (F64)

185

ZVAIS — Zero vibration input shaper

Block Symbol Licence: ADVANCED

Function Description

The function block ZV4IS implements a band-stop frequency filter. The main field of
application is in motion control of flexible systems where the low stiffness of mechanical
construction causes an excitation of residual vibrations which can be observed in form
of mechanical oscillations. Such vibration can cause significant deterioration of quality
of control or even instability of control loops. They often lead to increased wear of
mechanical components. Generally, the filter can be used in arbitrary application for a
purpose of control of an oscillatory system or in signal processing for selective suppression
of particular frequency.

Signal gen. 1 ZVA4IS > * |»l C(s) [P(s) 1

Signal gen. »} Cs) |»| 2vaIs > p(s)
-]

b)

The input shaping filter can be used in two different ways. By using an open loop
connection, the input reference signal for an feedback loop coming from human operator
or higher level of control structure is properly shaped in order to attenuate any unwanted
oscillations. The internal dynamics of the filter does not influence a behaviour of the infe-
rior loop. The only condition is correct tuning of feedback compensator C(s), which has
to work in linear mode. Otherwise, the frequency spectrum of the manipulating variable
gets corrupted and unwanted oscillations can still be excited in a plant P(s). The main
disadvantage is passive vibration damping which works only in reference signal path.
In case of any external disturbances acting on the plant, the vibrations may still arise.
The second possible way of use is feedback connection. The input shaper is placed on the
output side of feedback compensator C(s) and modifies the manipulating variable acting
on the plant. An additional dynamics of the filter is introduced and the compensator
C(s) needs to be properly tuned.

The algorithm of input shaper can be described in time domain

y(t) = Alu(t — tl) + Azu(t — tg) + Agu(t - tg) + A4u(t — t4)

186 CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

Thus, the filter has a structure of sum of weighted time delays of an input signal. The
gains Ay..A4 and time delay values t¢1..t4 depend on a choice of filter type, natural
frequency and damping of controlled oscillatory mode of the system. The main advantage
of this structure compared to commonly used notch filters is finite impulse response
(which is especially important in motion control applications), warranted stability and
monotone step response of the filter and generally lower dynamic delay introduced into
a signal path.

For correct function of the filter, natural frequency omega and damping xi of the
oscillatory mode need to be set. The parameter ipar sets a filter type. For ipar = 1, one
of ten basic filter types chosen by istype is used. Particular basic filters differ in shape
and width of stop band in frequency domain. In case of precise knowledge of natural
frequency and damping, the ZV (Zero Vibration) or ZVD filters can be used, because
their response to input signal is faster compared to the other filters. In case of large
uncertainty in system/signal model, robust UEI (Extra Insensitive) or UTHEI filters
are good choice. Their advantage is wider stopband at the cost of slower response. The
number on the end of the name has the meaning of maximum allowed level of excited
vibrations for the given omega and xi (one, two or five percent).

For precise tuning of the filter, complete parameterization ipar = 2 can be selected.
For this choice, three parameters p_alpha,p_a2 and p_a3 which affect the shape of the
filter frequency response can freely be assigned. These parameters can be used for finding
of optimal compromise between robustness of the filter and introduced dynamical delay.

N
N

© o 9
> o ® =

o
[N

Filter amplitude response A(jw)

L2
N
3

Input frequency w [rad]

The asymmetry parameter p_alpha determines relative location of the stopband of
filter frequency response with respect to chosen natural frequency. Positive values mean
a shift to higher frequency range, negative values to lower frequency range, zero value
leads to symmetrical shape of the characteristic (see the figure above). The parameter
p_alpha also affects the overall filter length, thus the overall delay introduced into a
signal path. Lower values result in slower filters and higher delay. Asymmetric filters can
be used in cases where a lower or higher bound of the uncertainty in natural frequency
parameter is known.

187

3 1
<
© 0.8 |
§- --p,=0.2
@ 0.6t i} | wp2=0-3
(0] /
2 04f \ / | | oes
‘s O / =P
§ 02 \ / 7
§ 4200 T
g | Gl ‘ ‘

0 05 WS=1 1.5 2 25 °

Input frequency w [rad]

Insensitivity parameter p_a2 determines the width and attenuation level of the filter
stopband. Higher values result in wider stopband and higher attenuation. For most ap-
plications, the value p_a2 = 0.5 is recommended for highest achievable robustness with
respect to modeling errors.

S N P3=P,
< {'«‘\ I(I', —0 4
8 0.8r R 1 1 _p2_ .
c Coy Pt -
8060\ S pe0T
o) FcAY ,»'f ’
N -
'g 0.4} \‘.,‘\,\ iy] ‘-‘-‘pz 0.75
= v 250 —
g . i —p,708
© 0.2f YR A 1
\ - -~ N

@ 7R TS
= . .~ & z N
= Ve NN e N
L O L . . - L, I

0 0.5 w=1 1.5 2

Input frequency w [rad]

The additional parameter p_a3 needs to be chosen for symmetrical filters (p_alpha =
0). A rule for the most of the practical applications is to chose equal values p_a2 =
p-a3 from interval < 0,0.75 >. Overall filter length is constant for this choice and only
the shape of filter stopband is affected. Lower values lead to robust shapers with wide
stopband and frequency response shape similar to standard THEI (Two-hump extra
insensitive) filters. Higher values lead to narrow stopband and synchronous drop of two
stopband peaks. The choice p_a2 = p_a3 = 0.75 results in standard ZVDD filter with
maximally flat and symmetric stopband shape. The proposed scheme can be used for
systematic tuning of the filter.

This block propagates the signal quality. More information can be found in the 1.4
section.

188

Input

u

Parameter
omega
x1i

ipar

istype

p-alpha
p-a2
p-a3
nmax

Output

CHAPTER 5. ANALOG - ANALOG SIGNAL PROCESSING

Input signal to be filtered

Natural frequency
Relative damping coeflicient

Specification

1..... Basic types of IS

2 ... Complete parametrization
Type

1 A%

2 ..., ZVD

3 ZVDD

4 MISZV

5 UEI1

6 UEI2

7 ... UEI5

8 UTHEI1

9 UTHEI2

10 UTHEI5

Shaper duration/assymetry parameter
Insensitivity parameter

Additional parameter (only for p_alpha=0)
110 110000000 ®1000

Allocated size of array

Filtered output signal
Error indicator
off ... No error
on An error occurred

©1.0

o1

©2

0.2
0.5
0.5

Double (F64)

Double (F64)
Double (F64)
Long (I32)

Long (I32)

Double (F64)
Double (F64)
Double (F64)
Long (I32)

Double (F64)
Bool

Chapter 6

GEN — Signal generators

Contents
ANLS — Controlled generator of piecewise linear function 190
BINS — Controlled binary sequence generator 192
BIS — Binary sequence generator 194
BISR — Binary sequence generator withreset 196
MP — Manual pulse generatoro v vttt 198
PRBS — Pseudo-random binary sequence generator 199
SG, SGI — Signal generators o o0, 201

The GEN library is specialized in signal generation. It includes blocks like ANLS for
generating a piecewise linear function of time or binary sequence generators BINS, BIS,
BISR. The library also features MP for manual pulse signal generation, PRBS for pseudo-
random binary sequence generation, and SG for periodic signals generation. This library
provides essential tools for creating and manipulating various signal types.

189

190 CHAPTER 6. GEN - SIGNAL GENERATORS

ANLS — Controlled generator of piecewise linear function

Block Symbol Licence: STANDARD

yp
o g

ANLS

Function Description

The ANLS block generates a piecewise linear function of time given by nodes t1,y1;
t2,y2; t3,y3; t4,y4. The initial value of output y is defined by the y0 parameter. The
generation of the function starts when a rising edge occurs at the RUN input (and the
internal timer is set to 0). The output y is then given by

Yi+1 — yi(

t—1t;
tiv1 — 1 2

Y=yt
within the time intervals (¢;,¢;41),i =0,...,3,t) = 0.

To generate a step change in the output signal, it is necessary to to define two nodes
in the same time instant (i.e. t; = t;11). The generation ends when time t4 is reached or
when time ¢; is reached and the following node precedes the active one (i.e. t;11 < t;).
The output holds its final value afterwards. But for the RPT parameter set to on, instead
of holding the final value, the block returns to its initial state yO, the internal block timer
is set to 0 and the sequence is generated repeatedly. This can be used to generate square
or sawtooth functions. The generation can also be prematurely terminated by the RUN
input signal set to off. In that case the block returns to its initial state yO, the internal
block timer is set to 0 and is = 0 becomes the active time interval.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
RUN Enable execution Bool
Parameter
yO Initial output value Double (F64)
t1 Node 1 time ®1.0 Double (F64)
y1 Node 1 value Double (F64)
t2 Node 2 time ®1.0 Double (F64)
y2 Node 2 value ©1.0 Double (F64)
t3 Node 3 time ©2.0 Double (F64)

y3 Node 3 value ©1.0 Double (F64)

t4

y4
RPT

Output

1s

Node 4 time

Node 4 value

Repeating sequence
off ... Disabled
on Enabled

Analog output of the block
Index of the active time interval

2.0

191

Double (F64)
Double (F64)
Bool

Double (F64)
Long (I32)

192 CHAPTER 6. GEN - SIGNAL GENERATORS

BINS — Controlled binary sequence generator

Block Symbol Licence: STANDARD

YP
START 18

BINS

Function Description

The BINS block generates a binary sequence at the Y output, similarly to the BIS block.
The binary sequence is given by the block parameters.

e The initial value of the output is given by the YO parameter.

e Whenever a rising edge (off—omn) occurs at the START input (even when a binary
sequence is being generated), the internal timer of the block is set to 0 and started,
the output Y is set to YO.

e The output value is inverted at time instants t1, t2, ..., t8 (off—on, on—off).

e For RPT = off, the last switching of the output occurs at time ¢;, where ;41 =0
and the output then holds its value until another rising edge (off—on) occurs at
the START input.

e For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to YO, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

On the contrary to the BIS block the changes in parameters t1...t8 are accepted
only when a rising edge occurs at the START input.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< Ts/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

START Starting signal (rising edge) Bool

Parameter

YO

tl..t8
RPT

Output

is

Initial output value

off ... Disabled/false

on Enabled/true
Switching time [s]
Repeating sequence

off ... Disabled

on Enabled

Logical output of the block
Index of the active time interval

10.0 ®1.0

193

Bool

Double (F64)
Bool

Bool
Long (I32)

194 CHAPTER 6. GEN - SIGNAL GENERATORS

BIS — Binary sequence generator

Block Symbol Licence: STANDARD

Yp
isP

BIS

Function Description

The BIS block generates a binary sequence at the Y output. The sequence is given by
the block parameters.

e The initial value of the output is given by the YO parameter.

e The internal timer of the block is set to 0 when the block initializes.

e The internal timer of the block is immediately started when the block initializes.
e The output value is inverted at time instants t1, t2, ..., t8 (off—on, on—off).

e For RPT = off, the last switching of the output occurs at time ¢;, where ;41 =0
and the output then holds its value indefinitely.

e For RPT = on, instead of switching the output for the last time, the block returns
to its initial state, the Y output is set to Y0, the internal block timer is set to 0 and
started. As a result, the binary sequence is generated repeatedly.

All the parameters t1...t8 can be changed in runtime and all changes are immedi-
ately accepted.

The switching times are internally rounded to the nearest integer multiple of the
execution period, which may result in e.g. disappearing of very thin pulses (< Ts/2) or
melting successive thin pulses into one thick pulse. Therefore it is strongly recommended
to use integer multiples of the execution period as the switching times.

See also the BINS block, which allows for triggering the sequence by external signal.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
YO Initial output value Bool
off ... Disabled/false
on Enabled/true
t1..t8 Switching time [s] 10.0 ®1.0 Double (F64)
RPT Repeating sequence Bool

off ... Disabled
on Enabled

195

Output

Y Logical output of the block Bool
is Index of the active time interval Long (I32)

196 CHAPTER 6. GEN - SIGNAL GENERATORS

BISR — Binary sequence generator with reset

Block Symbol Licence: STANDARD

RUN YP
R1 isP

BISR

Function Description

The BISR block generates a binary sequence at the Y output. The RUN input must be set
to on for the whole duration of the sequence. When RUN is off, the sequence is paused
and so is the internal timer.

The binary sequence is given by the block parameters. The initial value of the output
is given by the YO parameter. The output value Y is inverted (off—on, on—off) at time
instants t1, t2, ..., t8. The ADDT parameter defines whether the t; instants are relative
to the first rising edge at the RUN input or relative to the last switching of the Y output.

If there is less than 8 edges in the desired binary sequence, set any of the t; parameters
to zero and the remaining ones will be ignored.

Whenever a rising edge occurs at the R1 input, the output Y is set to YO and the
internal timer is reset. The R1 input overpowers the RUN input.

For RPT = off, the last switching of the output occurs at time t;, where ;11 = 0
and the output then holds its value until another rising edge (off—on) occurs at the
START input. For RPT = on, instead of switching the output for the last time, the block
returns to its initial state, the Y output is set to YO, the internal block timer is set to 0
and started. As a result, the binary sequence is generated repeatedly.

The BISR block is an extended version of the BINS block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
RUN Enable execution Bool
R1 Block reset Bool
Parameter
YO Initial output value Bool
off ... Disabled/false
on Enabled/true
ADDT Additive timing Bool
off ... Absolute timing (sequence as a whole)

on Additive timing (segment by segment)

RPT

t1..t8

Output

is

Repeating sequence
off ... Disabled
on Enabled

Switching time [s]

Logical output of the block
Index of the active time interval

10.0 ®1.0

197

Bool

Double (F64)

Bool
Long (I32)

198 CHAPTER 6. GEN - SIGNAL GENERATORS

MP — Manual pulse generator

Block Symbol Licence: STANDARD
[Yp

MP
Function Description

The MP block generates a pulse of width pwidth when a rising edge occurs at the BSTATE
parameter (off—on). The algorithm immediately reverts the BSTATE parameter back to
off (BSTATE stands for a shortly pressed button). If repetition is enabled (RPTF = on),
it is possible to extend the pulse by repeated setting the BSTATE parameter to on. When
repetition is disabled, the parameter BSTATE is not taken into account during generation
of a pulse, i.e. the output pulses have always the specified width of pwidth.

The MP block reacts only to rising edge of the BSTATE parameter, therefore it cannot be
used for generating a pulse immediately at the start of the REXYGEN system executive.
Use the BIS block for such a purpose.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
BSTATE Output pulse activation Bool
off ... No action
on Generate output pulse
pwidth Pulse width [s] (0 = one tick) ©1.0 Double (F64)
RPTF Allow pulse extension Bool
off ... Disabled
on Enabled
Output

Y Logical output of the block Bool

PRBS — Pseudo-random binary sequence generator

Block Symbol
START _yp
BRK BSYp

PRBS

Function Description

199

Licence: STANDARD

The PRBS block generates a pseudo-random binary sequence. The figure below displays

how the sequence is generated.

START

valhi

val0

vallo

swper

seqt

waitt

The initial and final values of the sequence are valO. The sequence starts from this
value when rising edge occurs at the START input (off—on), the output y is immediately
switched to the valhi value. The generator then switches the output to the other limit
value with the period of swper seconds and the probability of switching swprob. After
seqt seconds the output is set back to val0. A waitt-second period follows to allow
the settling of the controlled system response. Only then it is possible to start a new
sequence. It is possible to terminate the sequence prematurely by the BRK = on input

when necessary.

This block does not propagate the signal quality. More information can be found in the

1.4 section.
Input
START Starting signal (rising edge)
BRK Termination signal
Parameter
valO Initial and final value
valhi Upper level of the y output
vallo Lower level of the y output
swper Period of random output switching [s]

swprob Probability of switching

1.0
©-1.0
1.0
10.011.0 ®0.2

Bool
Bool

Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)

200

seqt
waitt

Output

BSY

CHAPTER 6. GEN - SIGNAL GENERATORS

Length of the sequence [s]
Settling period [s]

Generated pseudo-random binary sequence
Busy flag

®10.0 Double (F64)
®2.0 Double (F64)

Double (F64)
Bool

201

SG, SGI — Signal generators

Block Symbols Licence: STANDARD
o &

Function Description

The SG and SGI blocks generate periodic functions according to the setting of the isig
parameter, which determines the type of signal: sine wave, square wave (with a duty cycle
of 1), sawtooth signal, random signal (white noise with uniform distribution) or triangle
signal. The amplitude and frequency of the output signal y can be set using the amp and
freq parameters. The frequency can be specified in units of Hz or rad/s, as determined
by the ifrunit parameter. For sine, square, sawtooth and triangle signals (i.e. isig €
{1,2,3,5}), a phase shift can be adjusted, which is set by the phase parameter within the
range (0,27). The unit of phase shift (radians or degrees) is determined by the iphunit
parameter.

The SGI block allows synchronization of multiple generators using the RUN and SYN
inputs. The RUN parameter must be set to on to enable the generator, the SYN input
synchronizes the generators during the output signal generation.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
RUN Enable execution Bool
SYN Synchronization signal Bool
Parameter
isig Generated signal type ®1 Long (I32)
1 ... SINE
2 ... SQUARE
3 ... SAWTOOTH
4 ... RANDOM
5 TRIANGLE
amp Amplitude ©®1.0 Double (F64)
freq Frequency ®1.0 Double (F64)
phase Phase shift Double (F64)

offset Value added to output Double (F64)

202 CHAPTER 6. GEN - SIGNAL GENERATORS

ifrunit Frequency units ®1 Long (I32)
1 ... Hz
2 ... rad/s
iphunit Phase shift units ®1 Long (I32)
1 ... degrees
2 ... radians
Output

v Analog output of the block Double (F64)

Chapter 7

REG — Function blocks for control

Contents

ARLY — Advancerelay ¢ v v v v v v v v v v o o b o o oo oo 205
FIWR — Frequence Identification With Reconstructor 206
FLCU — Fuzzy logic controller unit 209
FRID — Frequency response identification 211
I3PM — Identification of a three parameter model 215
LC — Lead compensatort nnnne.n 217
LLC — Lead-lag compensatort eeososon 218
LPI — Loop performance indexo o v v oo 219
MCU — Manual control unit 221
PIDAT — PID controller with relay autotuner 223
PIDE — PID controller with defined static error 226
PIDGS — PID controller with gain scheduling 228
PIDMA — PID controller with moment autotuner 230
PIDU — PID controller unit 237
PIDUI — PID controller unit with variable parameters 241
POUT — Pulseoutputttt it eenenenn 243
PRGM — Setpoint programmer ¢ v v v v bt e e e .. 244
PSMPC — Pulse-step model predictive controller 246
PWM — Pulse width modulation 250
RLY — Relay with hysteresis. . « « « v v v v v v v v v v v v o v v v v 252
SAT — Saturation with variable limits 253
SC2FA — State controller for 2nd order system with frequency

autotuner ¢ o v v i i et e e e e e e e e e e e e e e e 255
SCU — Step controller with position feedback 262
SCUV — Step controller unit with velocity input 265
SELU — Controller selector unit 0. 268
SMHCC — Sliding mode heating/cooling controller 270

203

204 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

SMHCCA — Sliding mode heating/cooling controller with autotuner 274
SWU—Switchunitttt 281
TSE — Three-state element 282

The control function blocks form the most extensive sub-library of the RexLib library.
Blocks ranging from simple dynamic compensators to several modifications of PID (P,
I, PI, PD a PID) controller and some advanced controllers are included. The blocks for
control schemes switching and conversion of output signals for various types of actua-
tors can be found in this sub-library. The involved controllers include the PIDGS block,
enabling online switching of parameter sets (the so-called gain scheduling), the PIDMA
block with built-in moment autotuner, the PIDAT block with built in relay autotuner,
the FLCU fuzzy controller or the PSMPC predictive controller, etc.

205

ARLY — Advance relay

Block Symbol Licence: STANDARD
P

ARLY

Function Description

The ARLY block is a modification of the RLY block, which allows lowering the amplitude of
steady state oscillations in relay feedback control loops. The block transforms the input
signal u to the output signal y according to the diagram below.

yA
ep en+tol

Cy

ethoI en

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
Parameter
ep Switch-on value ®-1.0 Double (F64)
en Switch-off value ®1.0 Double (F64)
tol Tolerance limit 40.0 ®0.5 Double (F64)
ap Output when ON ©®1.0 Double (F64)
an Output when OFF ®-1.0 Double (F64)
yO Initial output value Double (F64)
Output

y Analog output of the block Double (F64)

206 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

FIWR — Frequence Identification With Reconstructor

Block Symbol Licence: ADVANCED

Function Description

The FIWR block performs the identification experiment of the process frequency char-
acteristics. The system is excited by a harmonic signal with a static component ubias,
amplitude uampb and frequency w passing through the interval (wb, wf). If the adaptive
amplitude change is enabled (adaptive_amp = on), then the excitation signal takes such
values that the output amplitude is close to dy_max/2. The frequency sweep rate is deter-
mined by the cp state (unless it’s not adaptively adjusted, in which case cpb exclusively
determines it), outlining:

e For logarithmic mode (mode = 1), it signifies the proportional reduction of the
initial period Tj = i—: of the excitation sine wave over time Tp. Hence, the equation

is as follows:
Wy Wy
Cp = = =e€

— ey
w(Ty) wperTs

e For linear mode (mode = 2), it represents the frequency increase per unit of time.

The value of the cp state is usually in the interval (0.7;1) in logarithmic mode. For
the linear mode, the parameter must be chosen with respect to the specified frequency
range and the desired frequency change. If the adaptive change of the sweeping rate is
enabled (adaptive_cp = on), then the cp state is recalculated depending on the "wrong"
position of the frequency characteristic point before its convergence at each scheduled
stop of the sweeping (given by the vector PHI). The current value of the cp parameter is
copied to the output cp, its initial value cpb can be selected. The minimum and maximum
values of cp cp_min and cp_max are taken into account only in adaptive_cp = on mode,
otherwise the value cpb is copied to the output cp. In the combined mode (mode = 3),
cpb is the sweeping rate in logarithmic segments and the linear segments including the
sweeping rates are defined by the matrix WL. This matrix can be defined:

e 1: Explicitly: [wby wfi cp1, wbe wfa cpa, ..., wby wfn cpn]|, where the matrix
size is [1x3N].

207

e 2: Alternatively: [wby wby ... wby; wfi wfa ... wfn; cp1 cp2 ... epn|, where wb;
is the start of the i-th linear interval, w f; is the end of the i-th linear interval. The
matrix size is [3xN].

The system identification is triggered by setting the input TUNE = on. After rmi
seconds (estimated transient duration), the calculation of the current point of the fre-
quency characteristic starts. Its real and imaginary parts are repeatedly copied to the
outputs xre and xim, the phase delay at a given frequency is copied to the output phase.
During the identification process, the sweeping stops whenever the phase delay points
PHI are reached. The stopping time is related to the values of the parameters q_crit
€ (0.001;0.1) and np. The smaller the parameter q_crit is, the more accurately the
frequency characteristic point will be determined, and the sweeping stop time will be
longer. For a shorter evaluation window given by the number of seconds np (usually
chosen identically to rmi) the stopping time will be shorter. It is possible to select the
maximum number of evaluation windows cmi, the common value is ¢cmi = 10. By input
HLD = on it is possible to manually stop the frequency sweeping, setting HLD = off again
causes the sweeping to continue. If necessary, the identification process can be stopped
by input BRK = on.

During the identification, the output TBSY = 1. It is set to 0 when finished. During
an error-free experiment, the output IDE = off. If the identification ends in an error,
then IDE = on and the output iIDE specifies the associated error.

The vector PHI can be ingserted:

o 1: Explicitly: |¢1, ¢2, ..., o], where ¢; > ¢i11 and the vector size is [1xM].

e 2: Alternatively: [0,0, siart, Pstep, Pend|, Where dsiare > Pend, Gstart is the initial
phase, @step is the step between phases, and ¢cpq is the final phase. The vector size
is [1x5].

The nmax parameter specifies the maximum number of elements of the vector PHI
that can be inserted. At the same time, this is the maximum width of the pmpRef matrix,
thus the maximum number of accurately measured points that can be stored.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
pv Process variable Double (F64)
TUNE Start the tuning experiment Bool
HLD Hold Bool
BRK Stop the tuning experiment Bool
Parameter

wb Start frequency [rad/s] 10.0 ®1.0 Double (F64)

Double
Double
Double
Double

(Fe4)
(F64)
(Fe4)
(F64)
Long (I32)

Bool

Bool

Double
Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Double (F64)
Double
Double (F64)
Double (F64)
Long (I32)

Double (F64)
Long (I32)

Double (F64)

(F64)

(F64)

Double

Double
Bool

(F64)

Double
Double
Double
Double
Double
Bool

Long (I32)

Double (F64)
Double (F64)

(F64)
(F64)
(F64)
(F64)
(F64)

208 CHAPTER 7. REG — FUNCTION BLOCKS FOR CONTROL
wf End frequency [rad/s] 10.0 ®10.0
cpb Initial sweeping rate J0.0 11.0 ©0.92
alpha Relative position of recostructor’s poles 40.0 ©2.0
ksi Recostructor damping }0.0 ©0.707
mode Frequency sweeping mode o1

1 ... Logarithmic

2 ... Linear

3 ... Combined
adaptive_cp Adaptive sweep rate flag ®on
adaptive_amp Adaptive amplitude flag ®on
np Time for convergence detection [s] 10.0 ®3.0
g_crit Convergence threshold 10.0001 10.2 ©0.05
cp_min Minimal Sweeping Rate J0.011.0 ©0.8
cp_max Maximal Sweeping Rate J0.0 11.0 ©0.99
cp_ratio Frequency and amplitude sweeping ratio 40.011.0 ©0.8
uampb Initial amplitude of the exciting signal J0.0 ®1.0
dy_max Maximal change of amplitude of the process variable

10.0 ®1.0

uvamp_max Maximal amplitude of the exciting signal 40.0 ©5.0
ubias Static component of the exciting signal
hilim Upper limit of the exciting signal ®10.0
lolim Lower limit of the exciting signal ®-10.0
cmi Maximum convergence detections per frequency 11 ®10
rmi Stabilization time at start [s] 10.0 ©10.0
nmax Allocated size of array 110 1710000000 ®40
PHI Phase measurement points [degrees] ®[-30 -90 -150]
WL Linear intervals matrix (combined mode only) ©[2.2

Output
mv Manipulated variable (controller output)

TBSY Tuner busy flag
off ... Identification not running
on Identification in progress
W Actual frequency [rad/s]
xre Real part of frequency response
xim Imaginary part of frequency response
phase Phase shift of frequency response [degrees]
epv Estimated process value
IDE Error indicator
iIDE Error code
cp Actual Sweeping Rate
pmpRef Precisely measured frequency response points (w im re) ©[2.2

209

FLCU — Fuzzy logic controller unit

Block Symbol Licence: ADVANCED

v wr|
FLCU

Function Description

The FLCU block implements a simple fuzzy logic controller with two inputs and one
output. Introduction to fuzzy logic problems can be found in [4].

The output is defined by trapezoidal membership functions of linguistic terms of the
u and v inputs, impulse membership functions of linguistic terms of the y output and
inference rules in the form

If (uis U;) AND (v is Vj), then (y is Y),

where U;,i = 1,...,nu are the linguistic terms of the u input; Vj,j = 1,...,nv are the
linguistic terms of the v input and Y;,k = 1,...,ny are the linguistic terms of the y
output. Trapezoidal (triangular) membership functions of the u and v inputs are defined
by four numbers as depicted below.

X % % X,

Not all numbers z1,...,z4 are mutually different in triangular functions. The matri-
ces of membership functions of the u and v input are composed of rows [z1, Z2, 3, 24].
The dimensions of matrices mfu and mfv are (nu x 4) and (nv x 4) respectively.

The impulse 1st order membership functions of the y output are defined by the triplet

Vi, Ak, bkv

where y, is the value assigned to the linguistic term Yy, k = 1,...,ny in the case of
ar = by, = 0. If a;, # 0 and by, # 0, then the term Y7, is assigned the value of y;, +aju+0byv.
The output membership function matrix sty has a dimension of (ny x 3) and contains
the rows [y, ar, bk], k= 1,...,ny.

The set of inference rules is also a matrix whose rows are [i, ji, kj, wy],l = 1,...,nr,
where 4, j; and k; defines a particular linguistic term of the u and v inputs and y output
respectively. The number w; defines the weight of the rule in percents w; € {0,1,...,100}.
It is possible to suppress or emphasize a particular inference rule if necessary.

210

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

This block propagates the signal quality. More information can be found in the 1.4

section.

Input

Parameter
umax
umin
vmax
vmin
nmax
mfu

mfv
sty

rls

Output

y
ir

wr

First analog input of the block
Second analog input of the block

Upper limit of the u input 1.0
Lower limit of the u input ®-1.0
Upper limit of the v input 1.0
Lower limit of the v input ®-1.0
Allocated size of array 14 110000 ®10

Matrix of membership functions - input u
®[-1 -1 -10; -1001; 011 1]
Matrix of membership functions - input v
®[-1-1-10; -1001; 011 1]
Matrix of membership functions - output y
®[-1 00; 000; 10 0]

Matrix of inference rules
®[1 23 100; 111 100; 1 0 3 100]

Analog output of the block
Dominant rule
Degree of truth of the dominant rule

Double (F64)
Double (F64)

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

Double (F64)

Double (F64)
Double (F64)

Byte (U8)

Double (F64)
Long (I32)
Double (F64)

211

FRID — Frequency response identification

Block Symbol Licence: ADVANCED

mv

dv SAT
TBSY
>§res

pv xims
xrem
ximm

ep
TUNE IDE
iIDE

A0

A1

HLD A2
A3

A4

A5

BRK THD
DAV

Function Description

The FRIDblock is designed for experimental identification of the frequency response of
linear and weakly nonlinear systems. The basic principle of the function is to use an
excitation signal generator in the form of a swept harmonic function with time-varying
frequency, amplitude and DC component. This signal is injected into the input of the
identified system in an open or closed loop setting. Based on the observed output response
of the system , a non-parametric model in the form of frequency transfer points of the
system is computed using an internally implemented state estimator.

Its primary application is for systems with oscillatory dynamics, where accurate iden-
tification of frequency characteristics, including location and shape of resonant modes,
is crucial for optimal design of control algorithms.

The identification procedure is initiated upon detecting a rising edge on the TUNE
input. The procedure alternates between two modes: sweeping and measuring. In the
sweeping mode, the FRID block generates a swept sinusoidal signal on the mv output as
excitation for the system under test in the form:

mo(t) = A(t)sm{/o w(T)dr} + up(t),

where A(t) is the current amplitude, w(t) is the current excitation frequency, and wug(t)
is the DC component. If ADAPT_EN is set to on, the amplitude and DC component are
dynamically adjusted to map the system’s response across a spectrum of frequencies. The
amplitude adaptation is especially important for weakly damped resonant systems, for
which the gain may vary considerably in the vicinity of (anti)resonances. Initial values
are given by the vamp parameter for amplitude and ubias for the DC component. The
rate of change in amplitude is given by adapt_rc.

The frequency sweeping mode is determined by the isweep parameter. The rate of
frequency change (sweeping) is given by the cp parameter, which specifies the relative

212 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

reduction of the initial period Ty = 3—{: of the excitation sinusoid over time T}, thus

Wb o Wb - "/Tb .

T w(Ty) wbe

Cp

The cp parameter typically ranges in the interval cpe (0.95;1).

For specific w values, the sweeping is paused, and the block switches to the mea-
surement phase to acquire a point of the frequency response. Depending on the immode
parameter setting, the w values can be determined manually, by a frequency range, or au-
tomatically (see parameter description below). This process facilitates the identification
of key dynamic properties, including (anti)resonant frequencies.

The core of the FRID block algorithm is based on recursive Kalman filter discretiza-
tion, which optimizes computational efficiency while maintaining high accuracy of fre-
quency estimation. The block dynamically adjusts the excitation signal parameters dur-
ing the identification experiment to mitigate the effects of nonlinearities and achieve a
reliable representation of the system dynamics by a linear frequency response model.
The amplitude adaptation also serves to keep the output within user-defined limits. The
tracking speed of the observed output response can be influenced by the parameter obw,
which affects the bandwidth of the estimator. A larger value results in faster tracking
and steady state estimation of the frequency response at the cost of greater amplification
of measurement noise.

Below is the schematic representation of the FRID block within a system identifica-
tion setup. The diagram illustrates the block’s interaction with the signal generator and

the mechanical system being analyzed.
Online experiment control

' Amplitude control H ((: A g
1 1 A [72)
! : THD[S M &
! - 2 EOE- I
: " DI
i_|Measurement points selection| , ! P(iw)
! Frequency sweep control !
: s
' Closed loop ID (optional) — A
A(t) wt) | —— [
\l' uo(t)
ug(t 7
SG G() P(A,w) yP(f)
force/torque velocity/position

The FRIDblock provides outputs that contain detailed information about the fre-
quency characteristics of the system under test. Outputs A1l to A5 provide estimates of
the amplitudes of the first five harmonic components of the Fourier series of the plant out-
put response the actual excitation frequency. These amplitudes are key to understanding
how the system responds to different input signal frequencies and allow identification of
system characteristics such as resonant frequencies. They are also used to detect non-
linearities.

213

The output THD, or total harmonic distortion, is an indication of the degree to which
the system response deviates from the ideal linear response. A low THD value indicates
that the system behaves predominantly linearly with respect to the input signal, while a
high THD value may indicate the presence of nonlinearities such as saturation or back-
lash. In addition to nonlinearities, this also takes into account the effect of measurement
noise. The THD value is calculated as the ratio of the RMS (root mean square) ampli-
tudes of the higher harmonic components to the RMS amplitude of the first harmonic
component, providing a comprehensive view of the quality and linearity of the system
response.

Utilizing these outputs allows users to better understand system dynamics and tailor
control strategies to achieve optimal performance. More details on the block’s operation
can be found in [5].

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
dv Feedforward control variable Double (F64)
pv Process variable Double (F64)
TUNE Start the tuning experiment Bool
HLD Hold Bool
BRK Stop the tuning experiment Bool
Parameter

ubias Static component of the exciting signal Double (F64)
uamp Amplitude of the exciting signal ©®1.0 Double (F64)
wb Frequency interval lower limit [rad/s] ©®1.0 Double (F64)
wi Frequency interval higher limit [rad/s] ©10.0 Double (F64)
isweep Frequency sweeping mode ®1 Long (I32)

1 ... Logarithmic

2 ... Linear

3 ... Combined
cp Sweeping Rate (®0.995 Double (F64)
iavg Number of values for averaging ®10 Long (I32)
obw Observer bandwidth ®2 Long (I32)

1 ... LOW

2 ... NORMAL

3 ... HIGH
stime Settling period [s] ©10.0 Double (F64)
umax Maximum generator amplitude ®1.0 Double (F64)
thdmin Minimum demanded THD threshold ©0.1 Double (F64)
adapt_rc Maximum rate of amplitude variation (®0.001 Double (F64)
pv_max Maximum desired process value ©1.0 Double (F64)

pv_sat Maximum allowed process value 2.0 Double (F64)

214 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

ADAPT_EN Enable automatic amplitude adaptation ®on Bool
immode Measurement mode ®1 Long (I32)

1..... Manual specification of frequency points

2 ... Linear series of nmw points in the interval <wb;wf>

R Logarithmic series of nmw points in the interval

<wb;wif>

4 ... Automatic detection of important frequencies (N/A)
nwm Number of frequency response point for automatic mode Long (I32)
W Frequency measurement points for manual meas. mode [array of Double (F64)

rad /s] ©[2.0 4.0 6.0 8.0]
Output

mv Manipulated variable (controller output) Double (F64)
SAT Saturation flag Bool
TBSY Tuner busy flag Bool

off ... Identification not running

on Identification in progress
W Frequency response - frequency [rad/s] Double (F64)
xres Frequency response - real part (sweeping) Double (F64)
xims Frequency response - imaginary part (sweeping) Double (F64)
Xrem Frequency response - real part (measurement) Double (F64)
ximm Frequency response - imaginary part (measurement) Double (F64)
epv Estimated process value Double (F64)
IDE Error indicator Bool
iIDE Error code Long (I32)
DC Estimated DC value Double (F64)
Al..A5 Estimated n-th harmonics amplitude Double (F64)
THD Total harmonic distortion Double (F64)

DAV Data Valid Bool

215

I13PM — Identification of a three parameter model

Block Symbol Licence: ADVANCED
u p1
y S%
u0 gg
Y0 g?
RUN 88
cLr RDY
ips iE

Function Description

The I3PM block identifies a three-parameter system model using the method of gener-
alized moments. Unlike the PIDMA block, it is necessary to independently control the
identification experiment. The block provides estimated parameters on the outputs p1-6
in one of the following forms, depending on the value of the ips input:

0: First-order model with transport delay given as Froppr(s) = D

pl=K,p2=D,p3 =T,

K _—Ds
7_57_,’_16 ,Where

1: Input and output moments, where pl = mug, p2 = mui, p3 = mug, p4 = myo,
p5 = my1, pé = mysz,
2: Process moments, where pl = mpg, p2 = mp1, p3 = mpa,

3: Process characteristic numbers, where pl = k, p2 = u, p3 = 02, p4 = o. For
more information on characteristic numbers, see the documentation of the PSMPC
block.

Outputs p7 and p8 are reserved for later use.

This block does not propagate the signal quality. More information can be found in the

1.4 section.

Input
u Input of the identified system Double (F64)

Output of the identified system Double (F64)

u0 Input steady state Double (F64)
yO Output steady state Double (F64)
RUN Execute identification Bool
CLR Block reset Bool

216

ips

Parameter

tident
irtype

ispeed

Output

pl..p8
BSY
RDY

iE

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Meaning of the output signals
0 FOPDT model
1 ... moments of input and output
2 ... process moments
3 ... characteristic numbers
Duration of identification [g] ©100.0
Controller type (control law) ©6
1 ..., D
2 ... I
K ID
4 P
5 PD
6 PI
T ... PID
Desired closed loop speed 2
1 ... Slow closed loop
2 ... Normal (middle fast) CL
3 Fast closed loop

Identified parameter

Busy flag
Outputs valid (ready flag)
Error indicator
off ... No error
on An error occurred
Error code
1..... Premature termination
2 ... mu(0=0
3 ... mp=0

4 ... sigma~2<0

Long (I32)

Double (F64)
Long (I32)

Long (I32)

Double (F64)
Bool
Bool
Bool

Long (I32)

LC — Lead compensator

Block Symbol

u
R1 yp
HLD

Function Description

The LC block is a discrete simulator of derivative element

Cs)=—5——

217

Licence: STANDARD

where td is the derivative constant and nd determines the influence of parasite 1st order
filter. It is recommended to use 2 < nd < 10. If ISSF = on, then the state of the parasite
filter is set to the steady value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the C(s)

transfer function.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Analog input of the block
R1 Block reset
HLD Hold
Parameter
td Derivative time constant
nd Derivative filtering parameter
ISSF Steady state at start-up
off ... Zero initial state
on Initial steady state
Output

y Analog output of the block

1.0
©10.0

Double
Bool
Bool

Double
Double
Bool

Double

(F64)

(F64)
(F64)

(F64)

218 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

LLC — Lead-lag compensator

Block Symbol

u
R1 ypP
HLD

LLC

Function Description

The LLC block is a discrete simulator of integral-derivative element

C(s) =

a-tau-s+1
tau-s+1

Licence: STANDARD

where tau is the denominator time constant and the time constant of numerator is an
a-multiple of tau (a*tau). If ISSF = on, then the state of the filter is set to the steady

value at the block initialization according to the input signal u.

The exact discretization at the sampling instants is used for discretization of the
C(s) transfer function. The sampling period used for discretization is equivalent to the

execution period of the LLC block.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Analog input of the block
R1 Block reset
HLD Hold
Parameter
tau Time constant
a Numerator time constant coefficient
ISSF Steady state at start-up
off ... Zero initial state
on Initial steady state
Output

y Analog output of the block

1.0

Double
Bool
Bool

Double
Double
Bool

Double

(F64)

(F64)
(F64)

(F64)

219

LPI — Loop performance index

Block Symbol Licence: ADVANCED

upv ypv
usp Ip

RUN iE
LPI

Function Description

The LPI (Loop Performance Index) functional block is designed to evaluate the quality
of feedback control by influencing the signal value before it is fed into the controller and
measures the system’s response. This block is useful for analyzing and identifying the
behavior of the control loop in real-time.

The process variable pv of the control loop is connected to the upv input and from the
ypv output to the controller. The setpoint sp of the control loop is fed to the usp input.
The block is activated by the RUN signal only in the automatic mode of the controller
when it is desired to perform identification of the control loop.

Upon activation (RUN=1), the LPI block injects a sinusoidal signal into the process
variable with a defined amplitude ad and frequency fd, allowing the measurement of the
system’s response. The output signal is further processed by a BandPass filter and Fourier
transform to determine the average signal amplitude. The resulting performance index Ip
is calculated based on the ratio between the set parameters and the measured amplitude,
providing a quantitative evaluation of the control system’s disturbance suppression.

The output Ip reflects how effectively the control system suppresses disturbances in
the defined frequency band fa. A value of Ip=1 indicates that the system suppresses
disturbances in accordance with expectations; values higher than 1 indicate better per-
formance; lower values indicate poorer control loop settings.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
upv Input process variable Double (F64)
usp Input setpoint variable Double (F64)
RUN Enable execution Bool
Parameter
ms Sensitivity function upper limit 41.00001 11000.0 ®2.0 Double (F64)
fa Available bandwidth J1e-10 T1e+10 ®10.0 Double (F64)

fd Excitation/measured frequency J1e-10 T1e+10 ®1.0 Double (F64)

220

ad
nper

ifrunit

xi
nmax
Output

ypv
amp

Ip

iE

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Excitation amplitude

Window size (number of periods of fd)

Frequency units

2 ... rad/s
Filter damping ratio
Allocated size of array

Output process variable

Signal amplitude after filtering
Control loop performance index
Error indicator

Error code

©0.01
1104
o1

10.001 1100.0 ®1.0
110 110000000 256

Double (F64)
Long (I32)
Long (I32)

Double (F64)
Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool

Error

221

MCU — Manual control unit

Block Symbol Licence: STANDARD

Function Description

The MCU block is suitable for manual setting of the numerical output value y, e.g. a
setpoint. In the local mode (LOC = on) the value is set using the buttons UP and DN.
The rate of increasing/decreasing of the output y from the initial value y0 is determined
by the integration time constant tm and pushing time of the buttons. After elapsing ta
seconds while a button is pushed, the rate is always multiplied by the factor q until
the time tf is elapsed. Optionally, the output y range can be constrained (SATF = on)
by saturation limits lolim and hilim. If none of the buttons is pushed (UP = off and
DN = off), the output y tracks the input value tv. The tracking speed is controlled by
the integration time constant tt.

In the remote mode (LOC = off), the input rv is optionally saturated (SATF = on)
and copied to the output y. The detailed function of the block is depicted in the following
diagram.

hilim
lolim
SATF
|
e 1
1 y
> L’”\o—»@
v \A | -
»
L 0
0
LOC
D

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
tv Tracking variable Double (F64)
UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

222

v
LOC

Parameter

tt
tm
yoO

q
ta
tf
SATF

hilim

lolim

Output

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Remote value
Local or remote mode

Tracking time constant

Initial value of integration time constant

Initial output value

Multiplication quotient

Interval after which the rate is changed [s]
Interval after which the rate changes no more [s]
Saturation flag

off ... Signal not limited
on Saturation limits active

Upper limit of the output signal
Lower limit of the output signal

Analog output of the block

©1.
(100.

©5.
4.
©8.

O1.
o-1.

Double
Bool

Double
Double
Double
Double
Double
Double
Bool

Double
Double

Double

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)

(F64)

223

PIDAT — PID controller with relay autotuner

Block Symbol Licence: AUTOTUNING

dv mv

SP sAT
pv TBSY
TE
ite

pti
MAN B
TUNE pnd
TBRK PP

PIDAT

Function Description

The PIDAT block has the same control function as the PIDU block. Additionally it is
equipped with the relay autotuning function.

In order to perform the autotuning experiment, it is necessary to drive the system to
approximately steady state (at a suitable working point), choose the type of controller to
be autotuned (PI or PID) and activate the TUNE input by setting it to on. The controlled
process is regulated by special adaptive relay controller in the experiment which follows.
One point of frequency response is estimated from the data measured during the experi-
ment. Based on this information the controller parameters are computed. The amplitude
of the relay controller (the level of system excitation) and its hysteresis is defined by
the amp and hys parameters. In case of hys=0 the hysteresis is determined automatically
according to the measurement noise properties on the controlled variable signal. The
signal TBSY is set to on during the tuning experiment. While the tuning experiment is
running, the ite output shows the estimated time to finish in seconds.

A successful experiment is indicated by TE = off and the controller parameters can
be found on the outputs pk, pti, ptd, pnd and pb. The ¢ weighting factor is assumed
(and recommended) ¢=0. A failure during the experiment causes TE = on and the output
ite provides further information about the problem. It is recommended to increase the
amplitude amp in the case of error. The controller is equipped with a built-in function
which decreases the amplitude when the deviation of output from the initial steady state
exceeds the maxdev limit. The tuning experiment can be prematurely terminated by
activating the TBRK input.

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative effect instead). Setting the integral
time constant to 7; = 0 disables the integral component of the controller (same effect
as disabling it with the irtype parameter). For Ty = 0, the derivative component of
the controller is disabled. Static gain of the process k0 must be provided in case of
iainf = 3,4,5.

It is recommended not to change the parameters nl, mm, ntime, rerrap and aerrph.

224

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

dv
sp
PV
tv
hv
MAN

TUNE
TBRK

Parameter

irtype

RACT

ti
td
nd

tt

hilim
lolim
iainf

k0
nl

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value

Manual or automatic mode

off ... Automatic mode
on Manual mode

Start the tuning experiment
Stop the tuning experiment

Controller type (control law)

2 ... 1]
3. [ID]
4 ... P|
5 ... |PD]
6 PI
T PID

Reverse action flag
off ... Higher mv -> higher pv
on Higher mv -> lower pv
Controller gain
Integral time constant
Derivative time constant
Derivative filtering parameter

Setpoint weighting - proportional part

Setpoint weighting - derivative part
Tracking time constant

Upper limit of the controller output
Lower limit of the controller output
Type of apriori information

1..... No apriori information

2 ... Astatic process

3 Low order process

4 Static process + slow CLSR
5 Static process

6 Static process + fast CLSR

Static gain

©6

10.0 ®1.0
10.0 ®4.0
10.0 ®1.0
10.0 ®10.0
10.0 ®1.0
l0.0

10.0 ®1.0
1.0
®-1.0

o1

1.0

Maximum number of half-periods - freq. response point 20

Double
Double
Double
Double
Double
Bool

Bool
Bool

(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Bool

Double
Double
Double
Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Double

(F64)

Long (I32)

mm
amp
uhys
ntime
rerrap
aerrph

maxdev

Output

mv
de
SAT

TBSY
TE

ite

pk
pti
ptd
pnd
pb

Maximum number of half-periods - averaging
Relay controller amplitude

Relay controller hysteresis

Length of noise estimation period [s]
Termination value - amplitude relative error
Termination value - phase absolute error
Maximal admissible deviation error

Manipulated variable (controller output)
Deviation error
Saturation flag

04
0.1

5.0
0.1
©10.0
1.0

off ... The controller implements a linear control law

on The controller output is saturated
Tuner busy flag
Tuning error

off ... Autotuning successful
on An error occurred during the experiment
Error code

1000 .. Signal/noise ratio too low
1001 .. Hysteresis too high

1002 .. Too tight termination rule
1003 .. Phase out of interval

Proposed controller gain

Proposed integral time constant

Proposed derivative time constant

Proposed derivative component filtering

Proposed weighting factor - proportional component,

225

Long (I32)

Double
Double
Double
Double
Double
Double

Double
Double
Bool

Bool
Bool

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)

Long (I32)

Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)

226 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

PIDE — PID controller with defined static error

Block Symbol Licence: ADVANCED

Function Description

The PIDE block is a basis for creating a modified PI(D) controller which differs from
the standard PI(D) controller (the PIDU block) by having a finite static gain (in fact,
the value € which causes the saturation of the output is entered). In the simplest case
it can work autonomously and provide the standard functionality of the modified PID
controller with two degrees of freedom in the automatic (MAN = off) or manual mode
(MAN = on).

If in automatic mode and if the saturation limits are not active, the controller im-
plements a linear control law given by

= —Y (s S Tas cWi(s) —Y(s s

U(s) = £K [bW(s) Y()+Tis+ﬂE()+%+1(W() Y(s))| + Z(s),
where i
BZl—K@

and U(s) is the Laplace transform of the manipulated variable mv, W(s) is the Laplace
transform of the setpoint sp, Y(s) is the Laplace transform of the process variable pv,
E(s) is the Laplace transform of the deviation error, Z(s) is the Laplace transform of the
feedforward control variable dv and K, T;, Ty, N, € (= b,/100), b and c are the controller
parameters. The sign of the right hand side depends on the parameter RACT. The range of
the manipulated variable mv (position controller output) is limited by parameters hilim,
lolim.

By connecting the output mv to the input tv and choosing the tt parameter appro-
priately, we achieve the desired behaviour of the controller when reaching the saturation
values of mv. This eliminates the undesirable integral windup effect while ensuring smooth
switching (bumpless transfer) between automatic and manual modes.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. In this mode the inner controller state tracks the signal connected to the tv
input so the successive switching to the automatic mode is bumpless. But the tracking
is not precise for € > 0.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv
sp
pv
tv
hv
MAN

Parameter

irtype

RACT

ti
td
nd

tt
bp
hilim

lolim

Output

mv
de
SAT

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value

Manual or automatic mode

off ... Automatic mode
on Manual mode

Controller type (control law)

1 ..., D

2 ... I

3 ... ID
4 P

5 PD
6 PI

7T ... PID

Reverse action flag
off ... Higher mv -> higher pv
on Higher mv -> lower pv

Controller gain

Integral time constant

Derivative time constant

Derivative filtering parameter
Setpoint weighting - proportional part
Setpoint weighting - derivative part
Tracking time constant

Static error coefficient

Upper limit of the controller output
Lower limit of the controller output

Manipulated variable (controller output)

Deviation error
Saturation flag

227

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)
Bool

®6 Long (I32)

Bool

0.0 ®1.0 Double (F64)
40.0 ®4.0 Double (F64)
0.0 ®1.0 Double (F64)
0.0 ®10.0 Double (F64)
0.0 ®1.0 Double (F64)
J0.0 Double (F64)

0.0 ®1.0 Double (F64)
Double (F64)

®1.0 Double (F64)

®-1.0 Double (F64)

Double (F64)
Double (F64)
Bool

off ... The controller implements a linear control law

on The controller output is saturated

228

PIDGS — PID controller with gain scheduling

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Block Symbol

Function Description

The functionality of the PIDGS block is

Licence: ADVANCED

completely equivalent to the PIDU block. The

only difference is that the PIDGS block has a at most six sets of basic PID controller
parameters and allow bumpless switching of these sets by the ip (parameter set index)
or vp inputs. In the latter case it is necessary to set GSCF = on and provide an array of
threshold values thsha. The following rules define the active parameter set: the set 0 is
active for vp < thrsha(0), the set 1 for thrsha(0) < vp < thrsha(1) etc. till the set 5
for thrsha(4) < vp. The index of the active parameter set is available at the kp output.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

dv
sp
PV
tv
hv
MAN

IH

ip

vp
Parameter

hilim

lolim
dz

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value
Manual or automatic mode

off ... Automatic mode

on Manual mode
Integrator hold

off ... Integration enabled

on Integration disabled

Parameter set index
Switching analog signal

Upper limit of the controller output
Lower limit of the controller output
Dead zone

10 15

©1.0
®-1.0

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)
Bool

Bool

Long (I32)
Double (F64)

Double (F64)
Double (F64)
Double (F64)

icotype

nmax
GSCF

hys
irtypea
RACTA
ka

tia
tda
nda
ba
ca
tta

thrsha

Output

mv
dmv
de

SAT

kp

Controller output type ®1
1 ..., Analog
2 ... PWM
3 ..., SCU
4 ... SCUV
Allocated size of array 14 110000 ©10

Switch parameters by analog signal vp
off ... Index-based switching
on Analog signal based switching

Hysteresis for controller parameters switching

Vector of controller types (control laws) ©[6 6 6 6 6 61
Vector of reverse action flags ®[0 000 0 0]
Vector of controller gains ®[1.0 1.0 1.0 1.0 1.0 1.0]

Vector of integral time constants
®[4.0 4.0 4.0 4.0 4.0 4.0]

Vector of derivative time constants
®[1.01.01.0 1.0 1.0 1.0]

Vector of derivative filtering parameters
©[10.0 10.0 10.0 10.0 10.0 10.0]

Setpoint weighting factors - proportional part
®[1.0 1.0 1.0 1.0 1.0 1.0]

Setpoint weighting factors - derivative part
®»[0.0 0.0 0.0 0.0 0.0 0.0]

Vector of tracking time constants
®[1.0 1.0 1.0 1.0 1.0 1.0]

Vector of thresholds for switching the parameters
®[0.1 0.2 0.3 0.4 0.5 0]

Manipulated variable (controller output)
Controller velocity output (difference)
Deviation error

Saturation flag

off ... The controller implements a linear control law
on The controller output is saturated

Active parameter set index

229

Long (I32)

Long (I32)

Bool

Double

(Fe4)

Byte (U8)

Bool
Double
Double

Double

Double

Double

Double

Double

Double

Double
Double
Double
Bool

(F64)
(F64)

(Fe4)

(F64)

(F64)

(F64)

(F64)

(F64)

(F64)
(F64)
(F64)

Long (I32)

230 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

PIDMA — PID controller with moment autotuner

Block Symbol Licence: AUTOTUNING

dv

S dmy
pv de
v Sey
oo TE
IH Pk
TUNE p%l
TBRK pnd
TAFF P2
ips

PIDMA

Function Description

The PIDU block serves as a foundational component for constructing a complete PID
controller (P, I, PI, PD, PID, PI+D). In its simplest form, it can operate independently as
a standard PID controller with two degrees of freedom, accommodating both automatic
(MAN = off) and manual modes (MAN = on).

In automatic mode (MAN = off), the PIDMA block executes the PID control law with
two degrees of freedom as follows:

U(s) =+K {bW(S) -Y(s)+ L [W(s) — Y (s)] + nidi 1
N

Ts [cW (s) — Y(S)]} +Z(s)
where U (s) is Laplace transform of the manipulated variable mv, W(s) is Laplace trans-
form of the setpoint variable sp, Y'(s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, T;, Ty, N, b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output) is
limited by parameters hilim, lolim. The parameter dz determines the dead zone in the
integral part of the controller. The integral part of the control law can be switched off
and fixed on the current value by the integrator hold input IH (IH = on). For the proper
function of the controller, it is necessary to connect the output mv of the controller to
the controller input tv and properly set the tracking time constant tt.

The recommended default value for the PID controller is tt ~ +/1;1y, and for the PI
controller, it is tt & T;/2. This ensures a bumpless transfer during switching between
manual and automatic modes and correct anti-windup functionality when the output mv
saturates. Adjusting the parameter tt allows for precise behaviour adjustment during
saturation (e.g., bouncing off the limits due to noise) and when switching between mul-
tiple controllers (the size of the jump when switching, if there is a deviation error). A
value of 0 sets recommended default values for PI and PID controllers. For controllers
withou an integral part, it means disabling the tracking. To enable tracking for P or PD

231

controllers (e.g., for control around a setpoint), set a positive value for tt higher than the
sampling period. Disabling tracking for controllers with an integral part is not possible
due to the risk of windup.

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative effect instead). Setting the integral
time constant to 7; = 0 disables the integral component of the controller (same effect as
disabling it with the irtype parameter). For Ty = 0, the derivative component of the
controller is disabled. The additional outputs dmv, de, and SAT sequentially provide the
controller’s velocity output (difference of mv), the deviation error, and the saturation flag
of the controller’s output mv.

The PIDMA block can be prepared for connection with other types of control blocks
by using the icotype parameter. The icotype parameter can be set to the following
values with the given meanings:

1: Analog - standard block mode,

e 2: PWM - mode suitable for connecting the output mv to the input of pulse-width
modulated regulation PWM,

e 3: SCU - mode for connection with a step controller with position feedback SCU,

4: SCUYV - mode for connection with a step controller without positional feedback
SCUV.

For the last option, the meanings of the outputs mv, dmv, and SAT are modified in this
case: the output mv equals the sum of the P and D components of the controller, while
the output dmv provides the difference of its I component, and the output SAT carries
information for the SCUV block whether the deviation error de in automatic mode is
less than the dead zone dz. Additionally, for connecting the PIDMA and SCUV blocks, it
is recommended to set the setpoint weighting factor for the derivative component ¢ to
Z€ro.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDMA block is quite clear from the following
diagram:

232 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

(@D
RACT |—>¢
o]0 g - :
pv Q mv
3 RACT > ' D)
* MAN v >
L ©) _Krds . !
Td/N.s+1 %
4 i) . dmv 5
RACT i L » D
K 0 >—1Pp—o 1
—> T|'C +-1 = 1
:9' Ti

de
»(3

<
Y
~

b B
¢

SAT

MAN ”| AND N g &B)

icotype=SCUV

The block PIDMA extends the control function of the standard PID controller by the
built in autotuning feature. Before start of the autotuner the operator have to reach the
steady state of the process at a suitable working point (in manual or automatic mode) and
specify the required type of the controller ittype (PI or PID) and other tuning parameters
(iainf, DGC, tdg, tn, amp, dy and ispeed). The identification experiment is started by the
rising edge off—on on the input TUNE (input TBRK finishes the experiment). In this mode
(TBSY = on), first of all the noise and possible drift gradient (DGC = on) are estimated
during the user specified time (tdg + tn) and then the rectangle pulse is applied to the
input of the process and the first three process moments are identified from the pulse
response. The amplitude of the pulse is set by the parameter amp. The pulse is finished
when the process variable pv deviates from the steady value more than the dy threshold
defines. The threshold is an absolute difference, therefore it is always a positive value.
The duration of the tuning experiment depends on the dynamic behavior of the process.
The remaining time to the end of the tuning is provided by the output trem.

If the experiment ends successfully (TE = off), then depending on the input ips
appears on the outputs:

e 0: Designed parameters pk, pti, ptd, pnd, pb, pc.

e 1: process moments: static gain (pk), resident time constant (pti), measure of the
system response length (ptd).

2: Three-parameter first-order plus dead-time model: static gain (pk), dead-time
(pti), time constant (ptd). See the FOPDT block.

3: Three-parameter second-order plus dead-time model with double time constant:
static gain (pk), dead-time (pti), time constant (ptd). See the SOPDT block.

4: Estimated boundaries for manual fine-tuning of the PID controller (irtype = 7)
gain k: upper boundary kp; (pk), lower boundary k;, (pti).

233

Other values of the ips input are reserved for custom specific purposes. For (TE = on)
the output ite specifies the experiment error more closely. The function of the autotuner
is illustrated in the following picture.

mv0+amp

mv0

sp

pvO+dy
pv0

TBSY

phase 0 1 2 3 4
0 t1 t2 t3 tats

During the experiment, the output ite indicates the autotuner phases. In the phase of
estimation of the response decay rate (ite = -4) the tuning experiment may be finished
manually before its regular end. In this case the controller parameters are designed but
the potential warning is indicated by setting the output ite=100.

Remark: The rising edge off—on at TUNE input during the phases -2, -3 and -4
causes the finishing of the current phase and transition to the next one (or finishing the
experiment in the phase -4).

At the end of the experiment (TBSY on—o0ff), the function of the controller depends
on the current controller mode. If the TAFF = on the designed controller parameters are
immediately accepted.

This block propagates the signal quality. More information can be found in the 1.4

section.

Input

dv Feedforward control variable Double (F64)
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool

off ... Automatic mode
on Manual mode

234 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

IH Integrator hold Bool

off ... Integration enabled

on Integration disabled
TUNE Start the tuning experiment Bool
TBRK Stop the tuning experiment Bool
TAFF Tuning affirmation Bool

off ... Parameters are only computed

on Parameters are set into the control law
ips Meaning of the output signals Long (I32)

0 PID parameters

1 ... process moments

2 ... FOPDT model

3 ... SOPDT model

4 ... boundaries for manual tuning of controller gain

Parameter

irtype Controller type (control law) ©®6 Long (I32)

1 ... D

2 ... I

3 ... ID

4 ... P

5 PD

6 PI

7T PID
RACT Reverse action flag Bool

off ... Higher mv -> higher pv

on Higher mv -> lower pv
k Controller gain J0.0 ®1.0 Double (F64)
ti Integral time constant J0.0 ®4.0 Double (F64)
td Derivative time constant 0.0 ®1.0 Double (F64)
nd Derivative filtering parameter J0.0 ©10.0 Double (F64)

Setpoint weighting - proportional part 40.012.0 ®1.0 Double (F64)
Setpoint weighting - derivative part }0.012.0 Double (F64)

tt Tracking time constant J0.0 ®1.0 Double (F64)
hilim Upper limit of the controller output ®1.0 Double (F64)
lolim Lower limit of the controller output ®-1.0 Double (F64)
dz Dead zone Double (F64)
icotype Controller output type ®1 Long (I32)

1 ..., Analog

2 ... PWM

3 ... SCU

4 SCUV
ittype Controller type to be designed ©®6 Long (I32)

6 PI

iainf
DGC

tdg
tn
amp

dy
ispeed

ipid

Output
mv
de

SAT

TBSY
TE

Type of apriori information ®1
1 Static process
2 ... Astatic process
Drift gradient compensation ©on
off ... Disabled
on Enabled
Drift gradient estimation time [s] ©60.0
Length of noise estimation period [s] ©5.0
Tuning pulse amplitude 0.5
Tuning pulse get down threshold 10.0 ®0.1
Desired closed loop speed 2
1..... Slow closed loop
2 ... Normal (middle fast) CL
3 ... Fast closed loop
PID controller form o1
1 ... Parallel form
2 ... Series form

Manipulated variable (controller output)
Controller velocity output (difference)
Deviation error
Saturation flag
off ... The controller implements a linear control law
on The controller output is saturated
Tuner busy flag
Tuning error
off ... Autotuning successful
on An error occurred during the experiment

235

Long (I32)

Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool

Bool
Bool

236

ite

trem
Pk
pti
ptd
pnd
pb
pc

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Error code Long (I32)

0 No error or waiting for steady state

1 ... Too small pulse getdown threshold

2 ... Too large pulse amplitude

3 ... Steady state condition violation

4 ... Too small pulse amplitude

5 Peak search procedure failure

6 Output saturation occurred during experiment

7 ... Selected controller type not supported

8 Process not monotonous

9 Extrapolation failure

10 Unexpected values of moments (fatal)

11 Abnormal manual termination of tuning

12 Wrong direction of manipulated variable

13 Invalid format of sParams input string

100 ... Manual termination of tuning (warning)

-1 Drift gradient and noise estimation phase

-2 Pulse generation phase

-3 Searching the peak of system response

-4 ... Estimation of the system response decay rate
Estlmated time to finish the tuning experiment [s] Double (F64)
Proposed controller gain Double (F64)
Proposed integral time constant Double (F64)
Proposed derivative time constant Double (F64)
Proposed derivative component filtering Double (F64)
Proposed weighting factor - proportional component Double (F64)

Proposed weighting factor - derivative component Double (F64)

237

PIDU — PID controller unit

Block Symbol Licence: STANDARD

Function Description

The PIDU block serves as a foundational component for constructing a complete PID
controller (P, I, PI, PD, PID, PI+D). In its simplest form, it can operate independently as
a standard PID controller with two degrees of freedom, accommodating both automatic
(MAN = off) and manual modes (MAN = on).

In automatic mode (MAN = off), the PIDU block executes the PID control law with
two degrees of freedom as follows:

1 TdS
— |[W(s) =Y
g W) — Yl ey

U(s) =+K {bW(s) —Y(s) [¢W (s) — Y(S)]} + Z(s)

where U(s) is Laplace transform of the manipulated variable mv, W (s) is Laplace trans-
form of the setpoint variable sp, Y(s) is Laplace transform of the process variable pv,
Z(s) is Laplace transform of the feedforward control variable dv and K, T;, Ty, N, b and
c are the parameters of the controller. The sign of the right hand side depends on the
parameter RACT. The range of the manipulated variable mv (position controller output) is
limited by parameters hilim, 1olim. The parameter dz determines the dead zone in the
integral part of the controller. The integral part of the control law can be switched off
and fixed on the current value by the integrator hold input IH (IH = on). For the proper
function of the controller, it is necessary to connect the output mv of the controller to
the controller input tv and properly set the tracking time constant tt.

The recommended default value for the PID controller is tt ~ /1;1T,, and for the PI
controller, it is tt &~ T;/2. This ensures a bumpless transfer during switching between
manual and automatic modes and correct anti-windup functionality when the output mv
saturates. Adjusting the parameter tt allows for precise behaviour adjustment during
saturation (e.g., bouncing off the limits due to noise) and when switching between mul-
tiple controllers (the size of the jump when switching, if there is a deviation error). A
value of 0 sets recommended default values for Pl and PID controllers. For controllers
withou an integral part, it means disabling the tracking. To enable tracking for P or PD
controllers (e.g., for control around a setpoint), set a positive value for tt higher than the
sampling period. Disabling tracking for controllers with an integral part is not possible
due to the risk of windup.

238 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

For the gain setting, a value of K = 0 disables the controller. Negative values are
not allowed (use the RACT parameter for negative effect instead). Setting the integral
time constant to 7; = 0 disables the integral component of the controller (same effect as
disabling it with the irtype parameter). For Ty = 0, the derivative component of the
controller is disabled. The additional outputs dmv, de, and SAT sequentially provide the
controller’s velocity output (difference of mv), the deviation error, and the saturation flag
of the controller’s output mv.

The PIDU block can be prepared for connection with other types of control blocks by
using the icotype parameter. The icotype parameter can be set to the following values
with the given meanings:

1 Analog - standard block mode,

2 PWM - mode suitable for connecting the output mv to the input of pulse-width
modulated regulation PWM,

3 SCU - mode for connection with a step controller with position feedback SCU,

4 SCUYV - mode for connection with a step controller without positional feedback
SCUV.

For the last option, the meanings of the outputs mv, dmv, and SAT are modified in this
case: the output mv equals the sum of the P and D components of the controller, while
the output dmv provides the difference of its I component, and the output SAT carries
information for the SCUV block whether the deviation error de in automatic mode is
less than the dead zone dz. Additionally, for connecting the PIDU and SCUV blocks, it
is recommended to set the setpoint weighting factor for the derivative component ¢ to
Z€T0.

In the manual mode (MAN = on), the input hv is copied to the output mv unless
saturated. The overall control function of the PIDU block is quite clear from the following
diagram:

(@DE
RACT Lyl

D0 g s :
pv 2 ™
3 RACT > o

* MAN V_N
| Q KTd.s Y 1
Td/N.s+1 diff o
| 0 dmv
>
>
(K
:{)2 +=1 =
T i

de
»(3

CV

SAT

|5

z
\ 4
z
o
=

\ 4

>

z

S

icotype=SCUV

239

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

dv
sp
pv
tv
hv
MAN

IH

Parameter

irtype

RACT

ti
td
nd

tt
hilim
lolim
dz
icotype

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value

Manual or automatic mode

off ... Automatic mode

on Manual mode
Integrator hold

off ... Integration enabled

on Integration disabled

Controller type (control law)

2 ... I

3 ... ID
4 P

5 PD
6 PI

7T ... PID

Reverse action flag
off ... Higher mv -> higher pv
on Higher mv -> lower pv

Controller gain

Integral time constant
Derivative time constant
Derivative filtering parameter

Setpoint weighting - proportional part

Setpoint weighting - derivative part
Tracking time constant

Upper limit of the controller output
Lower limit of the controller output
Dead zone

Controller output type

©6

10.0 ®1.
10.0 4.
10.0 ®1.
10.0 ®10.
10.012.0 ®1.
10.0 12.

10.0 ®1.

o1.

o-1.

O O O O O O O O O

O]
=

Double
Double
Double
Double
Double
Bool

Bool

(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Bool

Double
Double
Double
Double
Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

240

Output

mv
dmv
de

SAT

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Manipulated variable (controller output)

Controller velocity output (difference)

Deviation error

Saturation flag

off ...
on

The controller implements a linear control law
The controller output is saturated

Double (F64)
Double (F64)
Double (F64)
Bool

241

PIDUI — PID controller unit with variable parameters

Block Symbol Licence: ADVANCED

Function Description

The functionality of the PIDUI block is completely equivalent to the PIDU block. The only
difference is that the PID control algorithm parameters are defined by the input signals
and therefore they can depend on the outputs of other blocks. This allows creation of
special adaptive PID controllers.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv Feedforward control variable Double (F64)
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool

off ... Automatic mode

on Manual mode
IH Integrator hold Bool

off ... Integration enabled

on Integration disabled
k Controller gain Double (F64)
ti Integral time constant Double (F64)
td Derivative time constant Double (F64)
nd Derivative filtering parameter Double (F64)
b Setpoint weighting - proportional part Double (F64)

Setpoint weighting - derivative part Double (F64)

242

Parameter

irtype

RACT

tt
hilim
lolim
dz
icotype

Output

mv
dmv
de

SAT

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Controller type (control law)

2 ... I

3 ... ID
4 ... P

5 PD
6 PI

7T ... PID

Reverse action flag
off ... Higher mv -> higher pv
on Higher mv -> lower pv

Tracking time constant
Upper limit of the controller output
Lower limit of the controller output

Dead zone
Controller output type
1 ..., Analog
2 ... PWM
K SCU
4 ... SCUV

Manipulated variable (controller output)
Controller velocity output (difference)

Deviation error
Saturation flag

©6

1.0
©1.0
©-1.0

o1

off ... The controller implements a linear control law

on The controller output is saturated

Long (I32)

Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool

243

POUT — Pulse output

Block Symbol Licence: STANDARD

POUT

Function Description

The POUT block shapes the input pulses U in such a way, that the output pulse Y has a
duration of at least dtime seconds and the idle period between two successive output
pulses is at least btime seconds. The input pulse occurring sooner than the period of
btime seconds since the last falling edge of the output signal elapses has no effect on the
output signal Y.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U Logical input of the block Bool
Parameter

dtime Minimum width of the output pulse [s] ®1.0 Double (F64)

btime Minimum delay between output pulses [s] ®1.0 Double (F64)
Output

Y Logical output of the block Bool

244 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

PRGM — Setpoint programmer

Block Symbol Licence: STANDARD

RUN
DEF P
spv
HLD SO
CON

(t
ind cNE
RPT
PRGM

Function Description

The PRGM block generates functions of time (programs) composed of n linear parts
defined by (n + 1)-dimensional vectors of time (tm = [tg,...,t,]) and output values
(y = [Y0,---,yn]). The generated time-course is continuous piecewise linear, see figure
below. This block is most commonly used as a setpoint generator for a controller. The
program generation starts when RUN = on. In the case of RUN = off the programmer is
set back to the initial state. The input DEF = on sets the output sp to the value spv.
It follows a ramp to the nearest future node of the time function when DEF = off. The
internal time of the generator is not affected by this input. The input HLD = on freezes
the output sp and the internal time, thus also the outputs tsc, tt and rt. The program
follows from freezing point as planned when HLD = off unless the input CON = on at the
moment when the signal HLD on—off. In that case the program follows a ramp to reach
the node with index ind in time trt. The node index ind must be equal to or higher
than the index of current sector isc (at the moment when HLD on—off). If RPT = on,
the program is generated repeatedly.

isc 1 2 n

'yl/‘ — Yo
Yo 1/ \» Yo

tsc

current
instant

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

RUN Enable execution Bool
DEF Initialize sp to the value of spv Bool

spv
HLD
CON
ind
trt
RPT

Parameter

nmax
tmunits

tm

Output

sp
isc
tsc
tt
rt
CNF

Initializing constant

Output and timer freezing
Continue from defined node

Index of the node to continue from
Time to reach the defined node

Repeating sequence

Allocated size of array

Time units
1..... seconds
2 ... minutes
3 ... hours

Vector of ascending node times
Vector of node values

Setpoint variable
Current function sector

14 110000000 ©10
o1

o0 1 2]
®[o 1 0]

Time elapsed since the start of current sector

Total elapsed time

Remaining time

Configured curve is being followed
Error flag, nodes not ascending

245

Double (F64)
Bool

Bool

Long (I32)
Double (F64)
Bool

Long (I32)
Long (I32)

Double (F64)
Double (F64)

Double (F64)
Long (I32)
Double (F64)
Double (F64)
Double (F64)
Bool

Bool

246 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

PSMPC — Pulse-step model predictive controller

Block Symbol Licence: ADVANCED

sp mv
pv dmv

e
v AT
hv pve
MAN E
PSMPC

Function Description

The PSMPC (Pulse Step Model Predictive Control) functional block is designed for the
implementation of high-quality controllers for difficult-to-control linear time-invariant
systems with actuator constraints (e.g., systems with transport delay or non-minimum
phase). It is especially advantageous in cases where a very rapid transition from one
controlled variable value to another without overshoot is required. However, the PSMPC
regulator can generally be used wherever standard PID regulators are commonly deployed
and high regulation quality is demanded.

94) __—" o)
93) h4)

h(3)

- e

h(2)
g(1)
h(1)

0 Ts 2Ts 3Ts 4Ts NTs

time

The PSMPC block is a predictive controller with explicitly defined constraints on the
amplitude of manipulated variable. For prediction purposes, a model in the form of a
discrete step response ¢g(j),7 = 1,..., N is used. The figure above illustrates how this
sequence can be obtained from a continuous step response. Note that N must be chosen
large enough so that the step response is described up to the steady state (N - T > tos,
where Tyg is the sampling period of the controller, and tg5 is the time to settle to 95 %
of the final value).

247

For stable, linear and t-invariant systems with a monotonous step response, it is
alternatively possible to use a moment set model [6] and describe the system with only
three characteristic numbers &, 4 and o2, which can be determined from a simple pulse
experiment. The controlled system can be approximated by first order plus dead-time
system

K
Froppr(s) = — e P k=K, pu=14+D, o?=1> (7.1)
or second order plus dead-time system
K —Ds 2 2
Fsoppr(s) :W'e , k=K, p=2r+D, o°=27 (7.2)
TS

with the same characteristic numbers. The type of approximation is selected by the
imtype parameter.

To lower the computational burden of the open-loop optimization, the family of
admissible control sequences contains only sequences in the so-called pulse-step shape
depicted below:

+ +
u ur
p0—1 .
u
ut p0=0
u u”
n, n, NC non, NC

Note that each of these sequences is uniquely defined by only four numbers nq,n9 €
{0,...,N¢}, po and u™® € (u™,ut), where No € {0,1,...} is the control horizon and
v, u" stand for the given lower and upper limit of the manipulated variable. The on-line
optimization (with respect to po, n1, ne and u®) minimizes the criterion

No N¢
I=Y é(k+ilk)>+ XD Ad(k+i|k)* — min, (7.3)
i:Nl =0

where é(k + i|k) is the predicted control error at time k over the coincidence interval
i € {N1, Na}, Au(k + i|k) are the differences of the control signal over the interval i €
{0, N¢'} and A penalizes the changes in the control signal. The algorithm used for solving
the optimization task (7.3) combines brute force and the least squares method. The value
u™ is determined using the least squares method for all admissible combinations of po,
n1 and no and the optimal control sequence is selected afterwards. The selected sequence
in the pulse-step shape is optimal in the open-loop sense. To convert from open-loop to
closed-loop control strategy, only the first element of the computed control sequence is
applied and the whole optimization procedure is repeated in the next sampling instant.

The parameters of the predictive controller, in addition to the model of the controlled
system and its input constraints, include the control horizon N¢, the prediction horizon

248 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Ni, Ny, and the coefficient A. Only the last-mentioned parameter, J, is intended for man-
ual fine-tuning of the control quality during routine commissioning. In the case of using
the system model in the form of a transfer function (7.1) or (7.2), the parameters IVy,
Ns are automatically selected based on the characteristic numbers u, 2. The controller
can then be effectively tuned "manually" by adjusting the characteristic numbers of the

2
process K, [, 0°.

Warning

It is necessary to set the sr array sufficiently large to avoid Matlab/Simulink crash
when using the PSMPC block for simulation purposes. Especially when using FOPDT
or SOPDT model, the sr array size must be greater than the length of the internally
computed discrete step response.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
tv Tracking variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool

off ... Automatic mode

on Manual mode
Parameter
nc Control horizon length ®5 Long (I32)
npl Start of coincidence interval ®1 Long (I32)
np2 End of coincidence interval ®10 Long (I32)
lambda Control signal penalization coefficient ©0.05 Double (F64)
umax Upper limit of the controller output ®1.0 Double (F64)
umin Lower limit of the controller output ®-1.0 Double (F64)
imtype Controlled process model type ®3 Long (I32)

1 ... FOPDT model

2 ... SOPDT model

3 ... Discrete step response
kappa Static gain ©1.0 Double (F64)
mu Resident time constant (20.0 Double (F64)
sigma Measure of the system response length (®10.0 Double (F64)
nmax Allocated size of array 410 710000 ®32 Long (I32)
sr Discrete step response sequence Double (F64)

®[0 0.2642 0.5940 0.8009 0.9084 0.9596 0.9826 0.9927 0.9970 0.9988 0.9995]

Output

mv
de

SAT

pve
iE

Manipulated variable (controller output)

Controller velocity output (difference)

Deviation error

Saturation flag

off ...
on

The controller implements a linear control law
The controller output is saturated

Process variable estimation

Error code

No error
Incorrect FOPDT model

Incorrect SOPDT model
Invalid step response sequence

249

Double (F64)
Double (F64)
Double (F64)
Bool

Double (F64)
Long (I32)

250 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

PWM — Pulse width modulation

Block Symbol Licence: STANDARD
B

PWM

Function Description

The PWM block performs pulse-width modulation of the input signal from the range from
-1 to +1. Using this block, it is possible to implement a proportional control action even
with actuators having a single (e.g., heating on/off) or dual (e.g., heating on/off and
cooling on/off) binary inputs. The width L of the output pulse is determined by the
relationship:

L = pertmx |u|,

where pertm is the modulation period. If u > 0 (u < 0), the pulse is generated at
the output UP (DN). However, for practical reasons, the duration of the generated pulse
is further adjusted according to the specified block parameters. The asymmetry factor
asyfac defines the ratio between the width of the negative pulse DN and the width of
the positive pulse UP. The modified widths are calculated according to the equations:

L for asyfac <1.0
L/asyfac for asyfac > 1.0
L x asyfac for asyfac <1.0
L for asyfac > 1.0

if w>0 then L(UP):= {

if uw<0 then L(DN):= {

which, for any value of asyfac>0, ensure that the maximum width of the generated
pulses equals pertm. Moreover, if the calculated pulse width is less than dtime, then the
resulting width is set to zero. If the calculated pulse width differs from pertm by less
than btime, then the resulting width is set to pertm. If a positive pulse UP is followed
by a negative pulse DN or vice versa, then the later pulse is, if necessary, shifted so that
the distance between these two pulses is at least offtime. If SYNCH = on, then a change
in the input u causes an immediate recalculation of the output pulse width, assuming
the synchronization condition between the beginning of the modulation period and the
moment of change in the input u is not met.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

u Analog input of the block Double (F64)

Parameter

pertm
dtime
btime
offtime
asyfac
SYNCH

Output

UP
DN

Modulation period length [s]

Minimum width of the output pulse [s]
Minimum delay between output pulses [s]
Minimum delay when altering direction [s]
Asymmetry factor

Synchronization flag

off ... Synchronization disabled
on Synchronization enabled

The UP signal (up, more)
The DOWN signal (down, less)

251

®10.0 Double (F64)

®0.1 Double (F64)

0.1 Double (F64)

®1.0 Double (F64)

®1.0 Double (F64)
Bool

Bool
Bool

252 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

RLY — Relay with hysteresis

Block Symbol Licence: STANDARD
[u yp

RLY
Function Description

The RLY block transforms the input signal u to the output signal y according to the
figure below.

enY 4

ep u

\

an

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
Parameter
ep Switch-on value ®1.0 Double (F64)
en Switch-off value ©®-1.0 Double (F64)
ap Output when ON ©®1.0 Double (F64)
an Output when OFF ®-1.0 Double (F64)
yO Initial output value Double (F64)
Output

v Analog output of the block Double (F64)

253

SAT — Saturation with variable limits

Block Symbol Licence: STANDARD

u -y
lo LL
SAT

Function Description

The SAT block copies the input u to the output y if the input signal satisfies lolim < u
and u < hilim, where lolim and hilim are state variables of the block. If u < lolim
(u > hilim), then y = lolim (y = hilim). The upper and lower limits are either
constants (HLD = on) defined by parameters hilim0 and 1lolim0 respectively or input-
driven variables (HLD = off, hi and lo inputs). The maximal rate at which the active
limits may vary is given by time constants tp (positive slope) and tn (negative slope).
These rates are active even if the saturation limits are changed manually (HLD = on)
using the hilim0 and lolimQ parameters. To allow immediate changes of the saturation
limits, set tp = 0 and tn = 0. The HL and LL outputs indicate the upper and lower
saturation respectively.

If necessary, the hilim0 and lolim0Q parameters are used as initial values for the
input-driven saturation limits.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
u Analog input of the block Double (F64)
hi Upper limit of the output signal Double (F64)
lo Lower limit of the output signal Double (F64)
Parameter
tp Rate limiter for positive limit changes ®1.0 Double (F64)
tn Rate limiter for negative limit changes ©®1.0 Double (F64)
hilim0 Upper limit of the output (valid when HLD=1) ©®1.0 Double (F64)
lolim0 Lower limit of the output (valid when HLD=1) ©®-1.0 Double (F64)
HLD Fixed saturation limits ®on Bool
off ... Variable saturation limits
on Fixed saturation limits
Output

y Analog output of the block Double (F64)

254 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

HL Upper limit saturation indicator Bool
LL Lower limit saturation indicator Bool

255

SC2FA — State controller for 2nd order system with frequency
autotuner

Block Symbol Licence: AUTOTUNING
dv de
® T8sY
Fél\)’AN g'g\‘,
TUNE |DE
HLD
BRK Pl
SETC ES
VER P4

p5
p6

Function Description

The SC2FA block implements a state controller for 2nd order system (7.4) with frequency
autotuner. Tt is well suited especially for control (active damping) of lightly damped
systems (£ < 01). But it can be used as an autotuning controller for arbitrary system
which can be described with sufficient precision by the transfer function

b1s + by
F(s) = 4
(5) = 2Qs + Q2 (7.4)

where >0 is the natural (undamped) frequency, &, 0<{ <1, is the damping coefficient
and by, by are arbitrary real numbers. The block has two operating modes: "Identification
and design mode" and "Controller mode".

|dentification and design mode

The "Identification and design mode" is activated by the binary input ID = on. Two
points of frequency response with given phase delay are measured during the identifica-
tion experiment. Based on these two points a model of the controlled system is built. The
experiment itself is initiated by the rising edge off—on of the TUNE input. A harmonic
signal with amplitude uvamp, frequency w and bias ubias then appears at the output
mv. The frequency runs through the interval (wb,wf), it increases gradually. The current
frequency is copied to the output w. The rate at which the frequency changes (sweeping)
is determined by the cp parameter, which defines the relative shrinking of the initial
period Ty = 3{ of the exciting sine wave in time Ty, thus

wb wb

cp = = =e T,
Pw(Ty) wberTy

The cp parameter usually lies within the interval cp € (0,95;1). The lower the damping
coefficient £ of the controlled system is, the closer to one the c¢p parameter must be.

256 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

At the start of the identification, the exciting signal has a frequency w = wb. After
stime has elapsed, the calculation of the estimate of the current frequency characteristic
point begins. Its real and imaginary parts are continuously copied in order to the outputs
xre and xim. If the block parameter MANF is set to 0, then the frequency sweep stops twice
for stime at the moments when points with phase delays phl and ph2 are first reached.
The preset values for parameters phl and ph2 are respectively —60° and —120°, and they
can be changed to any values in the interval (—360°,0°), where phl > ph2. After stime
seconds of stopping at phase phl, or ph2, the average of the last iavg measured points is
calculated (thus obtaining an estimate of the respective frequency characteristic point)
for the subsequent calculation of the parametric model in the form (7.4). If MANF = on,
it is possible to manually "sample" two points of the frequency characteristic using the
input HLD. The input HLD = on stops the frequency sweep, and resetting HLD = off
resumes it. Other functions are identical.

It is possible to terminate the identification experiment prematurely in case of neces-
sity by the input BRK = on. If the two points of frequency response are already identified
at that moment, the controller parameters are designed in a standard way. Otherwise
the controller design cannot be performed and the identification error is indicated by the
output signal IDE = on.

During the actual "identification and design" process:

e the output TBSY is set to 1. After completion, it is reset to 0.

o If the controller design is error-free, the output IDE = off and the output iIDE
indicates the individual phases of the identification experiment:
— Approaching the first point is iIDE = —1,
— stopping at the first point 1IDE = 1,
— approaching the second point is 1IDE = —2,
— stopping at the second point 1IDE = 2, and

the final phase after stopping at the second point is 1IDE = —3.

o If the identification ends with an error, then IDE = on and the number on the
output iIDE specifies the corresponding error. See the description of the iIDE
parameter below.

The computed state controller parameters are taken over by the control algorithm
as soon as the SETC input is set to 1 (i.e. immediately if SETC is constantly set to on).
The identified model and controller parameters can be obtained from the p1, p2, ..., p6
outputs after setting the ips input to the appropriate value. For individual ips values,
the parameters have the following meanings:

e 0: Two points of frequency response

— pl ...frequency of the 1st measured point in rad/s

— p2 ...real part of the 1st point

257

— p3 ...imaginary part of the 1st point

— p4 ...frequency of the 2nd measured point in rad/s
— p5 ...real part of the 2nd point

— p6 ...imaginary part of the 2nd point

e 1: Second order model in the form (7.5)

— pl...b; parameter
— p2 ...by parameter
— p3 ...a1 parameter

— p4 ...qp parameter
e 2: Second order model in the form (7.6)

— pl ... Ko parameter

— p2 ...7 parameter

— p3 ...Q parameter in rad/s
— p4 ...¢ parameter

— p5 ...8 parameter in Hz

— p6 ...resonance frequency in Hz
e 3: State feedback parameters

— pl ... f1 parameter
— p2 ... fo parameter
— p3 ... f3 parameter
— p4 ... f4 parameter

— p5 ... f5 parameter

After a successful identification it is possible to generate the frequency response of the
controlled system model, which is initiated by a rising edge at the MFR input. The fre-
quency response can be read from the w, xre and xim outputs, which allows easy con-
frontation of the model and the measured data.

Controller

The "Controller mode" (binary input ID = off) has manual (MAN = on) and automatic
(MAN = off) submodes. After a cold start of the block with the input ID = off it is
assumed that the block parameters mbO, mbl, ma0 and mal reflect formerly identified
coefficients by, b1, ap and a; of the controlled system transfer function and the state
controller design is performed automatically. Moreover if the controller is in the automatic
mode and SETC = on, then the control law uses the parameters from the very beginning.
In this way the identification phase can be skipped when starting the block repeatedly.

258 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

MAN=0

b1.s+b0 | pv=y
s2+al.s+a0
PROCESS

wb,wf,cp x1=sinwt

x2=coswt

GEN_SIN

controller
design

estimate estimate
F(w) b0,b1,a0,a1

w xre xim
RCN_SIN

p1 p2 p3 p4 p5 p6

4
y* ;C‘ eps
»

The diagram above is a simplified inner structure of the frequency autotuning part
of the controller. The diagram below shows the state feedback, observer and integrator
anti-wind-up. The diagram does not show the fact, that the controller design block
automatically adjusts the observer and state feedback parameters £1, £2, ..., £5 after
identification experiment (and SETC = on).

1

mv >—4:|_' ”
observer {
v2h + dv
v > 12
sp > +
I S g LR)

P 4

I

v4

»| disturb.
Ll
model

The controlled system is assumed in the form of (7.4). Another forms of this transfer
function are

and)
F(S) . K()Q (TS + 1) (76)

824 26Qs + 027
The coefficients of these transfer functions can be found at the outputs p1,...,p6 after the

identification experiment (TBSY = off). The output signals meaning is switched when a
change occurs at the ips input.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

dv
sp
pv
tv
hv
MAN

ID

TUNE
HLD
BRK
SETC

ips

MFR

Parameter

ubias
uamp
wb

wf

isweep

cp
iavg
alpha
xi
MANF

phil

Feedforward control variable
Setpoint variable

Process variable

Tracking variable

Manual value

Manual or automatic mode

off ... Automatic mode
on Manual mode
Identification or controller operating mode
off ... Controller mode
on Identification and design mode

Start the tuning experiment
Stop frequency sweeping
Termination signal

Accept and set the controller parameters
off ... Parameters are only computed
on Parameters are accepted as soon as computed

off->on One-shot confirmation of the computed parameters

Meaning of the output signals
0 Two points of frequency response
1 ..., Second order model (general)
2 ... Second order model (frequency)
3 ... State feedback parameters

Model frequency response generation

Static component of the exciting signal

Amplitude of the exciting signal ®1.0
Frequency interval lower limit [rad/s] ©1.0
Frequency interval upper limit [rad/s] ©10.0
Frequency sweeping mode ©1

1 ... Logarithmic

2 ... Linear

3 ... Combined
Sweeping rate 10.571.0 ©0.995
Number of values for averaging ®10
Relative positioning of the observer poles (ident.) ©2.0
Observer damping coefficient (ident.) ©0.707

Manual frequency response points selection
off ... Disabled
on Enabled

Phase delay of the 1st point [degrees] ©-60.0

259

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)
Bool

Bool

Bool
Bool
Bool
Bool

Long (I32)

Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Long (I32)

Double (F64)
Long (I32)
Double (F64)
Double (F64)
Bool

Double (F64)

260

ph2
stime
ralpha
rxi
aclil
xicll
INTGF

apcl
DISF

dom
dxi
acl?2
xicl2
tt
hilim
lolim
mbilp
mbOp
malp
malp

Output

mv
de
SAT

TBSY

xre
xim
epv
IDE

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Phase delay of the 2nd point [degrees] (-120.0
Settling period [s] ©10.0
Relative positioning of the observer poles 4.0
Observer damping coefficient ©0.707
Relative positioning of the 1st CL poles couple 1.0
Damping of the 1st closed-loop poles couple ®0.707
Integrator flag ®on

off ... State-space model without integrator

on Integrator included in the state-space model
Relative position of the real pole 1.0
Disturbance flag

off ... State space model without disturbance model

on Disturbance model is included in the state space

model

Disturbance model natural frequency [rad/s] ®1.0
Disturbance model damping coefficient
Relative positioning of the 2nd CL poles couple 2.0
Damping of the 2nd closed-loop poles couple ©0.707
Tracking time constant 1.0
Upper limit of the controller output 1.0
Lower limit of the controller output ®-1.0
Controlled system transfer function coefficient bl
Controlled system transfer function coefficient b0 1.0
Controlled system transfer function coefficient al 0.2
Controlled system transfer function coefficient a0 1.0

Manipulated variable (controller output)
Deviation error
Saturation flag

off ... The controller implements a linear control law
on The controller output is saturated

Tuner busy flag
off ... Identification not running
on Identification in progress

Frequency response point estimate - frequency [rad/s]
Frequency response point estimate - real part
Frequency response point estimate - imaginary part
Reconstructed pv signal
Identification error indicator

off ... Identification successful

on Identification error occurred

Double
Double
Double
Double
Double
Double
Bool

Double
Bool

Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double

Double
Double
Bool

Bool

Double
Double
Double
Double
Bool

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

(F64)
(F64)

(F64)
(F64)
(F64)
(F64)

261

iIDE Error code Long (I32)
101 ... Sampling period too low
102 ... Error identifying frequency response point(s)
103 ... Output saturation occurred during experiment
104 ... Invalid process model

pl..p6 Results of identification and design phase Double (F64)

262 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

SCU — Step controller with position feedback

Block Symbol Licence: STANDARD

Function Description

The SCU block implements the secondary (inner) position controller of the step controller
loop. PIDU function block or some of the derived function blocks (PIDMA, etc.) is assumed
as the primary controller.

The SCU block processes the control deviation sp — pv by a three state element with
parameters (thresholds) thron and throff (see the TSE block, use parameters ep =
thron, epoff = throff, en = -thron and enoff = -throff). The trun parameter
specifies the time it takes for the motor position to change by one unit. The parameter
RACT determines whether the UP or DN pulse is generated for positive or negative value
of the controller deviation. Two pulse outputs of the three state element are further
shaped so that minimum pulse duration dtime and minimum pulse break time btime
are guaranteed at the block UP and DN outputs. If signals from high and low limit switches
of the valve are available, they should be connected to the HS and LS inputs.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment /decrement request by the mdv input. In this case the request must be confirmed
by a rising edge (off—on) in the DVC input signal.

The control function of the SCU block is quite clear from the following diagram.

NOT uUP
NoT o _,_

263

The complete structure of the three-state step controller is depicted in the following

figure.
Position Feedback Signal
Setpoint v mv l p Process Value
P pv UP—plup ¥ ’D’ y
——P{pv dmv HS HS MDL
L P! tv —p» LS Process
hv de MUP DN—»DN | o
MAN MDN
IH SAT mdv MVD
MAN/AUT DVC dep Motorized
Valve Drive PIDU | P{MAN Valve Drive
SCU
Optional Connections

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

sp
PV
HS
LS
MUP
MDN
mdv
DVC
MAN

Parameter

thron
throff
dtime
btime
RACT

trun

Setpoint (output of the primary controller)
Controlled variable (valve position)

Upper end switch

Lower end switch

Manual UP signal

Manual DN signal

Manual differential value

Differential value change command
Manual or automatic mode

off ... Automatic mode
on Manual mode

Switch-on value 10.0 ®0.02
Switch-off value 10.0 ®0.01
Minimum width of the output pulse [s] 10.0 ®0.1
Minimum delay between output pulses [s] 10.0 ®0.1

Reverse action flag
off ... Higher mv -> higher pv
on Higher mv -> lower pv

Motor time constant 40.0 ®10.0

Double (F64)
Double (F64)
Bool
Bool
Bool
Bool
Double (F64)
Bool
Bool

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Bool

Double (F64)

264 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Output
UP The UP signal (up, more) Bool
DN The DOWN signal (down, less) Bool

de Deviation error Double (F64)

265

SCUV — Step controller unit with velocity input

Block Symbol Licence: STANDARD

mv
dmv uP

MDIE’I pos

DVC
MAN MR

SCuv

Function Description

The block SCUV substitutes the secondary position controller SCU in the step controller
loop when the position signal is not available. The primary controller PIDU (or some of
the derived function blocks) is connected with the block SCUV using the block inputs mv,
dmv and SAT.

If the primary controller uses PI or PID control law (CWOI = off), then all three
inputs mv, dmv and SAT of the block SCUV are sequentially processed by the special
integration algorithm and by the three state element with parameters thron and throff
(see the TSE block, use parameters ep = thron, epoff = throff, en = -thron and
enoff = -throff). Pulse outputs of the three state element are further shaped in such
a way that the minimum pulse duration time dtime and minimum pulse break time
btime are guaranteed at the block outputs UP and DN. The parameter RACT determines
the direction of motor moving. Note, the velocity output of the primary controller is
reconstructed from input signals mv and dmv. Moreover, if the deviation error of the
primary controller with icotype = 4 (working in automatic mode) is less than its dead
zone (SAT = on), then the output of the corresponding internal integrator is set to zero.

The position pos of the valve is estimated by an integrator with the time constant
trun. If signals from high and low limit switches of the valve are available, they should
be connected to the inputs HS and LS.

If the primary controller uses P or PD control law (CWOI = on), then the deviation
error of the primary controller can be eliminated by the bias ub manually. In this case,
the control algorithm is slightly modified, the position of the motor pos is used and the
proper settings of thron, throff and the tracking time constant tt are necessary for the
suppressing of up/down pulses in the steady state.

There is also a group of input signals for manual control available. The manual
mode is activated by the MAN = on input signal. Then it is possible to move the motor
back and forth by the MUP and MDN input signals. It is also possible to specify a position
increment /decrement request by the mdv input. In this case the request must be confirmed
by a rising edge (off—on) in the DVC input signal.

266 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

The overall control function of the SCUV block is obvious from the following diagram:

NOT uP
¥ 5| Ano (T
I | D
H » NOT =AND Dg 2
A
OR
1? Y Yo
cwol
1
< 1
> —— 0
e 1 i 0
=t e, S
e Toe<o
0
C)MUP
. OR pos
@MDN »(3
o mdv. MR
G i

TT)MAN

The complete structures of the three-state controllers are depicted in the following
figures:

Primary controller with integration: |, PI, PID

Optional Connections
Setpoint dv mvi— Process Value
»
;S)s dmv : anvv up P UP Y g
P tv ub Hs] MDL
hv de SAT »loN Process
> MAN J —P| HS Ls —
IH SAT LS
MVD
) PIDU MUP s Motori
Valve Drive (icotype=4) MDN otonzgd
MAN/AUT mdv Valve Drive
P DVC MR
MAN
SCuV
(CWOI=0)

Primary controller without integration: P, PD

Optional Connections

Setpoint v mv l I Process Value
sp ™o url—p{up Y Uy
pv dmvH dmv MDL
P tv ub) Pr
hv de SAT pN|—|DN ocess
MAN —PHS o s—
lIH SAT » k/lsup MVD
PIDU MDN P©S Motorized
Manual Bias (icotype=4) mdv Valve Drive
DvC MR
Valve Dri ’_' MAN
alve Drive SCuUV
MAN/AUT (CWOI=1)

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

mv

ub
SAT
HS
LS
MUP
MDN
mdv
DVC
MAN

Parameter

thron
throff
dtime
btime
RACT

trun
CwoI

tt

Output

UP
DN
pos
MR

Manipulated variable (controller output)
Controller velocity output (difference)
Bias (only for P or PD primary controller)
Internal integrator reset

Upper end switch

Lower end switch

Manual UP signal

Manual DN signal

Manual differential value
Differential value change command
Manual or automatic mode

off ... Automatic mode
on Manual mode

Switch-on value
Switch-off value
Minimum width of the output pulse [s]
Minimum delay between output pulses [s]
Reverse action flag

off ... Higher mv -> higher pv

on Higher mv -> lower pv
Motor time constant
Controller without integration flag

off ... Controller with integrator (I, PI, PID)
on Controller without integrator (P, PD)

Tracking time constant

The UP signal (up, more)

The DOWN signal (down, less)
Position output of motor simulator
Request to move the motor

off ... Motor idle (UP=off and DN=off)
on Request to move (UP=on or DN=on)

10.0 ®0.02
10.0 ®0.01
10.0 ®0.1
10.0 ®0.1

10.0 ®10.0

10.0 ®1.0

Double
Double
Double
Bool
Bool
Bool
Bool
Bool
Double
Bool
Bool

Double
Double
Double
Double
Bool

Double
Bool

Double

Bool
Bool
Double
Bool

267

(F64)
(F64)
(F64)

(F64)

(Fe4)
(F64)
(F64)
(F64)

(F64)

(F64)

(Fe4)

268 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

SELU — Controller selector unit

Block Symbol Licence: STANDARD

Function Description

The SELU block is tailored for selecting the active controller in selector control. It chooses
one of the input signals ul, u2, u3, u4 and copies it to the output y. For BINF = off the
active signal is selected by the iSW input. In the case of BINF = on the selection is based
on the binary inputs SW1 and SW2 according to the following table:

iSW SWl Sw2 y U1 U2 U3 U4
off off ul off on on on
off on u2 on off on on
on off u3 on on off on
on on u4 on on on off

w N = O

This table also explains the meaning of the binary outputs U1, U2, U3 and U4, which
are used by the inactive controllers in selector control for tracking purposes (via the SWU
blocks).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul..u4d Analog input of the block Double (F64)
isw Active signal selector Long (I32)
Swi Binary signal selector Bool
Sw2 Binary signal selector Bool
Parameter
BINF Enable the binary selectors Bool

off ... Disabled (analog selector)
on Enabled (binary selectors)

269

Output

y The selected input signal Double (F64)
Ul..U4 Binary output signal for selector control Bool

270 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

SMHCC — Sliding mode heating/cooling controller

Block Symbol Licence: ADVANCED

s mve

de

pv S

S

hv L oK

t_pv

g

Function Description

The sliding mode heating/cooling controller SMHCC is a novel high quality control al-
gorithm intended for temperature control of heating-cooling (possibly asymmetrical)
processes with ON-OFF heaters and/or ON-OFF coolers. The plastic extruder is a typ-
ical example of such process. However, it can also be applied to many similar cases, for
example in thermal systems where a conventional thermostat is employed. To provide
the proper control function the block SMHCC must be combined with the block PWM (Pulse
Width Modulation) as depicted in the following figure.

upP

heater_contactor

o > b ov—# coner comapor]
de PWM

process_temperature pv S isv
t_ukp
t_ukm
oo LUk
t pv
- t_dpv
MAN_AUT_switch MAN 4 'g5hy

It is important to note that the block SMHCC works with several time periods. The
first period Tg is the sampling time of the process temperature, and this period is
equal to the period with which the block SMHCC itself is executed. The second period
Te = tpwmeTs 1s the control period with which the block SMHCC generates manipulated
variable. This period T¢ is also equal to the cycle time of PWM block. At every instant
when the manipulated variable mv is changed by SMHCC the PWM algorithm recalculates
the width of the output pulse and starts a new PWM cycle. The time resolution Tx of the
PWM block is third time period involved with. This period is equal to the period with which
the block PWM is run and generally may be different from Ts. To achieve the high quality
of control it is recommended to choose T as minimal as possible (ipymc as maximal as
possible), the ratio T /Ts as maximal as possible but T should be sufficiently small
with respect to the process dynamics. An example of reasonable values for an extruder
temperature control is as follows:

Ts = 0.1, ipwme = 100, Te = 10s, Tk = 0.01s.

The control law of the block SMHCC in automatic mode (MAN = off) is based on the dis-
crete dynamic sliding mode control technique and special 3rd order filters for estimation

271

of the first and second derivatives of the control error.
The first control stage, after a setpoint change or upset, is the reaching phase when
the dynamic sliding variable

Sk é ér + 2£0€é + QQGk

is forced to zero. In the above definition of the sliding variable, eg, éx, €, denote the
filtered deviation error (pv—sp) and its first and second derivatives in the control period
k, respectively, and &, are the control parameters described below. In the second phase,
sk is hold at the zero value (the sliding phase) by the proper control "bangs". Here, the
heating action is alternated by cooling action and wice versa rapidly. The amplitudes of
control actions are adapted appropriately to guarantee sy = 0 approximately. Thus, the
hypothetical continuous dynamic sliding variable

s 2642006+ 0%

is approximately equal to zero at any time. Therefore the control deviation behaves
according to the second order differential equation

s2 642006+ Q% =0

describing so called zero sliding dynamics. From it follows that the evolution of e can
be prescribed by the parameters & and). For stable behavior, it must hold £ > 0 and
Q > 0. A typical optimal value of £ ranges in the interval [0.1,8] and £ about 6 is often
a satisfactory value. The optimal value of {2 strongly depends on the controlled process.
The slower processes the lower optimal €2. The recommended value of for start of
tuning is 7/(5T¢).

The manipulated variable mv usually ranges in the interval [—1, 1]. The positive (nega-
tive) value corresponds to heating (cooling). For example, mv = 1 means the full heating.
The limits of mv can be reduced when needed by the controller parameters hilim_p
and hilim_m. This reduction is probably necessary when the asymmetry between heat-
ing and cooling is significant. For example, if in the working zone the cooling is much
more aggressive than heating, then these parameters should be set as hilim_p = 1 and
hilim_m < 1. If we want to apply such limitation only in some time interval after a
change of setpoint (during the transient response) then it is necessary to set initial value
of the heating (cooling) action amplitude uO_p (u0O_m) to the suitable value less than
hilim_p (hilim_m). Otherwise set uO_p = hilim_p and uO_m = hilim_m.

The current amplitudes of heating and cooling uk_p, uk_m, respectively, are automat-
ically adapted by the special algorithm to achieve so called quasi sliding mode, where the
sign of s alternately changes its value. In such a case the controller output isv alternates
the values 1 and —1. The rate of adaptation of the heating (cooling) amplitude is given
by the time constant taup (taum). Both of these time constants have to be sufficiently
high to provide the proper function of adaptation but the fine tuning is not necessary.
Note for completeness that the manipulated variable mv is determined from the action
amplitudes uk_p, uk_m by the following expression

if (sk<0.0) then mv=t_ukp else mv= —t_ukm.

272 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Further, it is important to note that quasi sliding is seldom achievable because of a
process dead time or disturbances. The suitable indicator of the quality of sliding is
again the output isv. If the extraordinary fine tuning is required then it may be tried
to find the better value for the bandwidth parameter beta of derivative filter, otherwise
the default value 0.1 is preferred.

In the manual mode (MAN = on) the controller input hv is (after limitation to the
range [—~hilim_m,hilim_p]) copied to the manipulated variable mv. The controller output
mve provides the equivalent amplitude-modulated value of the manipulated variable mv
for informative purposes. The output mve is obtained by the first order filter with the
time constant tauf applied to mv.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool
off ... Automatic mode
on Manual mode
Parameter
ipwmc PWM cycle (in sampling periods of the block) (100 Long (I32)
xi Relative damping of sliding zero dynamics ©1.0 Double (F64)
om Natural frequency of sliding zero dynamics ©®0.01 Double (F64)
taup Time constant for adaptation - heating [s] ®700.0 Double (F64)
taum Time constant for adaptation - cooling [s] (©400.0 Double (F64)
beta Bandwidth parameter of the derivative filter ®0.01 Double (F64)
hilim_p Upper limit of the heating action amplitude ©®1.0 Double (F64)
hilim m Upper limit of the cooling action amplitude ®1.0 Double (F64)
u0_p Initial amplitude - heating action ®1.0 Double (F64)
u0_m Initial amplitude - cooling action ®1.0 Double (F64)
sp_dif Setpoint difference threshold ©10.0 Double (F64)
tauf Equivalent manipulated variable filter time constant ~ ©400.0 Double (F64)
Output
mv Manipulated variable (controller output) Double (F64)
mve Equivalent manipulated variable Double (F64)
de Deviation error Double (F64)
SAT Saturation flag Bool
off ... The controller implements a linear control law

on The controller output is saturated

isv
t_ukp
t_ukm
t_sk
t_pv
t_dpv

t_d2pv

Number of sliding variable steps

Current amplitude of heating

Current amplitude of cooling

Discrete dynamic sliding variable

Filtered process variable

Filtered first derivative of process variable
Filtered second derivative of process variable

273

Long (I32)

Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)
Double (F64)

274 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

SMHCCA — Sliding mode heating/cooling controller with auto-
tuner

Block Symbol Licence: AUTOTUNING

sp mv
mve

pv de
SAT

t_ukm

MAN t s
t_pv

TMODE L‘Egg:/’
TBSY

TUNE TE
ite

TBRK g;
p3

TAFF pd
p5

ips p6

SMHCCA

Function Description

The functional block SMHCCA (Sliding Mode Heating/Cooling Controller with Autotuner)
is a high-quality control algorithm with a built-in autotuner for automatic tuning of the
controller parameters. The controller is an eagily adjustable controller for quality control
of thermal systems with two-state (ON-OFF) heating and two-state (ON-OFF) cooling.
A classic example of such systems is the plastic extruder. However, it can of course also
be deployed on other systems where conventional thermostats are commonly used so far.
To ensure proper function, the SMHCCA block must be supplemented by the PWM block
(Pulse Width Modulation), as is evident from the following figure.

[setpoint] pey . ; up heater_contactor]
mve DN [cooler_contactor]
[process_temperature] pv de
SAT| PWM
isv/
[hand_value] hv ukp
t_ukm
MAN_AUT_switch] MAN tsk
[MAN_AUT L
tpv
t_dpv
[tuning_mode] TMODE td2pv
TBSY
[start_of_tuning] TUNE TE
ite
[tuning_break] TBRK g;
p3
[affirmation_of_parameters] TAFF p4
p5
selection_of parameter_sef ips
lection_of ter_sol it

SMHCCA

Operating Principles

It’s important to realize that the SMHCCA block operates with several time periods. The
first period Tg is the sampling period of the measured temperature and is also equal to
the period with which the SMHCCA controller block is executed. The second period T =
ipwmels 1s the control period with which the SMHCCA block generates the manipulated
variable. This period T¢ is identical to the cycle period of the PWM block. At every instant

275

when the manipulated variable mv of the SMHCCA block changes, the PWM block algorithm
recalculates the pulse width and starts a new PWM cycle. The third period that needs
to be set is the triggering period Tr of the PWM block. Generally, Tr may be different
from Ts. To achieve the best control quality, it is recommended to set the period Ts to
the minimum possible value (ipyme to the maximum possible value), the ratio Te/Ts
maximum, but T should be sufficiently small with respect to the process dynamics. For
applications in the plastics industry, the following values are recommended:

Ts = 0.1, ipwme = 50, T = 5s, Tr = 0.1s.

Note, however, that for a faster controlled system, the sampling periods Tg, T, and
Tr must be shortened! More precisely, the three minimum time constants of the process
are important for selecting these time periods (all real thermal processes have at least
three time constants). For example, the sampling period T's = 0.1 is sufficiently short for
such processes that have at least three time constants, the minimal of them is greater
than 10s and the maximal is greater than 100s. For the proper function of the controller,
it is necessary that these time parameters are suitably chosen by the user according
to the current dynamics of the process! If SMHCCA is implemented on a processor with
floating-point arithmetic, then the accurate setting of the sampling periods Ts, T¢, Tr
and the parameter beta is critical for the correct function of the controller. Also, some
other parameters with the clear meaning described below have to be chosen manually.
All the remaining parameters (xi, om, taup, taum, tauf) can be set automatically by the
built-in autotuner.

Automatic Tuning Mode

The autotuner uses two methods for this purpose:

e The first one is intended for situations where the process asymmetry is not too
large (approximately, this means that the gain ratio of heating/cooling or cool-
ing/heating is less than 5).

e The second method provides tuning support for strongly asymmetric processes
and is not yet implemented (So far, this method has been developed and tested in
Simulink only).

Despite the fact that the first method of tuning is based only on the heating mode,
the resulting parameters are usually satisfactory for both heating and cooling modes due
to the strong robustness of sliding mode control. The tuning procedure is very quick and
can be completed during the normal rise time of the process temperature from a cold
state to the setpoint usually without any delay or degradation of control performance.
Thus, the tuning procedure can be included in every start-up from a cold state to a
working point specified by a sufficiently high temperature.

Now, the implemented procedure will be described in detail:

e The tuning procedure begins in tuning mode or in manual mode. If the tuning
mode (TMODE = on) is selected, the manipulated variable mv is automatically set to

276

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

zero, and the output TBSY is set to on to indicate the tuning phase of the controller.
The cold state of the process is preserved until a rising edge off—on is indicated
at the TUNE input.

After some time (dependent on beta), when the noise amplitude is estimated,
heating is turned on with the amplitude given by the ut_p parameter. The process
temperature pv and its two derivatives (outputs t_pv, t_dpv, t_d2pv) are observed
to obtain the optimal controller parameters.

If the tuning procedure ends without errors, then TBSY is set to off, and the
controller begins to operate in manual or automatic mode according to the MAN
input. If MAN = off and the confirmation input TAFF is set to on, then the controller
begins to operate in automatic mode with the new set of parameters provided by
tuning (if TAFF = off, then the new parameters are only displayed on the outputs

pl..p6).

If an error occurs during tuning, then the tuning procedure stops immediately or
stops after the condition pv>sp is met, the output TE is set to on, and ite indicates
the type of error. Also in this case, the controller begins to operate in the mode
determined by the MAN input. If MAN = off, then it operates in automatic mode
with the original parameters before tuning!

Tuning errors are usually caused by either inappropriate setting of the beta pa-
rameter or too low a value of sp. The suitable value of beta ranges in the interval
(0.001,0.1). If drift and noise in pv are large, a small beta value must be chosen,
especially for the tuning phase. The default value (beta=0.01) should work well
for extruder applications. The correct value gives properly filtered signal of the
second derivative of the process temperature t_d2pv. This well-filtered signal (cor-
responding to the low value of beta) is mainly necessary for proper tuning. For
control, the parameter beta can sometimes be slightly increased.

The tuning procedure can also be started from manual mode (MAN = off) with any
constant value of the hv input. However, a steady state must be ensured in this
case. Again, tuning is initiated by an upward edge at the TUNE input, and after
tuning stops, the controller continues in manual mode. In both cases, the resulting
parameters appear on the outputs p1,...,p6.

For individual ips values, the parameters p1,...,p6 have the following meanings:

e 0: Controller parameters

— pl ... recommended control period T¢
—p2... xi

— p3... om

— p4 ... taup

— pb5 ... taum

277

— p6 ... tauf
e 1: Auxiliary parameters

— pl ... htp2 — time of the peak in the second derivative of pv
— p2 ... hpeak2 — peak value in the second derivative of pv

— p3 ... d2 — peak to peak amplitude of t_d2pv

— p4 ... tgain

TMODE

-/ N\ .
BUSY / \
/\/\,'\

TUNE [~ 7T T TN R

Automatic mod Tuning phase Automatic mode

pl - p6 / new parameters /

TUNE T TTTTTTTTmmtommssmmssomm-oo----

BUSY / \
. o .

o | \

Manual mode : Tuning phase Manual mode

A

el N
<

pl - p6 : / new parameters /

278 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Automatic mode

The control law of the SMHCCA block in automatic mode (MAN=off) is based on the
discrete dynamic sliding mode control technique and employs a special third-order filter
for estimating the first and second derivatives of the control error.

After a setpoint change or upset, the controller enters the first phase, the reaching
phase, where the discrete sliding variable

Sk é ék + QfQék + Q2€k

is forced to zero. In this definition, ey, ég, € denote the filtered deviation error (pv—sp),
its first and second derivatives at time k, respectively. The parameters & and €2 are
described below. In the second phase, the quasi sliding mode, the variable si is kept near
zero value through appropriate control actions, alternating between heating and cooling
modes. The amplitudes for heating and cooling are adapted to approximately achieve
s = 0. Consequently, the hypothetical continuous sliding variable

s 2842006 + 0%

remains approximately zero at all times. In other words, the control deviation e is de-
scribed by a second-order differential equation

s 264 260¢ + Q% = 0.

This implies that the evolution of e can be influenced by choosing the parameters &
and 2. Note that for stable behavior, it is required that £ > 0 and > 0. The typical
optimal value of & lies in the range [0.1, 8]. The optimal value of 2 is strongly dependent
on the controlled process; slower processes have a lower optimal €2, and faster ones have
a higher. The recommended value of € for the start of tuning parameters is 7/(57¢).

The manipulated variable mv typically ranges from [—1,1]. A positive value corre-
sponds to heating, a negative to cooling, e.g., mv = 1 means full heating. The limits on
mv can be set by the parameters hilim_p and hilim_m. This limitation may be neces-
sary when there is a significant asymmetry between heating and cooling. For example,
if cooling is much more aggressive than heating in the working zone, it is appropriate
to set hilim_p = 1 and hilim_m < 1. If such limitation is only to be applied in some
time interval after a change of setpoint (during the transient response), the initial val-
ues of the heating (cooling) action amplitude uO_p and uO_m should be set such that
u0_p < hilim_p and u0_m < hilim_m.

The amplitudes of heating and cooling variables t_ukp and t_ukm, respectively, are
automatically adapted by a special algorithm to achieve a quasi-sliding mode, where
the signs of sk alternate at each step. In this case, the controller output isv switches
between 1 and —1. The rate of adaptation of heating and cooling amplitudes is given by
the time constants taup and taum. Both of these time constants must be sufficiently large
to ensure the proper functioning of adaptation, but fine-tuning is not essential for the

279

final quality of regulation. For completeness, mv is determined based on the amplitudes
t_ukp and t_ukm according to the following expression:

if (sk < 0.0) then mv = t_ukp else mv = —t_ukm.

It is also worth mentioning that achieving quasi-sliding mode occurs very rarely because
controlled processes contain transport delays and are subject to disturbances. A suitable
indicator of the quality of sliding is again the output isv. For fine-tuning, it may be
possible in exceptional cases to use the beta parameter defining the bandwidth of the
derivative filter. In most cases, however, the preset value beta = 0.1 suffices. In manual
mode (MAN = on), the controller input hv is copied (after possible limitation by saturation
limits [~hilim_m hilim_p|) to the output mv.

Manual mode

In the manual mode (MAN = on) the controller input hv is (after limitation to the range
[~hilim_m hilim_p|) copied to the manipulated variable mv. The controller output mve
provides the equivalent amplitude-modulated value of the manipulated variable mv for
informative purposes. The output mve is obtained by the first order filter with the time
constant tauf applied to mv.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
sp Setpoint variable Double (F64)
pv Process variable Double (F64)
hv Manual value Double (F64)
MAN Manual or automatic mode Bool
off ... Automatic mode
on Manual mode
TMODE Tuning mode Bool
TUNE Start the tuning experiment Bool
TBRK Stop the tuning experiment Bool
TAFF Tuning affirmation Bool
off ... Parameters are only computed
on Parameters are set into the control law
ips Meaning of the output signals Long (I32)
0o Controller parameters
1..... Auxiliary parameters
Parameter
ipwmc PWM cycle (in sampling periods of the block) ®100 Long (I32)
xi Relative damping of sliding zero dynamics 40.518.0 ©®1.0 Double (F64)

om Natural frequency of sliding zero dynamics J0.0 ©®0.01 Double (F64)

280

taup
taum
beta
hilim_p
hilim m
uO_p
u0_m
sp_dif
tauf

itm

ut_p

ut_m

Output

mv
mve
de

SAT

isv
t_ukp
t_ukm
t_sk
t_pv
t_dpv
t_d2pv
TBSY
TE

ite

pl..p6

CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

Time constant for adaptation - heating [s] ©700.0
Time constant for adaptation - cooling [s] ©400.0
Bandwidth parameter of the derivative filter ©0.01
Upper limit of the heating action amplitude 0.0 11.0 ®1.0
Upper limit of the cooling action amplitude 0.0 71.0 ®1.0
Initial amplitude - heating action ©1.0
Initial amplitude - cooling action ®1.0
Setpoint difference threshold ©10.0
Equivalent manipulated variable filter time constant ~ ©400.0
Tuning method o1

1 ..., Restricted to symmetrical processes

2 ... Asymmetrical processes (not implemented yet)

Amplitude of heating for tuning experiment 0.0 71.0 ®1.0
Amplitude of cooling for tuning experiment 0.0 71.0 ®1.0

Manipulated variable (controller output)

Equivalent manipulated variable

Deviation error

Saturation flag
off ... The controller implements a linear control law
on The controller output is saturated

Number of sliding variable steps

Current amplitude of heating

Current amplitude of cooling

Discrete dynamic sliding variable

Filtered process variable

Filtered first derivative of process variable
Filtered second derivative of process variable

Tuner busy flag
Tuning error
off ... Autotuning successful
on An error occurred during the experiment
Error code
0 No error
1 ..., Too noisy pv, check the temperature input
2 ... Incorrect parameter ut_p
3 ... Setpoint too low
4 Sampling frequency too low or 2nd derivative of pv
t0o noisy
5 Premature termination of the tuning procedure

Results of identification and design phase

Double
Double
Double
Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Double
Double

Double
Double
Double
Bool

(F64)
(F64)

(F64)
(F64)
(F64)

Long (I32)

Double
Double
Double
Double
Double
Double
Bool

Bool

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Long (I32)

Double

(F64)

281

SWU — Switch unit

Block Symbol Licence: STANDARD

uc

OR1
OR2 Y

OR4
sSwu

Function Description

The SWU block is used to select the appropriate signal which should be tracked by the
inactive PIDU and MCU units in complex control structures. The input signal uc is copied
to the output y when all the binary inputs OR1, ..., OR4 are off, otherwise the output
y takes over the uo input signal.

This block propagates the signal quality. More information can be found in the 1.4

section.

Input
uc Signal valid for all ORi=0 Double (F64)
uo Signal valid for any ORi=1 Double (F64)
OR1..0R4 Logical output of the block Bool

Output

y Analog output of the block Double (F64)

282 CHAPTER 7. REG - FUNCTION BLOCKS FOR CONTROL

TSE — Three-state element

Block Symbol Licence: STANDARD

uPp
Y DNp

TSE
Function Description

The TSE block transforms the analog input u to a three-state signal ("up", "idle" and
"down") according to the diagram below.

up

epoff ep u

DN

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
Parameter
ep UP switch on value ®1.0 Double (F64)
en DN switch on value ©®-1.0 Double (F64)
epoff UP switch off value ©®0.5 Double (F64)
enoff DN switch off value ©-0.5 Double (F64)
Output
UP The UP signal (up, more) Bool

DN The DOWN signal (down, less) Bool

Chapter 8

LOGIC — Logic control

Contents
AND — Logical product of two signals« v v v v v v v v v v v 284
ANDQUAD, ANDOCT, ANDHEXD — Multi-input logical product 285
ATMT — Finite-state automaton 286
BDOCT, BDHEXD — Bitwise demultiplexers 288
BITOP — Bitwise operation ¢ v ¢ v v v v v v v v v v v v v w. 289
BMOCT, BMHEXD — Bitwise multiplexers 290
COUNT — Controlled counter ¢ v v vt v v v v v v v oo 291
EATMT — Extended finite-state automaton 293
EDGE — Falling/rising edge detection in a binary signal 296
EQ — Equivalence two signals . . . + v v v v vt v v b b e i e e e e e 297
INTSM — Integer number bit shift and mask 298
ISSW — Simple switch for integer signals 299
ITOI — Transformation of integer and binary numbers 300
NOT — Boolean complementation . . « « « v v v v v v v v v o 0 v o v 301
OR — Logical sumof two signals v v v v v v v v v v v v oo 302
ORQUAD, OROCT, ORHEXD — Multi-input logical sum 303
RS — Reset-set flip-flop circuit v v v v v v v v v v v v v v v v 304
SR — Set-reset flip-flop circuit 000 305
TIMER — Multipurpose timer 306

The LOGIC library encompasses a range of blocks for executing logical and sequen-
tial operations. It includes basic Boolean blocks like AND, OR, NOT for fundamental logical
and advanced blocks like ATMT for finite state machines. Blocks like COUNT
and TIMER extend functionality to bidirectional pulse counting and time-based opera-
tions. Additional elements like BITOP, BMOCT, and BDOCT offer bitwise operations and
multiplexing /demultiplexing capabilities, enhancing the library’s versatility in handling

operations,

combinational and sequential logic control.

283

284 CHAPTER 8. LOGIC — LOGIC CONTROL

AND — Logical product of two signals

Block Symbol Licence: STANDARD
5% w73

AND

Function Description

The AND block computes the logical product of two input signals Y = U1 AU2. If you need
to work with more input signals, use the ANDQUAD, ANDOCT or ANDHEXD block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
U1 First logical input of the block Bool
U2 Second logical input of the block Bool
Output
Y Output signal, logical product Bool

NY Boolean complementation of Y Bool

285

ANDQUAD, ANDOCT, ANDHEXD — Multi-input logical product

Block Symbols Licence: STANDARD

U1
u2
u3
U4

us Y
ue
u7
us
u1 u9
u2 Y u10
u3 U1
U4 u12

U1 v us U13NY
u2 V() u14
u3 U7 NY u15
U4 NY us u16

ANDQUAD ANDOCT ANDHEXD
Function Description

The ANDQUAD, ANDOCT and ANDHEXD blocks compute the logical product of up to sixteen
input signals U1, U2, ..., U16. The signals listed in the nl parameter are negated prior
to computing the logical product.

For an empty nl parameter a simple logical product Y = UL AU2 AU3AULAUSAUGA
U7 A U8 is computed. For e.g. n1=1,3. .5, the logical function is Y = -U1 AU2 A U3 A
—U4 AU ATUBA...U16.

If you have less than 4/8/16 signals, use the nl parameter to handle the unconnected
inputs. If you have only two input signals, consider using the AND block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U1..U16 Logical input of the block Bool
Parameter

nl List of signals to negate Long (I32)
Output

Y Output signal, logical product Bool

NY Boolean complementation of Y Bool

286 CHAPTER 8. LOGIC — LOGIC CONTROL

ATMT — Finite-state automaton

Block Symbol Licence: STANDARD

R1

Qo
ns0
ser &
Ho 32
€0 g
¢ ¥
€2 g
e g7
ca &
€5 Q9
g alo
& an
& Q2
89, as

Q14
¢ Qs
c12 ksa|
§I% istep
g1 rout

Function Description

The ATMT block implements a finite state machine with at most 16 states and 16 transition
rules.

The current state of the machine 7,7 =0,1,...,15 is indicated by the binary outputs
QO, Q1, ..., Q15. If the state 7 is active, the corresponding output is set to Qi=on. The
current state is also indicated by the ksa output (ksa € {0,1,...,15}).

The transition conditions Cy, k = 0,1,...,15 are activated by the binary inputs CO,
C1, ..., C15. If Ck = on the k-th transition condition is fulfilled. The transition cannot
happen when Ck = off.

The automat function is defined by the following table of transitions:

S1 C1 FS1
S2 C2 FS2
Sn Cn FSn

Each row of this table represents one transition rule. For example the first row
S1 C1 FS1
has the meaning

If (S1 is the current state AND transition condition C1 is fulfilled),
then proceed to the following state F'.S1.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state SO. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The

287

R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the C¢ input signals and the tstep
timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits T'Os for individual states are defined
by the touts array. There is no time limit for the given state when T'O1 is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of the REXYGEN system include also the SFCEditor program.
You can create SFC schemes graphically using this tool. Run this editor from REXYGEN
Studio by clicking the Configure button in the parameter dialog of the ATMT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
R1 Block reset Bool
ns0 Target state forced by the SET input Long (I32)
SET Forced transition to state nsO Bool
HLD Hold Bool
C0..C15 Transition condition Bool
Parameter
morestps Allow multiple transitions in one cycle Bool
off ... Disabled
on Enabled
sfcname Name of special editor data file String
STT State transition table ®[001; 112; 223; 330] Byte (U8)
touts Vector of timeouts Double (F64)
®[1 23456789 10 11 12 13 14 15 16]
Output
Q0..Q15 Active state indicator Bool
ksa Integer code of the active state Long (I32)
tstep Time elapsed since the last state transition Double (F64)
TOUT Timeout flag Bool

288 CHAPTER 8. LOGIC — LOGIC CONTROL

BDOCT, BDHEXD — Bitwise demultiplexers

Block Symbols Licence: STANDARD
YO
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y0]
Y1 Y9
Y2 Y10
iu Y3 Y11
Y4 Y12
Y5 Y13
Y6 Y14
Y7 Y15
BDOCT BDHEXD

Function Description

Both BDOCT and BDHEXD are bitwise demultiplexers for easy decomposition of the input
signal to individual bits. The only difference is the number of outputs, the BDOCT block
has 8 Boolean outputs while the BDHEXD block offers 16-bit decomposition. The output
signals Yi correspond with the individual bits of the input signal iu shifter by shift bits
to the right. The YO output is the least significant bit.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
iu Input signal to be decomposed Long (I32)
Parameter
shift Bit shift of the input signal J0 131 Long (I32)
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 Word (U16)
6 DWord (U32)
10 Large (I64)
Output

Y0..Y15 Individual bit of the input signal Bool

289

BITOP — Bitwise operation

Block Symbol Licence: STANDARD

Function Description

The BITOP block performs bitwise operation il o i2 on the signals i1 and 12, resulting
in an integer output n. The type of operation is selected by the iop parameter described
below. In case of logical negation or 2’s complements the input i2 is ignored (i.e. the
operation is unary).

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
i1 First integer input of the block Long (I32)
i2 Second integer input of the block Long (I32)
Parameter
iop Bitwise operation ®1 Long (I32)
1 ... Bit NOT
2 ... Bit OR
3 ... Bit AND
4 ... Bit XOR
5 Shift Left
6 Shift Right
7T ... 2’s Complement - Byte
8 2’s Complement - Word
9 2’s Complement - Long
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (I16)
4 Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
Output

n Result of the bitwise operation Long (I32)

290 CHAPTER 8. LOGIC — LOGIC CONTROL

BMOCT, BMHEXD — Bitwise multiplexers

Block Symbols Licence: STANDARD
uo
U1
U2
U3
U4
Us
by
uo us VY
u1 U9
U2 u10
us . ut1
us Y u12
us u13
us U14
u7 U15
BMOCT BMHEXD

Function Description

Both BMOCT and BMHEXD are bitwise multiplexers for easy composition of the output
signal from individual bits. The only difference is the number of inputs, the BMOCT block
has 8 Boolean inputs while the BMHEXD block offers 16-bit composition. If the parameter
shift = 0, the individual bits of the output signal iy are directly formed by the input
signals Uz. The UO output is the least significant bit.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
U0. .U15 Individual bit of the output signal Bool
Parameter
shift Bit shift of the output signal J0 131 Long (I32)
vtype Numeric type ®4 Long (I32)
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 Word (U16)
6 DWord (U32)
10 Large (I64)
Output

iy Composed output signal Long (I32)

291

COUNT — Controlled counter

Block Symbol Licence: STANDARD
BZTH SGZ

Function Description

The COUNT block is designed for bidirectional pulse counting — more precisely, counting
rising edges of the UP and DN input signals. When a rising edge occurs at the UP (DN)
input, the cnt output is incremented (decremented) by 1. Simultaneous occurrence of
rising edges at both inputs is indicated by the error output E set to on. The R1 input
resets the counter to 0 and no addition or subtraction is performed unless the R1 input
returns to off again. It is also possible to set the output cnt to the value n0 by the SETH
input. Again, no addition or subtraction is performed unless the SETH input returns to off
again. The R1 input has higher priority than the SETH input. The input HLD = on prevents
both incrementing and decrementing. When the counter reaches the value cnt > nmax,
the Q output is set to on.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
R1 Block reset Bool
n0 Value to set the counter to Long (I32)
SETH Set the counter value Bool
UP Incrementing input signal Bool
DN Decrementing input signal Bool
HLD Counter freeze Bool
off ... Counter is running
on Counter is locked
nmax Counter target value Long (I32)
Output
cnt Total number of pulses Long (I32)
SGN Sign of the cnt output Bool
off ... Less or equal to zero

on Positive value

292 CHAPTER 8. LOGIC — LOGIC CONTROL

Q Counter state Bool
off ... Target value not reached
on Target value reached

E Error indicator Bool
off ... No error

on An error occurred

293

EATMT — Extended finite-state automaton

Block Symbol Licence: ADVANCED
Mo
ser 9
HD ¢
c0 qi
] a
c2 qg
c3 q7
c4 q8
c5 39
% qi0
8 ql1
G a2
c10 918

q14
cl1 15
c12 qksa
gli tstep
ie TOUT
EATMT

Function Description

The EATMT block implements a finite automat with at most 256 states and 256 transition
rules, thus it extends the possibilities of the ATMT block.

The current state of the automat ¢, ¢« = 0,1,...,255 is indicated by individual bits
of the integer outputs q0, qi1, ..., q15. Only a single bit with index ¢ MOD 16 of the
q(i DIV 16) output is set to 1. The remaining bits of that output and the other outputs
are zero. The bits are numbered from zero, least significant bit first. Note that the
DIV and MOD operators denote integer division and remainder after integer division
respectively. The current state is also indicated by the ksa € {0,1,...,255} output.

The transition conditions Cy, k = 0,1,...,255) are activated by individual bits of the
inputs ¢0, c1, ..., c15. The k-th transition condition is fulfilled when the (k MOD 16)-th
bit of the input c(k DIV 16) is equal to 1. The transition cannot happen otherwise.

The BMHEXD or BMOCT bitwise multiplexers can be used for composition of the input
signals c0, c1, ..., c15 from individual Boolean signals. Similarly the output signals q0,
ql, ..., q15 can be decomposed using the BDHEXD or BDOCT bitwise demultiplexers.

The automat function is defined by the following table of transitions:

S1 C1 F&S1
S2 C2 F&S2
Sn Cn FSn

Each row of this table represents one transition rule. For example the first row
S1 C1 FS1

has the meaning

294 CHAPTER 8. LOGIC — LOGIC CONTROL

If (S1 is the current state AND transition condition C1 is fulfilled),
then proceed to the following state F'S1.

The above described meaning of the table row holds for C1 < 1000. Negation of the
(C1 —1000)-th transition condition is assumed for C'1 > 1000.

The above mentioned table can be easily constructed from the automat state diagram
or SFC description (Sequential Function Charts, formerly Grafcet).

The R1 = on input resets the automat to the initial state SO. The SET input allows
manual transition from the current state to the ns0 state when rising edge occurs. The
R1 input overpowers the SET input. The HLD = on input freezes the automat activity,
the automat stays in the current state regardless of the ci input signals and the tstep
timer is not incremented. The TOUT output indicates that the machine remains in the
given state longer than expected. The time limits T'O7 for individual states are defined
by the touts array. There is no time limit for the given state when T'O1 is set to zero.
The TOUT output is set to off whenever the automat changes its state.

It is possible to allow more state transitions in one cycle by the morestps parameter.
However, this option must be thoroughly considered and tested, namely when the TOUT
output is used in transition conditions. In such a case it is strongly recommended to
incorporate the ksa output in the transition conditions as well.

The development tools of REXYGEN include also the SFCEditor program. You can
create SFC schemes graphically using this tool. Run this editor from REXYGEN Studio
by clicking the Configure button in the parameter dialog of the EATMT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
R1 Block reset Bool
ns0 Target state forced by the SET input Long (I32)
SET Forced transition to state nsO Bool
HLD Hold Bool
c0..c15 Transition condition Long (I32)
Parameter
morestps Allow multiple transitions in one cycle Bool
off ... Disabled
on Enabled
sfcname Name of special editor data file String
STT State transition table ®[001; 112; 223; 330] Short (I16)
touts Vector of timeouts Double (F64)

©[1 23456789 10 11 12 13 14 15 16]

Output

q0..q15
ksa
tstep
TOUT

Active state indicator

Integer code of the active state

Time elapsed since the last state transition
Timeout flag

295

Long (I32)
Long (I32)
Double (F64)
Bool

296

CHAPTER 8. LOGIC — LOGIC CONTROL

EDGE — Falling /rising edge detection in a binary signal

Block Symbol

Function Description

Licence: STANDARD

The EDGE block detects rising (off—on), falling (on—o0ff), or both edges on the input
signal U, depending on the value of the iedge parameter. In case the desired edge (change
in input signal) is found, the output Y is set to on for one step. As long as the value
of the input signal remains unchanged, the output Y equals off. The output Y will also
remain zero if the iedge parameter is set to detect a rising (falling) edge and a falling

(rising) edge occurs in the signal.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
U Logical input of the block
Parameter
iedge Type of edges to detect
1 ... Rising edge
2 ... Falling edge
3 ... Both edges
Output

Y Logical output of the block

o1

Bool

Long (I32)

Bool

297

EQ — Equivalence two signals

Block Symbol Licence: STANDARD

ul Yp
u2 NYp

EQ

Function Description

The block compares two input signals and Y=on is set if both signals have the same value.
Both signals must be either of a numeric type or strings. A conversion between numeric
types is performed: for example 2.0 (double) and 2 (long) are evaluated as equivalent.
Comparison of matrices or other complex types is not supported.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
ul Block input signal Any
u?2 Block input signal Any
Output
Y Logical output of the block Bool

NY Boolean complementation of Y Bool

298 CHAPTER 8. LOGIC — LOGIC CONTROL

INTSM — Integer number bit shift and mask

Block Symbol Licence: STANDARD

INTSM
Function Description

The INTSM block performs bit shift of input value i by shift bits right (if shift is
positive) or left (if shift is negative). Free space resulting from shifting is filled with
7eros.
Output value n is calculated as bitwise AND of shifted input i and bit mask mask.
Typical application of this block is extraction of one or more adjacent bits from a
given position in integer register which was read from some external system.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
i Integer value to shift and mask |-9.22337E+18 19.22337E+18 Large (I64)
Parameter
shift Bit shift (negative=left, positive=right) 1-63 163 Long (I32)
mask Bit mask (applied after bit shift) Large (I64)
10 14294970000 ©4294967295
vtype Numeric type ®4 Long (I32)
2 ..., Byte (U8)
3. Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
10 Large (I64)
Output

n Resulting integer value Large (I64)

ISSW — Simple switch for integer signals

Block Symbol

i

i2 n
SwW
ISSW

Function Description

299

Licence: STANDARD

The ISSW block is a simple switch for integer input signals i1 and i2 whose decision
variable is the binary input SW. If SW is off, then the output n is equal to the i1 signal.

If SW is on, then the output n is equal to the 12 signal.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
i1
i2
SwW

Output

First integer input of the block
Second integer input of the block

Signal selector
off ... The il signal is selected
on The i2 signal is selected

Integer output of the block

Long (I32)
Long (I32)
Bool

Long (I32)

300 CHAPTER 8. LOGIC — LOGIC CONTROL

ITOI — Transformation of integer and binary numbers

Block Symbol Licence: STANDARD

Function Description

The ITOI block transforms the input number k, or the binary number (U3 U2 U1 U0)q,
from the set {0,1,2,...,15} to the output number nk and its binary representation
(Y3 Y2 Y1 YO)2 from the same set. The transformation is described by the following table

k|[o 1 2 ... 15
nk [n0 nl n2 ... ni5
where n0, ..., n1b are given by the mapping table target vector fktab. If BINF = off,

then the integer input k is active, while for BINF = on the input is defined by the binary
inputs (U3 U2 U1 UO),.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
k Integer input of the block Long (I32)
U0..U3 Binary input (mask) Bool
Parameter
BINF Enable the binary selectors ®on Bool
off ... Disabled (analog selector)
on Enabled (binary selectors)
fktab Mapping table Byte (U8)
®©[01 23456789 10 11 12 13 14 15]
Output
nk Integer output of the block Long (I32)

Y0..Y3 Binary output (mask) Bool

301

NOT — Boolean complementation

Block Symbol Licence: STANDARD

NOT

Function Description

The NOT block negates the input signal Y = —U.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U Logical input of the block Bool

Output
Y Logical output of the block Bool

302 CHAPTER 8. LOGIC — LOGIC CONTROL

OR — Logical sum of two signals

Block Symbol Licence: STANDARD

ut vYp
U2 NYP

OR

Function Description

The OR block computes the logical sum of two input signals Y = U1 V U2. If you need to
work with more input signals, use the ORQUAD, OROCT or ORHEXD block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
U1 First logical input of the block Bool
U2 Second logical input of the block Bool
Output
Y Output signal, logical sum Bool

NY Boolean complementation of Y Bool

303

ORQUAD, OROCT, ORHEXD — Multi-input logical sum

Block Symbols Licence: STANDARD
u1
u2
32
us ¥
u6
u7
us
U1 u9
u2 v u10
u3 un
U4 u12
u1 us U13NY
vz TAe b Jo
32 NY us u16
ORQUAD OROCT ORHEXD

Function Description

The ORQUAD, OROCT and ORHEXD blocks compute the logical sum of up to sixteen input
signals U1, U2, ..., U16. The signals listed in the nl parameter are negated prior to
computing the logical sum.

For an empty nl parameter a simple logical sum Y =U1V U2V U3V U4V U5VUEYV
U7 V...V U16 is computed. For e.g. n1=1,3. .5, the logical function is Y = -U1 VU2 V
—U3V U4V -U5VU6V... VUL6.

If you have only two input signals, consider using the OR block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

Ul..U16 Logical input of the block Bool
Parameter

nl List of signals to negate Long (I32)
Output

Y Output signal, logical sum Bool

NY Boolean complementation of Y Bool

304

RS — Reset-set flip-flop circuit

CHAPTER 8. LOGIC — LOGIC CONTROL

Block Symbol

R1 NQp

Function Description

Licence: STANDARD

The RS block is a flip-flop circuit, which sets its output permanently to on as soon as
the input signal S is equal to on. The other input signal R1 resets the Q output to off
even if the S input is on. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

S
R1

Output

Q
NQ

Flip-flop set
Priority flip-flop reset

Flip-flop circuit state
Boolean complementation of Q

Bool
Bool

Bool
Bool

SR — Set-reset flip-flop circuit

Block Symbol

R NQp

Function Description

305

Licence: STANDARD

The SR block is a flip-flop circuit, which sets its output permanently to on as soon as
the input signal S1 is on. The other input signal R resets the Q output to off, but only
if the S1 input is off. The NQ output is simply the negation of the signal Q.

The block function is evident from the inner block structure depicted below.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

S1
R

Output

Q
NQ

Priority flip-flop set
Flip-flop reset

Flip-flop circuit state
Boolean complementation of Q

Bool
Bool

Bool
Bool

306 CHAPTER 8. LOGIC — LOGIC CONTROL

TIMER — Multipurpose timer

Block Symbol Licence: STANDARD
U Q

TIMER

Function Description

The TIMER block either generates an output pulse of the given width pt (in seconds)
or filters narrow pulses in the U input signal whose width is less than pt seconds. The
operation mode is determined by the mode parameter. Supported modes are:

e 1: Pulse: An output pulse of the length pt is generated upon rising edge at the U
input. All input pulses during the generation of the output pulse are ignored.

e 2: Delayed ON: The input signal U is copied to the Q output, but the start of the
pulse is delayed by pt seconds. Any pulse shorter than pt is does not pass through
the block.

e 3: Delayed OFF': The input signal U is copied to the Q output, but the end of the
pulse is delayed by pt seconds. If the break between two pulses is shorter than pt,
the output remains on for the whole time.

e 4: Delayed change: The Q output is set to the value of the U input no sooner
than the input remains unchanged for pt seconds.

The graph illustrates the behaviour of the block in individual modes for pt = 3:

mode 2

mode 3

mode 4 ’ \—

1 1 1 1 1 1 1 1 1 1
0 2 3 4 5 7 9 10 1 13 14 15
time [s]

The timer can be paused by the HLD input. The R1 input resets the timer. The reset
signal overpowers the U input, similarly to the RS block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

U
HLD
R1

Parameter

mode

pt

Output

et
rt

Trigger of the timer
Timer hold
Timer reset

Timer mode

1 ... Pulse generator
2 ... Delayed ON

K Delayed OFF

4 Delayed change

Timer interval [s]

Timer output
Elapsed time [s]
Remaining time [g]

1

1.0

307

Bool
Bool
Bool

Long (I32)

Double (F64)

Bool
Double (F64)
Double (F64)

308 CHAPTER 8. LOGIC — LOGIC CONTROL

Chapter 9

TIME — Blocks for handling time

Contents
DATE — Current date v vt ii i i i ittt v v 310
DATETIME — Get, set and convert time 311
TC — Timer control and status 314
TIME — Current time o v vttt ittt e 316
TS — Current timestamp . . ¢ ¢« v v v v o o ¢ o v v 0 0 ot o o s oo 317
TS2NS — Timestamp difference in nanoseconds 319
WSCH — Week scheduler 320

The TIME library is specialized for time-based operations and scheduling in REXY-
GEN system. It includes blocks like DATE, TIME and DATETIME for handling date and
datetime, providing essential tools for working with temporal data. The library features
TC for itnernal timer control. Additionally, WSCH is used for scheduling, enabling efficient
management of time-dependent tasks. This library is particularly valuable for systems
requiring precise time management and scheduling capabilities.

309

310 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

DATE — Current date

Block Symbol Licence: STANDARD

year

month
day
dow

DATE

Function Description

The outputs of the DATE function block correspond with the actual date of the operating
system. Use the DATETIME block for advanced operations with date and time. The first
day of the week is Sunday (numbered as 1).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
tz Timezone ®1 Long (I32)
1 ... Local time
2 ... UTC
Output
year Year Long (I32)
month Month Long (I32)
day Day Long (I32)

dow Day of week Long (I32)

311

DATETIME — Get, set and convert time

Block Symbol Licence: STANDARD
uyear yyear
umonth ym;g;l;
uday yhour
uhour y;;'g‘c
umin ynsec
usec 3{/(\1?0\';
unsec t'day
ser ¢
GET dsec|

DATETIME
Function Description

The DATETIME block is intended for advanced date/time operations in the REXYGEN
system.

It allows synchronization of the operating system clock and the clock of the REXYGEN
system. When the executive of the REXYGEN system is initialized, both clocks are the
same. But during long-term operation the clocks may loose synchronization (e.g. due to
daylight saving time). If re-synchronization is required, the rising edge (off—on) at the
SET input adjusts the clock of the REXYGEN system according to the block inputs and
parameters.

It is highly recommended not to adjust the REXYGEN system time when the con-
trolled machine/process is in operation. Unexpected behavior might occur.

If date/time reading or conversion is required, the rising edge (off—on) at the GET
input triggers the action and the block outputs are updated. The outputs starting with
't” denote the total number of respective units since January 1st, 2000 UTC.

Both reading and adjusting clock can be repeated periodically if set by getper and
setper parameters.

If the difference of the two clocks is below the tolerance limit settol, the clock of
the REXYGEN system is not adjusted at once, a gradual synchronization is used instead.
In such a case, the timing of the REXYGEN system executive is negligibly altered and
the clocks synchronization is achieved after some time. Afterwards the timing of the
REXYGEN executive is reverted back to normal.

For simple date/time reading use the DATE and TIME function blocks.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
uyear Input for setting year Long (I32)
umonth Input for setting month Long (I32)

uday Input for setting day Long (I32)

312

uhour
umin
usec
unsec
SET
GET

Parameter

isetmode

igetmode

settol
setper
getper
FDOW

tz

Output

yyear
ymonth
yday
yhour
ymin
ysec
ynsec
ydow
ywoy
tday

CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

Input for setting hours

Input for setting minutes
Input for setting seconds
Input for setting nanoseconds
Trigger for setting time
Trigger for getting time

Source for setting time

1 ..., OS clock

2 ... Block inputs

3 ... The unsec input

4 The usec input

5 The unsec input - relative

6 The usec input - set HW clock only
Source for getting time

1 ..., OS clock

2 ..., Block inputs

3 ... The unsec input

4 The usec input

5 The uday input

6 REXYGEN clock

7 ..., HW clock

Tolerance for setting the REXYGEN clock [s]
Period for setting time [s] (0=not periodic)
Period for getting time [s] (0O=not periodic)
First day of week is Sunday

off ... Week starts on Monday
on Week starts on Sunday

Timezone

1 Local time
2 ..., UTC

Year

Month

Day

Hours

Minutes

Seconds
Nanoseconds

Day of week

Week of year

Total number of days

1-9.22E+18 19.22E+18

o1

©6

©1.0

©0.001

o1

Long (I32)
Long (I32)
Long (I32)
Large (I64)
Bool
Bool

Long (I32)

Long (I32)

Double (F64)
Double (F64)
Double (F64)
Bool

Long (I32)

Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)
Long (I32)

313

tsec Total number of seconds Long (I32)
tnsec Total number of nanoseconds Large (I64)
dsec Number of seconds since midnight Long (I32)

314 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

TC — Timer control and status

Block Symbol Licence: STANDARD
OsPer per
TsPer over
OsAdj ticks
TsAdj SIM

TC

Function Description

The TC function block controls the internal timer of REXYGEN. It is possible to modify
the actual basic tick period (e.g. the value set in the tick parameter of the EXEC block)
or logical tick period (e.g. the time added to the timestamp of each tick if timer =
CORETIMER is selected). By default, the logical and physical period is the same and is the
EXEC:tick parameter. The discretization period of the blocks in the control algorithm
is not affected by the TC block.

The actual period can be changed in two ways: set the desired value to the OsPer
input or set 0sAdj for one tick. OsAdj will temporarily increase or decrease the actual
period until the total shift set on the 0sAdj input is realized. How much the period
increases is controlled by the O0sMax parameter.

Example: Let’s expect the tick period to be 0.1s and 0sMax=0.2, so let’s set 0sAdj=1.0
to temporarily increase the real period to 0.12s (e.g. 20% defined in the OsMax parameter)
until a total shift of 1s is realized, e.g. for 50 ticks.

Logical period control is the same using inputs/parameter TsPer, TsAdj, TsMax.
Note 1: The unconnected input or the input with a value of 0 is ignored.

Note 2: The actual period adjustment is not supported on Windows targets.

Note 3: The primary reason for this block is to synchronize with another controller in
time-critical application, so the period should only be changed by a few percent. For
simulation and debugging purposes, it is possible to change the period significantly to
speed up a slow process (or slow down a fast process). This should be done with caution,
as the synchronization with other controllers will not work and all calculations must be
done in the shortened period. Also, in this case, warnings about missing ticks, incorrect
period, etc. will appear in the log. For these purposes, it is better to use the simulation
mode.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
OsPer Physical tick period [s] Double (F64)
TsPer Logical (timestamp) tick period [s] Double (F64)
OsAdj Physical tick shift [s] Double (F64)

TsAdj Logical (timestamp) tick shift [s] Double (F64)

Parameter

OsMax

TsMax

Output

per
over
ticks
SIM

Maximal relative quantum for physical adjustment

10.011.0 ®0.1

Maximal relative quantum for logical adjustment

Last real physical tick period [s]
Number of lose periods in last tick
Number of ticks since start

Timer in simulation mode

10.011.0 ®0.1

315

Double (F64)

Double (F64)

Double (F64)
Long (I32)

Large (I64)
Double (F64)

316 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

TIME — Current time

Block Symbol Licence: STANDARD

hour
min
sec|

TIME

Function Description

The outputs of the TIME function block correspond with the actual time of the operating
system. Use the DATETIME block for advanced operations with date and time.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Parameter
tz Timezone ®1 Long (I32)
1 ... Local time
2 ..., UTC
Output
hour Hours Long (I32)
min Minutes Long (I32)

sec Seconds Long (I32)

317

TS — Current timestamp

Block Symbol Licence: STANDARD

s

TS

Function Description

The TS block generates a time stamp on the output ts from a source specified by the
source parameter. The stub input is used only to ensure the correct execution order of
the block in the program.

The source parameter can be used to switch between several different time sources:

1:

CORETIMER - is the primary time stamp used in the REXYGEN system, ex-
pressing the number of nanoseconds since January 1, 2000.

: CORETIMER (precise) - operates similarly to CORETIMER, but the time stamp

is updated at the moment the block is executed, using a different source, usually
RTC or PFC.

: RTC (UTCQC) - returns the time stamp in Coordinated Universal Time format.

: RTC (localtime) - returns the time stamp in local time format (considering time

zones).

: PFC - is based on the QueryPerformanceCounter function on Windows systems

and returns the system time stamp with a resolution of 1 ns.

: TSC - is the fastest time stamp source, using the RDTSC instruction on x86 proces-

sors and the CNTVCT_ELO instruction on ARM64 processors. On other platforms,
the TSC time stamp is identical to the PFC time stamp.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

stub

Dummy input for block ordering Any

318 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

Parameter
source Source of the time stamp ®1 Word (U16)

1..... CORETIMER
2 ... CORETIMER (precise)
3 ... RTC (UTC)
4 ... RTC (localtime)
5 PFC
6 TSC

Output

ts Time stamp Large (I64)

319

TS2NS — Timestamp difference in nanoseconds

Block Symbol Licence: STANDARD

start ns
end freq
TS2NS

Function Description

The TS2NS block generates on the output ns the time difference between the time stamps
on the start and end inputs (e.g., from the TS blocks). When calculating the difference,
all TS and TS2NS blocks must have the same source in the source parameter, otherwise
the result is nonsensical. The block provides the frequency of the time stamp on the
freq output. The difference between the time stamps is in nanoseconds (ns). For more
information on time stamp sources, see the TS block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
start Start time stamp }-9.22E+18 19.22E+18 Large (I64)
end End time stamp 1-9.22E+18 19.22E+18 Large (I64)
Parameter
source Source of the time stamp ®1 Word (U16)
1 ..., CORETIMER
2 ... CORETIMER (precise)
3 ... RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC
Output
ns Interval in nanoseconds Large (I64)

freq Frequency of the time stamp Large (I64)

320 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

WSCH — Week scheduler

Block Symbol Licence: STANDARD

SET iy

Y

val isch
trem

fsch ynext

WSCH

Function Description

The WSCH function block is a weekly scheduler for e.g. heating (day, night, eco), ventilation
(high, low, off), lighting, irrigation etc. Its outputs can be used for switching individual
appliances on/off or adjusting the intensity or power of the connected devices.

During regular weekly schedule the outputs iy and y reflect the values from the wst
table. This table contains triplets day-hour-value. E.g. the notation [2 6.5 21.5] states
that on Tuesday, at 6:30 in the morning (24-hour format), the output y will be set to 21.5.
The output iy will be set to 22 (rounding to nearest integer). The individual triplets are
separated by semicolons.

The days in a week are numbered from 1 (Monday) to 7 (Sunday). Higher values
can be used for special daily schedules, which can be forced using the fsch input or the
specdays table. The active daily program is indicated by the isch output.

Alternatively it is possible to temporarily force a specific output value using the val
input and a rising edge at the SET input (off—on). When a rising edge occurs at the
SET input, the val input is copied to the y output and the isch output is set to 0. The
forced value remains set until:

e the next interval as defined by the wst table, or
e another rising edge occurs at the SET input, or
e 3 different daily schedule is forced using the f£sch input.

The list of special days (specdays) can be used for forcing a special daily schedule
at given dates. E.g. you can force a Sunday daily schedule on holidays, Christmas, New
Year, etc. The date is entered in the YYYYMMDD format. The notation [20160328 7] thus
means that on March 28th, 2016, the Sunday daily schedule should be used. Individual
pairs are separated by semicolons.

The trem and ynext outputs can be used for triggering specific actions in advance,
before the y and iy are changed.

The iy output is meant for direct connection to function blocks with Boolean inputs
(the conversion from type long to type bool is done automatically).

The nmax parameter defines memory allocation for the wst and specdays arrays.
For nmax = 100 the wst list can contain up to 100 triplets day-hour-value. In typical
applications there is no need to modify the nmax parameter.

321

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
SET Trigger for setting output Bool
val Value to set the output to Double (F64)
fsch Forced schedule (0=normal operation) Long (I32)
0 Standard weekly schedule
1..... Monday
2 ... Tuesday
3 ... Wednesday
4 ... Thursday
5 Friday
6 Saturday
7T ... Sunday
8 and above Additional daily program as defined by the wst
table
Parameter
tz Timezone ®1 Long (I32)
1 ..., Local time
2 ... UTC
nmax Allocated size of arrays 410 71000000 ®100 Long (I32)
imode Reserved for internal use Long (I32)
user Reserved for special editor String
wst Weekly schedule table (day-hour-value) Double (F64)
®[1 0.01 18.0; 2 6.0 22.0; 2 18.0 18.0; 3 6.0 22.0; 3 18.0 18.0; 4 6.0 22.0; 4 18.0 18.0
specdays List of special days (date-daily program) Long (I32)
©®[20150406 1; 20151224 1; 20151225 1; 20151226 1; 20160101 1; 20160328 1; 20170417 1; 20
Output
iy Integer output value Long (I32)
y Output value Double (F64)
isch Daily schedule identifier Long (I32)
trem Time remaining in the current section [s] Double (F64)

ynext Output in the next section Double (F64)

322 CHAPTER 9. TIME - BLOCKS FOR HANDLING TIME

Chapter 10

ARC — Data archiving

Contents
ACD — Archive compression using Delta criterion 325
ACLEAR — Forced archive purge 327
AFLUSH — Forced archive flushing v v v v v v v v v 328
ALB, ALBI — Alarms for Boolean value. 329
ALM, ALMI — Alarm store valueo v v v vvoonon 331
ALN, ALNI — Alarms for numerical value 332
ARS — Archivestorevalue 0000, 335
TRND — Real-time trend recording « ¢ ¢« v v v v v v 0t 0 v o v 337
TRNDV — Real-time trend recording (for vector signals) 340

The RexCore executive of the REXYGEN system consists of various interconnected
subsystems (real-time subsystem, diagnostic subsystem, drivers subsystem, etc.). One
of these subsystems is the archiving subsystem. The archiving subsystem takes care of
recording the history of the control algorithm.

The function blocks can be divided into groups by their use:

e Blocks for generating alarms and events — ALB, ALBI, ALM, ALMI, ALN, ALNT, ARS.
e Blocks for recording trends — ACD, TRND, TRNDV.

e Blocks for handling archives — AFLUSH, ACLEAR.

Functionality of the archiving subsystem

The archive in the REXYGEN system stores the history of events, alarms and trends
of selected signals. There can be up to 15 archives in each target device. The types or
archives are listed below:

RAM memory archive — Suitable for short-term data storage. The data access rate
is very high but the data is lost on reboot.

323

324 CHAPTER 10. ARC — DATA ARCHIVING

Archive in a backed-up memory — Similar to the RAM archive but the data is not
lost on restart. Data can be accessed fast but the capacity is usually quite limited
(depends on the target platform).

Disk archive — The disk archives are files in a proprietary binary format. The files are
easily transferrable among individual platforms and the main advantage is the size,
which is limited only by the capacity of the storage medium. On the other hand,
the drawback is the relatively slow data access.

Not all hardware platforms support all types of archives. The individual types which are
supported by the platform can be displayed in REXYGEN Studio in the Diagnostics tree
view panel after clicking on the name of the target device (IP address). The supported
types are listed in the lower left part of the Target tab.

General archive properties

The archiving and trending blocks have several common properties which are listed
below.

Archive list

The list of archives is specified in the blocks by the arc parameter in the form e.g.
1,3..5,8. Details about the archive numbering are in the ARC block. Third-party pro-
grams (Simulink, OPC clients, etc.) work with the whole number which is a bit mask —
for the example above it is 157, in binary form 10011101.

Event identification code

The event identification code in the archive id must be unique in the entire target
device with the REXYGEN control system (i.e. in all archive blocks). If id = 0, no alarm
is generated. For id = -1, the alarm is identified by its name (i.e. the block name must
be the same as the Name column in the alarm definition table).

Types of events and alarms

Events and alarms are differentiated in the REXYGEN system by the 1vl parameter. If
1 <1v1 <127, it is an alarm where the start, end and acknowledgment are stored in the
archive. The range 128 < 1vl < 255 is reserved for events where only the time instant
of the event is stored in the archive.

325

ACD — Archive compression using Delta criterion

Block Symbol Licence: STANDARD

u yp
delta EP

ACD

Function Description

The ACD (Archive Compression using Delta criterion) block is meant for storing com-
pressed analog signals to archives using archive events.

The main idea is to store the input signal u only when it changes significantly. The
interval between two samples is in the range (tmin,tmax) seconds (rounded to the nearest
multiple of the sampling period). A constant input signal is stored every tmax seconds
while rapidly changing signal is stored every tmin seconds. When the execution of the
block is started, the first input value is stored. This value will be referred to as u0 in the
latter. The rules for storing the following samples are given by the delta and TR input
signals.

The list of archives for storing is specified by the arc parameter, e.g. 1,3..5,8. The
event will be stored in all specified archives. Each archiving block must have a unique
event identification code in the archive given by the id parameter. For more information
about these parameters see the introduction of chapter 10.

For TR = off the condition |[u—u0| > delta is checked. If it holds and the last stored
sample occurred more than tmin seconds ago, the value of input u is stored and u0=u
is set. If the condition is fulfilled sooner than tmin seconds after the last stored value,
the error output E is set to 1 and the first value following the tmin interval is stored. At
that time the output E is set back to 0 and the whole procedure is repeated.

For TR=onthe input signal values are compared to a signal with compensated trend.
The condition for storing the signal is the same as in the previous case.

The following figure shows the archiving process for both cases: a) TR=o0ff, b) TR=on.
The stored samples are marked by the symbol x.

A
u u
u,tdelta ><
. . u,tdelta
Yo
. LID
A I S — geeke—"
0 Te 2% (k-1)T kT, time ol Te 2% (k-1)T KT, time
a) b)

This block does not propagate the signal quality. More information can be found in the
1.4 section.

326

Input

u
delta

Parameter

acls

arc
id
tmin

tmax

TR

Desc

Output

CHAPTER 10. ARC — DATA ARCHIVING

Signal to compress and store

Threshold for storing the signal 10.0 T1e+10
Archive class (data type) ©8

1 ... Bool

2 ... Byte (U8)

3 ... Short (I16)

4 ... Long (132)

5 ... Word (U16)

6 DWord (U32)

T Float (F32)

8 Double (F64)

10 Large (I64)

List of archives to write the events to
Unique archive item ID o1

The shortest interval between two samples [s]
10.001 11000000.0 ®1.0

The longest interval between two samples [s]
41.0 11000000.0 ©1000.0

Trend evaluation ©on
off ... Disabled
on Enabled

Event description string ®Value Description

The last value stored in the archive
Error indicator

off ... No error

on An error occurred

Double (F64)
Double (F64)

Byte (U8)

Word (U16)
Word (U16)
Double (F64)
Double (F64)

Bool

String

Double (F64)
Bool

327

ACLEAR — Forced archive purge

Block Symbol Licence: STANDARD

ACLEAR

Function Description

The ACLEAR block is meant for clearing the content of an archive when a rising edge
off—on appears on the CLEAR input. The list of archives to be cleared is specified by
the arc parameter, e.g. 1,3..5,8. For more information see Chapter 10.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

CLEAR Archive purge on rising edge Bool

Parameter

arc List of archives to write the events to Word (U16)

328 CHAPTER 10. ARC — DATA ARCHIVING

AFLUSH — Forced archive flushing

Block Symbol Licence: STANDARD

AFLUSH
Function Description

The AFLUSH block is intended for immediate storing of archive data to permanent mem-
ory (hard drive, flash disk, etc.). It is useful when power loss can be anticipated, e.g.
emergency shutdown of the system following some failure. It forces the archive subsys-
tem to write all archive data to avoid data loss. The write operation is initiated by a
rising edge (off—on) at the FLUSH input regardless of the period parameter of the ARC
block. The list of archives is specified in the arc, e.g. 1,3..5,8. For more information
see Chapter 10.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

FLUSH Force archive flushing Bool

Parameter

arc List of archives to write the events to Word (U16)

329

ALB, ALBI — Alarms for Boolean value

Block Symbols Licence: STANDARD
T M

Function Description

The blocks ALB and ALBI generate alarms or events upon changes in the logical input
signal U. The output iac indicates the current alarm (event) code. The parameter (or
input) men selects whether to indicate a rising edge (off—on), which corresponds to an
upper alarm (HA), a falling edge (on—o0ff), which corresponds to a lower alarm (LA),
or both edges of the input signal.

The ALBI block is an extension of the ALB block. The blocks differ only in that the
inputs of the ALBI block: men, tout, 1ACK are parameters of the ALB block. The ALB does
have HA, LA and NACK outputs.

Events and alarms are distinguished in the REXYGEN system using the 1vl param-
eter. The list of archives for writing is specified by the arc parameter in the form e.g.
1,3..5,8. Each archiving block must have a unique event identification code in the
archive given by the id parameter. For more information about these parameters see the
introduction of Chapter 10. Positive values of the iac output codes can be added, e.g. the
value 514 means that the upper alarm is unacknowledged. However, not all combinations
make sense.

Note 1: The input (parameter) 1ACK is automatically reset to 0 after processing by
the block. The alarm is assumed to be acknowledged by the operator from the visualiza-
tion so that it is not necessary to write 0 with another query. It is a similar principle to
the BSTATE parameter in the MP block.

Note 2: Formatting commands (values attached to the alarm, multilingual text) can
be inserted into the Desc parameter. Their detailed description is in the ALARMS block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
U Logical input of the block Bool
men Enable alarms (mask) Long (I32)
0 All alarms disabled
1..... Low-alarm enabled
2 ... High-alarm enabled
3 All alarms enabled

tout Alarm activation delay time [s] 10.0 Double (F64)

330

iACK

Parameter

arc
id
1vl

group
Desc

Output

iac

HA
LA
NACK

CHAPTER 10. ARC — DATA ARCHIVING

Alarm acknowledge (mask)

1 ... Low-alarm (LA) acknowledge
2 ... High-alarm (HA) acknowledge
3 ... Both alarms acknowledge

List of archives to write the events to

Unique archive item ID ™1
Alarm level J1 o1
Group to which the alarm belongs 10 19.22337E+18
Alarm description string ®Alarm Description

Current alarm code

0 Signal within limits
1 ... Low-alarm active (LA)
2 ... High-alarm active (HA)

256 ... Low-alarm (LA) not acknowledged (NACK)
512 ... High-alarm (HA) not acknowledged (NACK)

High-alarm indicator
Low-alarm indicator
Not-acknowledged-alarm indicator

Byte (U8)

Word (U16)
Word (U16)
Byte (U8)
Large (I64)
String

Long (I32)

Bool
Bool
Bool

331

ALM, ALMI — Alarm store value

Block Symbols Licence: STANDARD

U

ACK
avil

av%

av3 .
av4 iE
avb

avé

av7

U iE av8

ALM ALMI

Function Description

The ALM and ALMI blocks are used for generating alarms. An alarm is activated when
the input U changes to on. Each alarm must be defined using the ALARMS block and is
uniquely identified by the id parameter (see 10). Active alarms (i.e., with U=on) can
be displayed in the AlarmsTable visualization component. Records of the alarm state
change and its acknowledgment are stored in the archive if allowed in the ALARMS block
configuration. An alarm can be acknowledged by activating the ACK=onparameter.

Note: The system allows displaying the acknowledgment status, acknowledging an
active alarm, and can display this status in both the HMI and the archive. However, the
REXYGEN system does not operate further on the acknowledgment and no functionality
depends on it. Decisions about acknowledging alarms depend on the filter settings in the
visualization and on the specific system design.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

U Logical input of the block Bool

ACK Alarm acknowledge (mask) Bool

avl..av8 Alarm associated value 11.79769e+308 ©-1.79769e+308 Double (F64)
Parameter

id Unique archive item ID 4-1165535 ®-1 Long (I32)
Output

iE Error code Error

332 CHAPTER 10. ARC — DATA ARCHIVING

ALN, ALNI — Alarms for numerical value

Block Symbols Licence: STANDARD
umen E
h¥s HHA
h HA
I LA
tout LLA
fu_iach IACK Nack
ALN ALNI

Function Description

Blocks ALN and ALNI are intended for generating two-level alarms or events when the
numerical value of input u exceeds (undershoots) one of the alarm limits. iac output
indicates alarm (event) status. The men parameter (or input) specifies which of the
boundaries are monitored. You can choose between the following limits:

o LA - low-alarm

e HA - high-alarm

e LLA - second low-alarm
e HHA - second high-alarm

and their combinations.

The ALNT block is an extension of the ALN block. The blocks differ only in that most
of the inputs of the ALNI block are parameters of the ALN block. The ALN block does not
have the HHA, HA, LA, LLA and NACK outputs.

Individual limit values can be set by the parameters (inputs) 1, h, 11 and hh. The hys
value determines the alarm hysteresis. The outputs HHA, HA, LA, LLA and NACK indicate
whether the alarm is active/unacknowledged.

Events and alarms are distinguished in the REXYGEN system using the 1vl param-
eter. The list of archives for writing is specified by the arc parameter, e.g. 1,3..5,8.
The event identification code in the archive id must be unique in the entire target device
with the REXYGEN control system. For more information about these parameters see the
introduction of Chapter 10. Positive values of the iac output codes can be added, e.g. the
value 514 means that the upper alarm is unacknowledged. However, not all combinations
make sense.

Note 1: The input (parameter) iACK is set back to 0 immediately by the block
algorithm. The functionality is similar to the parameter BSTATE of the block MP.

Note2: The parameter Desc can include formatting characters (multilingual texts,
associated variables). Formatting rules are described in the ALARMS block.

333

This block does not propagate the signal quality. More information can be found in the

1.4 section.
Input

u
men

hys
hh

11
tout
iACK

Parameter

acls

arc

Analog input of the block

Enable alarms (mask) ©15
0 All alarms disabled
1 Low-alarm (LA) enabled
2 ... High-alarm (HA) enabled
3 ... LA and HA enabled
4 Second low-alarm (LLA) enabled
5 LA and LLA enabled
6 HA and LLA enabled
T ... LA, HA and LLA enabled
8 Second high-alarm (HHA) enabled
9 LA and HHA enabled
10 HA and HHA enabled
11 LA, HA and HHA enabled
12 LLA and HHA enabled
13 LA, LLA and HHA enabled
14 HA, LLA and HHA enabled
15 All alarms enabled
Alarm hysteresis J1e-10 T1e+10
The second high-alarm limit
High-alarm limit
Low-alarm limit
The second low-alarm limit
Alarm activation delay time [s] 0.0
Alarm acknowledge (mask)
1 ... Low-alarm (LA) acknowledge
2 ... High-alarm (HA) acknowledge
4 ... Second low-alarm acknowledge (LLA)
8 ... Second high-alarm acknowledge (HHA)
Alarm class (data type) ©8
1 ... Bool
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
7 .. Float (F32)
8 Double (F64)
10 Large (I64)

List of archives to write the events to

Double (F64)
Long (I32)

Double
Double
Double
Double
Double
Double

(F64)
(F64)
(F64)
(F64)
(F64)
(F64)

Byte (U8)

Byte (U8)

Word (U16)

334 CHAPTER 10. ARC — DATA ARCHIVING

id Unique archive item ID ®1 Word (U16)
1vli Level of low and high alarms J1 ®1 Byte (U8)
1vl2 Level of the second low and high alarms 1 ®10 Byte (U8)
group Group to which the alarm belongs 10 19.22337E+18 Large (I64)
Desc Alarm description string ®Alarm Description String
Output

iac Current alarm code Long (I32)

0 Signal within limits

1 ..., Low-alarm active (LA)

2 ... High-alarm active (HA)

4 ... Second low-alarm active (LLA)

8 Second high-alarm (HHA) active

256 ... Low-alarm (LA) not acknowledged (NACK)
512 ... High-alarm (HA) not acknowledged (NACK)
1024 .. Second low-alarm (LLA) not acknowledged (NACK)
2048 .. Second high-alarm (HHA) not acknowledged

(NACK)

-1 Invalid alarm limits
E Error indicator Bool

off ... No error

on An error occurred
HHA The second high-alarm indicator Bool
HA High-alarm indicator Bool
LA Low-alarm indicator Bool
LLA The second low-alarm indicator Bool

NACK Not-acknowledged-alarm indicator Bool

335

ARS — Archive store value

Block Symbol Licence: STANDARD

RUN EP

ARS

Function Description

If RUN = on, the ARS block writes the value at the u input to the archive. The type of
the value at the input is determined by the type parameter, and the type of the archive
item is the same. The subtype parameter allows you to specify the type of alarm that
alarm blocks write (e.g. L->H for a logical alarm, or HiHi for a numeric alarm). The value
of the parameter can be 0 to 7 and is not used for arrays. This parameter is usually not
used. The meaning of the other parameters is the same as for other blocks for writing to
the archive.

If type = Reference, an array (column vector or matrix) is expected. If it is a
matrix, each of its columns is saved as a separate file in the archive (i.e., in one tick task
with this block, as many entries as the matrix of columns will stand out in the archive).

Note 1: In the case of arrays, the archive subsystem is limited to 255 values in one
item. At the same time, there is a limit of 512 bytes of data in one item, so for the Short
type, at most 128 values are saved, for the Long type at most 64 values, and for the
Double type at most 32 values. If the input array is longer, the block saves the specified
number of values from the beginning of the array and does not report any errors.

Note 2: In the case of a string, the archive subsystem is limited to 65535 bytes
(characters in UTF8 encoding may be less). If the input text is longer, the block saves
the first 65635 bytes from the beginning of the array and does not report any errors.
Some reading functions may have a small buffer, and such a long text cannot be read,
so it is recommended not to exceed 4080 bytes (characters if only characters from the
English keyboard are used).

Note 3: The id parameter usually serves to link the item in the archive to the source
block/signal (and alarm in some cases). Therefore, its uniqueness is checked across the
entire configuration. The ARS block is considered a low-level block that writes an event
to the archive without further context and checks. Therefore, the uniqueness of the id
parameter is not checked here. For example, if numeric or text items start appearing in
the archive for a binary alarm, they are almost certainly generated by some ARS block
(or an analogous function in the script of the REXLANG block).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Signal to store into archive Any

336 CHAPTER 10. ARC — DATA ARCHIVING

RUN Enable execution Bool
Parameter

type Type of all trend buffers ®12 Byte (U8)

1 ... Bool

2 ... Byte (U8)

3 ... Short (I16)

4 ... Long (132)

5 Word (U16)

6 DWord (U32)

T Float (F32)

8 Double (F64)

9 Time

10 Large (I64)

11 Error

12 String

13 Reference
arc List of archives to write the events to Word (U16)
id Unique archive item ID ®1 Word (U16)
1lvl Alarm level ®1 Word (U16)
Desc Event description string ®Value Description String

Output

iE Error code Error

337

TRND — Real-time trend recording

Block Symbol Licence: STANDARD
4

Function Description

The TRND block is designed for storing of up to 4 input signals (ul to u4) in cyclic
buffers in the memory of the target device. The main advantage of the TRND block is
the synchronization with the real-time executive, which allows trending of even very fast
signals (i.e. with very high sampling frequency). In contrary to asynchronous data storing
in the higher level operator machine (host), there are no lost or multiply stored samples.
For better clarity, the individual trends can be assigned names by the Title parameter
and the individual signals by the SigNames parameter.

The actual number of stored signals is determined by the parameter n. In case the
trend buffers of length 1 samples get full, the oldest samples are overwritten. Data can
be stored once in pfac executions of the block (decimation), i.e. with the period pfac-Ts,
where T is the period of the block execution [s]. The stored data can be further processed
according to the values of the parameters ptypel to ptype4. The other decimation factor
afac can be used for storing data in archives. The period of storing is then given by
afac-pfac-Ts. Each value is stored with a time stamp. The source of the time stamp
can be set by the timesrc parameter (see the TS block for more information).

The list of archives for storing is specified by the arc parameter, e.g. 1,3..5,8. The
event will be stored in all specified archives. Each archiving block must have a unique
event identification code in the archive given by the id parameter. For more information
about these parameters see the introduction of Chapter 10.

The type of trend buffers can be specified in order to conserve memory of the target
device. The memory requirements of the trend buffers are defined by the formula s-n-1,
where s is the size of the corresponding variable in bytes. The default type Double
consumes 8 bytes per sample, thus for storing n = 4 trends of this type and length
1 = 1000, 8 -4 - 1000 = 32000 bytes are required. In case the input signals come from
16-bit A/D converter the Word type can be used and memory requirements drop to one
quarter. Memory requirements and allowed ranges of individual types are summarized
in table 1.1 on page 24 of this reference guide.

It can happen that the processed input value exceeds the representable limits when
using different type of buffer than Double. In such a case the highest (lowest) repre-
sentable number of the corresponding type is stored in the buffer and an error is binary
encoded to the iE output according to the following table (the unused bits are omitted):

338

Error

Range underflow

Range overflow

Input

ué

u3

u2

ul

u4 u3 u2 ul

CHAPTER 10. ARC — DATA ARCHIVING

Bit number 11 10 9 8 3 2 1 0
Bit weight | 2048 1024 512 256 | 8 4 2 1

In case of simultaneous errors the resulting error code is given by the sum of the weights
of individual errors. Note that underflow and overflow cannot happen simultaneously on
a single input.

It is possible to read, display and export the stored data by the REXYGEN Studio
in the Watch mode. After double-clicking on the corresponding TRND block, a new card
with the prefix Trend will open.

WARNING: set any of the parameters arc, afac, id to 0/empty disable writing
data into archive. The data are available in diagnostic tools only in this case.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
ul..u4 Analog input of the block Double (F64)
RUN Enable execution Bool
R1 Block reset Bool
Parameter
n Number of signals (trend buffers) 1114 ®4 Long (I32)
1 Number of samples per trend buffer J0 1268435000 ©1000 Long (I32)
btype Type of all trend buffers ®8 Long (I32)
1 ..., Bool
2 ..., Byte (U8)
3. Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
T Float (F32)
8 Double (F64)
10 Large (I64)
ptypel..ptype4 Data processing ®1 Long (I32)
1 ... Store
2 ... Minimum
3 ... Maximum
4 ... Sum
5 Average
6 RMS
7 ... Variance
pfac Processing factor 41 11000000 ®1 Long (I32)
afac Archiving factor J0 11000000 Long (I32)

arc
id
Title
timesrc

SigNames

List of archives to write the events to

Unique archive item ID o1
Trend title string ®Trend Title
Source of timestamps o1

1 ... CORETIMER

2 ... CORETIMER (precise)

3 ... RTC (UTC)

4 RTC (localtime)

5 PFC

6 TSC

Name of signals (each line one signal respectively)

ViewConfig User string for description and formatting

Output

yi..y4
iE

Analog output of the block
Error code (bitwise multiplexed)

339

Word (U16)
Word (U16)
String

Long (I32)

String

String

Double (F64)
Long (I32)

340 CHAPTER 10. ARC — DATA ARCHIVING

TRNDV — Real-time trend recording (for vector signals)

Block Symbol Licence: STANDARD

uVec
HLD iE
R1

TRNDV

Function Description

The TRNDV block is very similar to the TRND block. However, it allows storing more than 4
signals. The signals are passed to the uVec input in the form of a vector. The number of
processed signals is then determined by the n parameter. In contrast to the TRND block,
it is necessary to set the HLD input to onto stop the execution of the block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
uVec Vector signal to record Reference
HLD Hold Bool
R1 Block reset Bool
Parameter

n Number of signals (trend buffers) 11164 ©8 Long (132)
1 Number of samples per trend buffer 2 1268435000 ©1000 Long (I32)
btype Type of all trend buffers ©®8 Long (I32)

1 ... Bool

2 ... Byte (U8)

K Short (116)

4 ... Long (132)

5 ... Word (U16)

6 DWord (U32)

7o Float (F32)

8 Double (F64)

10 Large (I64)
pfac Processing factor 41 11000000 ®1 Long (I32)
afac Archiving factor J0 11000000 Long (I32)
arc List of archives to write the events to Word (U16)
id Unique archive item ID ®1 Word (U16)

Title Trend title string ®Trend Title String

timesrc Source of timestamps
1 ... CORETIMER
2 ... CORETIMER (precise)
3 ..., RTC (UTC)
4 RTC (localtime)
5 PFC
6 TSC

SigNames Name of signals (each line one signal respectively)
ViewConfig User string for description and formatting

Output

iE Error code
i REXYGEN error code

o1

341

Long (I32)

String
String

Error

342 CHAPTER 10. ARC — DATA ARCHIVING

Chapter 11

STRING — Blocks for string
operations

Contents

CNS — String constant 344
CONCAT — Concat string by pattern« v v v v v v v v v v v 345
FIND — Find substring . . « « ¢ « v v v v o v v o v v 0 0 ot o o v oo 346
ITOS — Integer number to string conversion 347
LEN — String length 0oL, 348
MID — Substring extraction . . .« « « v v v ¢ ¢ e v v v 0 bt e 00 349
PJROCT — Parse JSON string (real output) 350
PJSEXOCT — Parse JSON string (string output) 352
PJSOCT — Parse JSON string (string output) 354
REGEXP — Regular eXpression Parser « « « « « « « o o o o o o o s o o s 356
REPLACE — Replace substring« v v v v v v v v v v vt v v v v 358
RTOS — Real number to string conversion 359
SELSOCT — Selector switch for string signalso oo . 360
STOR — String to real number conversion . . « « « « « « v v v o o+ « 362
TRIM — Remove leading and trailing whitechar 363

The STRING library is dedicated to string manipulation and analysis in REXY-
GEN system. It includes blocks like CONCAT for concatenating strings, FIND for searching
within strings, and REPLACE for replacing string segments. The library offers LEN and MID
for determining string length and extracting substrings, respectively. Advanced pattern
matching is provided by REGEXP. Conversion blocks such as IT0S, STOR and RTOS convert
integers and real numbers to strings, while a simple CNS block defines a string constant.
Additionally, the library features blocks like PJROCT for JSON parsing. This collection of

blocks is essential for handling and processing string data in various applications.

343

344 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

CNS — String constant

Block Symbol Licence: STANDARD
b

CNS

Function Description

The CNS block is a simple string constant with maximal available size. A value of scv is
always truncated to nmax. If the string parameter filename is not empty, the initializa-
tion data are loaded from the file filename on the host computer.

This block propagates the signal quality. More information can be found in the 1.4

section.

Parameter
scv String (constant) value String
nmax Allocated size of string J0 165520 Long (I32)
filename Data file (content loaded into scv if set) String

Output

sy String output value String

345

CONCAT — Concat string by pattern

Block Symbol Licence: STANDARD

sul

su2

sui

Su:

sub Y
sué

su7

su8

CONCAT

Function Description

The CONCAT block concatenates up to 8 input strings sul to su8 by pattern specified in
ptrn parameter.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sul..su8 String input value String
Parameter

ptrn Concatenation pattern O%1%2%3%4 String

nmax Allocated size of string J0 165520 Long (I32)
Output

sy String output value String

346 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

FIND — Find substring

Block Symbol

sul posp
su2 iEpP

FIND

Function Description

Licence: STANDARD

The FIND block searches for the string su2 in the string sul. If su2 is found, the index
of the first occurrence of su2 in sul (counted from one) is returned in the output pos.
If su2 is not found, zero is returned in the output pos and an error is indicated in the
output iE. Both input strings are truncated to the length nmax.

This block propagates the signal quality. More information can be found in the 1.4

section.
Input

sul String input value

su?2 String input value
Parameter

nmax Allocated size of string
Output

pos Position of substring

iE Error code

10 165520

String
String

Long (I32)

Long (I32)
Error

347

ITOS — Integer number to string conversion

Block Symbol Licence: STANDARD
P

ITOS

Function Description

The ITOS block is used for converting an integer into text. The len parameter specifies
the minimum length of the output string. If the number has a smaller number of digits,
zeroes or spaces will be added according to the mode parameter. The radix parameter
specifies the numerical system in which the conversion is to be performed. The output
string does not contain any identification of the numerical system used (e.g. the 0x prefix
for the hexadecimal system).

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
n Integer input of the block Long (I32)
Parameter
len Minimum length of output string J0 130 Long (I32)
mode Output string format ®1 Long (I32)
1 ... Align right, fill with spaces
2 ... Align right, fill with zeroes
3 ... Align left, fill with spaces
radix Radix ©®10 Long (I32)
2 ... Binary
8 Octal
10 Decimal
16 Hexadecimal
Output

sy String output value String

348 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

LEN — String length

Block Symbol Licence: STANDARD

LEN

Function Description

The LEN block returns the actual length of the string in su in UTF-8 characters.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String
Parameter

nmax Allocated size of string J0 165520 Long (I32)
Output

len Length of input string Long (I32)

349

MID — Substring extraction

Block Symbol Licence: STANDARD

Py

MID

Function Description

The MID block extracts a substring sy from the string su. The inputs 1 and p specify
the position and length of the string to be extracted in UTF-8 characters. The value of
the input p is counted from one.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
su String input value String
Length of output string Long (I32)
Position of output string Long (I32)
Parameter
nmax Allocated size of string J0 165520 Long (I32)
Output
sy String output value String

iE Error code Error

350 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

PJROCT — Parse JSON string (real output)

Block Symbol Licence: STANDARD

PJROCT

Function Description

The PJROCT block parses input JSON string jtxt according to specified name* parameters
when the input RUN is on. OQutput signals are real type. In case of an error, the y* outputs
are set to the value of the yerr parameter (e.g. the specified object does not exist or the
value is not a number).

This block expects text in JSON format on the jtxt input. The outputs of y1 to
y7 then have the values (string) of the objects identified by the parameters namel to
name7. If one of the parameters namel to name7 is empty, the corresponding output will
be empty and this is not considered as an error. The input string evaluates only if RUN
= on. An error is indicated on the output iE. The following cases may occur:

e 0 - no error

e -1 - one of the parameters namel to name7 refers to an object that does not appear
in the input text (at the input jtxt)

e -103 - the text on the input jtxt does not correspond to the JSON format

e -106 - all of the parameters namel to name7 refer to an object that does not appear
in the input text (on the input jtxt)

Examples

Let
jtxt = "{"id": 12345, "params'": {"temperature": 23, "pressure": 2.34 },
"description": "reactorl", "values" :[12, 34.5 , 45.0, 30.2]}"

namel = "params.temperature",
name2 = "values[0]",

name3 = 'pressure",

name4 = "description",

then the output y1 will be the "23" string, the output y2 will be the "12" string, output
y3 will remain empty and an error will be signaled, the output y4 will remain empty and
an error will be signaled.

351

This block does not propagate the signal quality. More information can be found in the

1.4 section.
Input
jtxt JSON formated string
RUN Enable execution
Parameter
namel. .name8 Name of JSON object
nmax Allocated size of string
yerr Substitute value for an error case
Output
yl..y8 Block output signal
iE Error code

10 165520

String
Bool

String
Long (I32)
Double (F64)

Double (F64)
Error

352 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

PJSEXOCT — Parse JSON string (string output)

Block Symbol Licence: STANDARD

PJSEXOCT

Function Description

The PJSEXOCT block is almost identical to the PJSOCT block. It expects text in JSON
format on the jtxt input. The outputs of syl to sy7 then have the values of the objects
identified by the parameters namel to name7. Unlike the PJSOCT block, the parameters
namel to name7 can contain the placeholder % + number instead of which the text from
the input sn + number is substituted.

Examples

Let

snl = "2,

sn2 = "rpm",

namel = "motor[%1].temp",

name2 = "motor[%1].%2",

then the output syl will be the value of the object motor[2] .temp, and the output sy2
will be the value of the object motor [2] .rpm.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
jtxt JSON formated string String
RUN Enable execution Bool
snl..sn8 Name of JSON object String
Parameter
namel..name8 Name of JSON object String

nmax Allocated size of string J0 165520 Long (I32)

353

Output

syl..sy8 String output value String
iE Error code Error

354 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

PJSOCT — Parse JSON string (string output)

Block Symbol Licence: STANDARD

sy1
sy2
sy3|
sy4
sy5|
sy6|
sy7|

RUN 58
iE
PJSOCT

jtxt

Function Description

The PJROCT block parses input JSON string jtxt according to specified name* parameters
when the input RUN is on. OQutput signals are string type.

This block expects text in JSON format on the jtxt input. The outputs of syl to
sy7 then have the values of the objects identified by the parameters namel to name7. If
one of the parameters namel to name7 is empty, the corresponding output will be empty
and this is not considered as an error. The input string evaluates only if RUN = on. An
error is indicated on the output iE. The following cases may occur:

e 0 - no error

e -1 - one of the parameters namel to name7 refers to an object that does not appear
in the input text (at the input jtxt)

e -103 - the text on the input jtxt does not correspond to the JSON format
e -106 - all of the parameters namel to name7 refer to an object that does not appear
in the input text (on the input jtxt)
Examples

Let
jtxt = "{"id": 12345, "params'": {"temperature": 23, "pressure": 2.34 },
"description": "reactorl", "values" :[12, 34.5 , 45.0, 30.2]}"

namel = '"params.temperature",
name2 = "values[0]",

name3 = '"pressure",

name4 = "description",

then the output syl will be the "23" string, the output sy2 will be the "12" string,
output sy3 will remain empty and an error will be signaled, the output sy4 will be the
"reactorl" string.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
jtxt JSON formated string
RUN Enable execution
Parameter
namel..name8 Name of JSON object
nmax Allocated size of string
Output

syl..sy8 String output value
iE Error code

10 165520

355

String
Bool

String
Long (I32)

String
Error

356 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

REGEXP — Regular expression parser

Block Symbol Licence: ADVANCED

MATCH
cap

text cap1
cap2

cap3

cap4

cap5

RUN cap6
cap7

cap8

REGEXP

Function Description

The REGEXP block implements the most common subset of regular expressions as known,
for example, from the regex command in Perl or C#, or the grep command known from
the command line of Unix operating systems.

Supported syntax is as follows:

e (7i) ...Must be at the beginning of the regex. Makes match case-insensitive
e ~ ... Match beginning of a buffer

e $... Match end of a buffer

e () ...Grouping and substring capturing

e \s ...Match whitespace

e \S ... Match non-whitespace

e \d ...Match decimal digit

e \n ... Match new line character

e \r ...Match line feed character

e \f ... Match form feed character

e \v ... Match vertical tab character

e \t ...Match horizontal tab character

e \b ... Match backspace character

e + ... Match one or more times (greedy)

e +7 ... Match one or more times (non-greedy)

e * ... Match zero or more times (greedy)

357

e x7 ... Match zero or more times (non-greedy)
e 7 ...Match zero or once (non-greedy)

e x|y ...Match x or y (alternation operator)

\meta ...Match one of the meta characters: ~$().[|*+7]\

\xHH ... Match byte with hex value OxHH, e.g. \x4a

e [...]...Match any character from set. Ranges like [a-z| are supported.

e [~...] ...Match any character except the ones in set. Ranges like [a-z| are sup-

ported.
Examples

e [0-9]+ ...Finds first integer in input string (and puts it into cap output).

o [-+]7[0-91*\.[0-9]1+([eE][-+]17[0-9]+)7...Find first real number in input string
(and puts it into cap output).

o “\sx(.*?)\s*$... Puts trimmed input string into capl output.

e num\s*:\s*([0-9]*\.[0-9]%) ... Expects input string in JSON format; find inte-

ger parameter num, and puts its value into capl.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

text String to parse String

RUN Enable execution Bool
Parameter

expr Regular expression pattern String

nmax Allocated size of string J0 165534 Long (I32)

bufmax Parser internal buffer size (0 = autodetect) 10 110000000 Long (I32)
Output

MATCH Pattern match flag Bool

cap Whole matching string String

capl..cap8 Captured string String

358 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

REPLACE — Replace substring

Block Symbol Licence: STANDARD

sul

su2 Y
|
p iE
REPLACE

Function Description

The REPLACE block replaces a substring from sul by the string su2 and puts the result
in sy. The parameters 1 and p specify position and length of the string being replaced
in UTF-8 characters. The parameter p is numbered from one.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sul String input value String

su2 String input value String

1 Length of origin text Long (I32)

P Position of origin text Long (I32)
Parameter

nmax Allocated size of string J0 165520 Long (I32)
Output

sy String output value String

iE Error code Error

359

RTOS — Real number to string conversion

Block Symbol Licence: STANDARD

RTOS

Function Description

The RT0OS converts a real number in u into a string value in su. Precision and format are
specified by the prec and mode parameters. Possible values of the mode parameter are:

e 1: Best fit — fixed point, but for extremely small or big numbers exponential
format; parameter prec is total maximum number of characters in output (mantisa
for exponential format)

e 2: Normal - fixed point format; parameter prec is number of places after the
decimal point

e 3: Exponential - scientific format; parameter prec is number of places after the
decimal point

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
Parameter
prec Precision (number of digits) J0 120 Long (I32)
mode Output string format ®1 Long (I32)
1 ... Best fit
2 ... Normal
3 ... Exponential
Output

sy String output value String

360 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

SELSOCT — Selector switch for string signals

Block Symbol Licence: STANDARD

su0
su1l
su2
su3
su‘st
su
sug S|
su7
iSW
SW1
Sw2
SW3

SELSOCT

Function Description

The SELSOCT block selects one of the input strings and copy it to the output string
sy. The selection of the active signal u0...ul5 is based on the iSW input or the binary
inputs SW1...8W3. These two modes are distinguished by the BINF binary flag. The signal
is selected according to the following table:

iSW SW1l BSW2 SW3 vy
off off off w0
on off off ul
off on off u2
on on off u3
off off on ué
on off on ub
off on on ub
on on on u’7

N O U W= O

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su0..su7 String input value String

iSw Active signal selector Long (I32)

Swi Binary signal selector Bool

Sw2 Binary signal selector Bool

Sw3 Binary signal selector Bool
Parameter

BINF Enable the binary selectors Bool

nmax Allocated size of string J0 165520 Long (I32)

361

Output

sy The selected input signal String

362 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

STOR — String to real number conversion

Block Symbol Licence: STANDARD

Function Description

The STOR block converts the string on the input su to a real number on the output y. If
the conversion fails, an error is indicated in E.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String
Parameter

yerr Substitute value for an error case Double (F64)
Output

y Analog output of the block Double (F64)

E Error indicator Bool

363

TRIM — Remove leading and trailing whitechar

Block Symbol Licence: STANDARD

su syp
TRIM

Function Description

The TRIM block removes leading and trailing white spaces from the input string su and
puts the result in the output string sy.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

su String input value String
Parameter

nmax Allocated size of string J0 165520 Long (I32)
Output

sy String output value String

364 CHAPTER 11. STRING — BLOCKS FOR STRING OPERATIONS

Chapter 12

PARAM - Blocks for parameter
handling

Contents
GETPA — Block for remote array parameter acquirement 366
GETPB, GETPI, GETPR — Blocks for remote parameter acquirement . 368
GETPS — Block for remote string parameter acquirement 370
GETPX — Block for remote parameter acquirement 371
PARA — Block with input-defined array parameter 373
PARE — Block with input-defined enumeration parameter 375
PARB, PARI, PARR — Blocks with input-defined parameter 376
PARS — Block with input-defined string parameter 378
PARX — Block with input-defined parameter 379
SETPA — Block for remote array parameter setting 381
SETPB, SETPI, SETPR — Blocks for remote parameter setting 383
SETPS — Block for remote string parameter setting 385
SETPX — Block for remote parameter setting 386
SGSLP — Set, get, save and load parameters 388
SILO — Save input value, load output value 392
SILOS — Save input string, load output string 394

The PARAM library is designed for parameter management and signal processing
in the REXYGEN system. It includes blocks like PARR and its variants for defining and
modifying various types of parameters. Blocks for getting parameters of other blocks
like GETPA and GETPS. Conversely, SETPA, SETPR and SETPS are used to dynamically set
parameter values of other blocks. Additionally, the library contains SILO and SILOS for
exporting and importing values from a file. This library is crucial for systems requiring

dynamic parameter manipulation and the ability to read/save values to a file.

365

366 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

GETPA — Block for remote array parameter acquirement

Block Symbol Licence: STANDARD
g

GETPA

Function Description

The GETPA block is used for acquiring the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the GETF parameter.
For GETF = off the output arrRef is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the block works in single-shot read mode. In that case the remote parameter
is read only when rising edge (off—on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

e Relative:

— Starts with a ?.” character, indicating the level where the GETPA block is
placed. Examples of paths: ".CNDR:yp", ".Lights.ATMT:touts".

— Starts with ?..? characters, indicating a level above the GETPA block. Exam-
ples of paths: "..CNDR:yp", "..Lights.ATMT:touts".

e Relative to Task: Starts at the root level of the task where the GETPA block is
located. The string has to be prefixed with *%’ in this case. Examples of paths:
"%CNDR:yp", "%Lights.ATMT:touts".

e Absolute: A complete sequence of hierarchic levels down to the block. For re-
ferring to blocks located in the driver task (see the IOTASK block for details on
configuration) the ’&’ followed by the driver’s name is used at the beginning
of the absolute path. Examples of absolute paths: "taskl.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning;: If the remote parameter is in a task other than the GETPA block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value reading. Therefore, it is recommended
to include the GETPA block in a slower task (longer period/execution time) and read pa-
rameter in a faster task (shorter period/execution time). In the opposite situation (e.g.
the GETPA block in a faster task), the SETPA block should be used in a slower task.

367

Note 1: If parameter GETF = off and source array is in same task as the GETPA block,
data are not copy into intermediate array, but output is direct reference to original array.
It save resources (cpu time and memory). The nmax, etype parameters are ignored in
this case.

Note 2: If multiple GETPA blocks are used to read arrays in another task, it is not
guaranteed that all arrays will be read in one period of the second task. It is only
guaranteed that the GETPA block executed earlier will read the array from the same or
earlier period of the second task than the GETPA block executed later. The execution
order can be seen in the REXYGEN Studio program diagnostics.

Note 3: The remote parameter must be a primary array (for example CNA:acn,
RTOV:xVec, MX_MAT:ay). The array reference (like CNA:vec, RTOV:yVec, SUBSYSTEM: Qutport)
is not supported.

Note 4: The INCONN block can also be used to read the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
GET Input for initiating one-shot parameter read Bool
Parameter
sc String connection to the parameter String
GETF Get parameter only when forced to Bool
off ... Remote parameter is continuously read
on One-shot mode
nmax Maximum size of array 110 ©256 Long (I32)
etype Type of elements ©®8 Long (I32)
1 ..., Bool
2 ... Byte (U8)
3. Short (I16)
4 Long (132)
5 Word (U16)
6 DWord (U32)
7o Float (F32)
8 Double (F64)
10 Large (I64)
Output
arrRef Array reference Reference
E Error indicator Bool
off ... No error

on An error occurred

368 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

GETPB, GETPI, GETPR — Blocks for remote parameter acquire-
ment

Block Symbols Licence: STANDARD

Y K| y
>|GET EF >|GET EE >|GET EF
GETPB GETPI GETPR

Function Description

The GETPR, GETPI, and GETPB blocks are used for acquiring the parameters of other blocks
in the model remotely . Blocks have identical functionality, differing only in the type of
parameter they acquire. The GETPR block is for a real number, GETPI for an integer, and
GETPB for a Boolean value. To comply with the naming convention for variables 1.3, the
outputs of individual blocks are named according to the type of the acquired parameter:

e y — real output of the GETPR block,
e k —integer output of the GETPI block,
e Y — Boolean output for the GETPB block.

The blocks operate in two modes, which are switched by the GETF parameter. For
GETF = off the output y (or k, Y) is set to the value of the remote parameter at the
start and every time when the remote parameter changes. If the GETF parameter is set
to on, then the blocks work in single-shot read mode. In that case the remote parameter
is read only when rising edge (off—on) occurs at the GET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT :touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be read can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

e Relative:

— Starts with a ?.? character, indicating the level where the GETPR block (or
GETPI, GETPB) is placed. Examples: ".GAIN:k", ".Motorl.Position:ycn".

— Starts with ..’ characters, indicating a level above the GETPR block (or
GETPI, GETPB). Examples: "..GAIN:k", ". .Motorl.Position:ycn".

369

e Relative to Task: Starts at the root level of the task where the GETPR block
(or GETPI, GETPB) is located. The string has to be prefixed with *%’ in this case.
Examples: "%4GAIN:k", "/Motorl.Position:ycn".

e Absolute: A complete sequence of hierarchic levels down to the block. For referring
to blocks located in the driver task (see the IOTASK block for details on configura-
tion) the *&’ followed by the driver’s name is used at the beginning of the absolute
path. Examples: "taskl.inputs.linl:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the GETPx block, block exe-
cution is delayed until the remote task is completed. It is necessary to avoid the so-called
race conditions and guarantee the correct value reading. Therefore, it is recommended
to include the GETPx block in a slower task (longer period/execution time) and read pa-
rameter in a faster task (shorter period/execution time). In the opposite situation (e.g.
the GETPx block in a faster task), the SETPx block should be used in a slower task.

Note 1: When using multiple GETPx blocks, it is not guaranteed to read all data
from a remote task in the same tick. It is only guaranteed that the previous block will
receive a value in the same or previous period as the next block. The execution order
can be seen in the REXYGEN Studio program diagnostics. To obtain multiple values in
the same period, it is needed to use the Inport and Outport blocks or the GETPA block.

Note 2: The GETPX and INCONN blocks can also be used to read the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
GET Input for initiating one-shot parameter read Bool
Parameter
sc String connection to the parameter String
GETF Get parameter only when forced to Bool
off ... Remote parameter is continuously read
on One-shot mode
Output
y Parameter value Double (F64)
E Error indicator Bool
off ... No error

on An error occurred

370 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

GETPS — Block for remote string parameter acquirement

Block Symbol Licence: STANDARD

syp
o

GETPS
Function Description

The GETPS block has the same function as the GETPR, GETPI, and GETPB blocks, differing
only in that it acquires a string parameter value.
Note: The GETPX and INCONN blocks can also be used to read the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
GET Input for initiating one-shot parameter read Bool
Parameter
sc String connection to the parameter String
GETF Get parameter only when forced to Bool
off ... Remote parameter is continuously read
on One-shot mode
nmax Allocated size of string Long (I32)
Output
sy Parameter value String
E Error indicator Bool
off ... No error

on An error occurred

371

GETPX — Block for remote parameter acquirement

Block Symbol Licence: STANDARD

D
&F.

GETPX
Function Description

The GETPX block works on the same principle as the GETPB, GETPI, GETPR and GETPS
blocks. However, unlike these blocks, it is universal and can read parameters of all types
except array. The name of the remote parameter is entered in the sc parameter in the
same way as with the other blocks. The value type is set by the type parameter, and
the parameter reading mode is set by the GETF parameter. If the GETF parameter is set
to on, the block reads the parameter value only when requested at the GET input. If the
GETF parameter is set to off, the block reads the parameter value continuously.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
GET Input for initiating one-shot parameter read Bool
Parameter
sc String connection to the parameter String
GETF Get parameter only when forced to Bool
off ... Remote parameter is continuously read
on One-shot mode
type Data type of item ©®8 Byte (U8)
1 ... Bool
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 Word (U16)
6 DWord (U32)
7 ... Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String

13 Reference

372 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

Output
y Parameter value Any
E Error indicator Bool

off ... No error
on An error occurred

373

PARA — Block with input-defined array parameter

Block Symbol Licence: STANDARD

uRef yRefp
LOC Ep

PARA

Function Description

The PARA block allows, additionally to the standard way of parameter setting, changing
one of its parameters by the input signal. The input-parameter pair is uRef and apar.
The logical input LOC (LOCal) determines whether the value of the internal parameter
apar is read from the input uRef. In this case LOC = off. If the block is in the local mode
(LOC = on), the internal parameter apar stores the last value that was on the input uRef
just before the local mode was activated (LOC = off — on).
The output value is equivalent to the value of the parameter (yRef = apar).

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
uRef Array reference Reference
LOC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Parameter
SETS Set array size flag Bool
nmax Allocated size of array }10 ®100 Long (I32)
etype Type of elements ©®8 Long (I32)
1 ..., Bool
2 ... Byte (U8)
3 ... Short (116)
4 Long (132)
5 Word (U16)
6 DWord (U32)
7o Float (F32)
8 Double (F64)
10 Large (I64)

apar Internal value of parameter ©®[0.0 1.0 2.0 3.0 4.0 5.0] Double (F64)

374 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

Output

yRef Array reference Reference

375

PARE — Block with input-defined enumeration parameter

Block Symbol Licence: STANDARD

ip__iyp
LOC syp

PARE

Function Description

The block is similar to the the PARI block with the additional option to assign texts to
numeric values. The corresponding text is set on the output sy. The block has two modes
and the active mode is selected by the LIST parameter. If LIST=0ff a corresponding text
for the input value is set on the output sy. If LIST=on the input number is considered as
a bitfield, texts are defined for each bit and the output sy is composed of the texts that
correspond to bits which are set. The behavior for undefined values is determined by
the SATF parameter. If SATF=off, undefined values are set to output iy and the output
sy is set to empty text. Undefined values are ignored if SAT=on. The pupstr parameter
has the same format as in the CNE block: <number1>: <descriptioni>|<number2>:
<description2>|<number3>: <description3> ...

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
ip Parameter value Long (I32)
LoC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Parameter
ipar Internal value of parameter ®1 Long (I32)
pupstr Popup list definition String
®1: option A|2: option B|3: option C
NUM Number in string output Bool
LIST Bitfield mode Bool
SATF Saturation flag Bool
Output
iy Integer output of the block Long (I32)

sy String output value String

376 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

PARB, PARI, PARR — Blocks with input-defined parameter

Block Symbols Licence: STANDARD

§|Eoc Yi’ ;“Poc "I> ;|Eoc Vi’

PARB PARI PARR

Function Description

The PARR, PARI and PARB blocks allow, additionally to the standard way of parameters
setting, changing one of their parameters by the input signal. The input-parameter pairs
are:

e p and par for the PARR block,
e ip and ipar for the PARI block,
e P and PAR for the PARB block.

The Boolean input LOC (LOCal) determines whether the value of the par (or ipar,
PAR) parameter is read from the input p (or ip, P) or is input-independent (LOC = on).
In the local mode LOC = on the parameter par (or ipar, PAR) contains the last value
of input p (or ip, P) entering the block right before LOC was set to on. Afterwards it is
possible to modify the value manually.

The output value is equivalent to the value of the parameter y = par, (or k = ipar,
Y = PAR). The output of the PARR and PARI blocks can be additionally constrained by
the saturation limits (lolim, hilim). The saturation is active only when SATF = on.

Note: The PARX block works on the same principle, but it can set parameters of
all types. Consider also using the SHLD block, which can be used for storing numerical
values, similarly to the PARR block.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
P Parameter value Double (F64)
LOC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Parameter

par Internal value of parameter ©1.0 Double (F64)

SATF

hilim

lolim

Output

Saturation flag
off ... Signal not limited
on Saturation limits active

Upper limit of the output signal
Lower limit of the output signal

Analog output of the block

1.0
©®-1.0

377

Bool

Double (F64)
Double (F64)

Double (F64)

378 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

PARS — Block with input-defined string parameter

Block Symbol Licence: STANDARD

toc sy

PARS

Function Description

The PARS block has the same function as the PARR, PARI, and PARB blocks, differing only
in that the set parameter spar is a string and is set by changing the input sp.

Note: The PARX and INCONN blocks can also be used to change the string value of a
remote parameter.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
sp Parameter value String
LoC Activation of local mode Bool
Parameter
spar Internal value of parameter String
nmax Allocated size of string Long (I32)
Output

sy String output of the block String

379

PARX — Block with input-defined parameter

Block Symbol Licence: STANDARD

p
Loc Yf

PARX

Function Description

The PARX block, like the PARB, PARI, PARR and PARS blocks, allows changing one of its
parameters by changing the input. Unlike the blocks mentioned above, the PARX block
parameter can be of any type. The parameter type is set with the type parameter. It is
possible to set parameter saturation limits for relevant types.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
p Parameter value Any
LoC Activation of local mode Bool
off ... The parameter follows the input
on Local mode active
Parameter
par Internal value of parameter ®1.0 Double (F64)
SATF Saturation flag Bool
off ... Signal not limited
on Saturation limits active
hilim Upper limit of the output signal ®1.0 Double (F64)

lolim Lower limit of the output signal ©®-1.0 Double (F64)

380 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

type Data type of item ®8 Byte (U8)

1 ... Bool
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
T Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String
13 Reference

Output

y Parameter value Any

381

SETPA — Block for remote array parameter setting

Block Symbol Licence: STANDARD

arrRef
seT Ep

SETPA

Function Description

The SETPA block is used for setting the array parameters of other blocks in the model
remotely . The block operates in two modes, which are switched by the SETF parameter.
For SETF = off the remote parameter cs is set to the value of the input vector signal
arrRef at the start and every time when the input signal changes. If the SETF parameter
is set to on, then the block works in one-shot write mode. In that case the remote
parameter is set only when rising edge (off—on) occurs at the SET input.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. The path to the block
whose parameter should be read can contain hierarchic levels separated by dots followed
by the block name. The path can be either relative or absolute:

e Relative:

— Starts with a ?.? character, indicating the level where the SETPA block is
placed. Examples of paths: ".CNDR:yp", ".Lights.ATMT:touts".

— Starts with ?. .’ characters, indicating a level above the SETPA block. Exam-
ples of paths: ". .CNDR:yp", "..Lights.ATMT:touts".

e Relative to Task: Starts at the root level of the task where the SETPA block is
located. The string has to be prefixed with ’%’ in this case. Examples of paths:
"%CNDR:yp", "%Lights.ATMT:touts".

e Absolute: A complete sequence of hierarchic levels down to the block. For re-
ferring to blocks located in the driver task (see the IOTASK block for details on
configuration) the ’&’ followed by the driver’s name is used at the beginning
of the absolute path. Examples of absolute paths: "taskl.inputs.ATMT:touts",
"&EfaDrv.measurements.CNDR:yp".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the SETPA block, block
execution is delayed until the remote task is completed. It is necessary to avoid the
so-called race conditions and guarantee the correct value setting. Therefore, it is recom-
mended to include the SETPA block in a slower task (longer period/execution time) and

382 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

set parameter in a faster task (shorter period/execution time). In the opposite situation
(e.g. the SETPA block in a faster task), the GETPA block should be used in a slower task.

Note 1: When using multiple SETPA blocks, it is not guaranteed that all data will
be written to the remote task in the same tick. It is only guaranteed that the previous
block will set a value in the same or previous period as the next block. The execution
order can be seen in the REXYGEN Studio program diagnostics.

Note 2: The remote parameter must be a primary array (for example CNA:acn,
RTOV:xVec, MX_MAT:ay). The array reference (like CNA:vec, RTOV:yVec, SUBSYSTEM: Outport)
is not supported.

Note 3: The 0UTCONN block can also be used for writing the value remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
arrRef Array reference Reference
SET Input for initiating one-shot parameter write Bool
Parameter
sc String connection to the parameter String
SETF Set parameter only when forced to Bool
off ... Remote parameter is continuously updated
on One-shot mode
SETS Set array size flag Bool
Output
E Error indicator Bool
off ... No error

on An error occurred

383

SETPB, SETPI, SETPR — Blocks for remote parameter setting

Block Symbols Licence: STANDARD

P Y ip K| p y
SET E SET E SET E

SETPB SETPI SETPR

Function Description

The SETPR, SETPI, SETPB blocks are used for setting the parameters of other blocks in
the model remotely. The only difference among the three blocks is the type of parameter
which they are setting. The SETPR block is used for setting real parameters, the SETPT
block for integer parameters and the SETPB block for Boolean parameters. To comply
with the naming convention for variables 1.3, the inputs and outputs of individual blocks
are named according to the type of the set parameter:

e p, y — real input and output of the SETPR block,
e ip, k — integer input and output of the SETPI block,

e P Y — Boolean input and output for the SETPB block.

The blocks operate in two modes, which are switched by the SETF parameter. For
SETF = off the remote parameter sc is set to the value of the input signal p (or ip, P)
at the start and every time when the input changes. If the SETF parameter is set to on,
then the blocks work in one-shot write mode. In that case the remote parameter is set
only when rising edge (off—on) occurs at the SET input. Successful modification of the
remote parameter is indicated by zero error output E = off and the output y (or k, Y)
is set to the value of the modified parameter. The error output is set to E = on in case
of write error.

The name of the remote parameter is determined by the string parameter sc (string
connection), which has the form <block_path:parameter_name>. It is also possible
to access individual items of array-type parameters (e.g. the tout parameter of the
ATMT block). This can be achieved using the square brackets and item number, e.g.
.ATMT :touts[2]. The items are numbered from zero, thus the string connection stated
above refers to the third element of the array.

The path to the block whose parameter should be set can contain hierarchic levels
separated by dots followed by the block name. The path can be either relative or absolute:

e Relative:

— Starts with a ’.? character, indicating the level where the SETPR block (or
SETPI, SETPB) is placed. Examples: ".GAIN:k", ".Motorl.Position:ycn".

— Starts with >..’ characters, indicating a level above the SETPR block (or
SETPI, SETPB). Examples: "..GAIN:k", ". .Motorl.Position:ycn".

384 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

e Relative to Task: Starts at the root level of the task where the SETPR block
(or SETPI, SETPB) is located. The string has to be prefixed with %’ in this case.
Examples: "4GAIN:k", "%Motorl.Position:ycn".

e Absolute: A complete sequence of hierarchic levels down to the block. For referring
to blocks located in the driver task (see the I0TASK block for details on configura-
tion) the *&” followed by the driver’s name is used at the beginning of the absolute
path. Examples: "taskl.inputs.linl:u2", "&EfaDrv.measurements.DER1:n".

The order and names of individual hierarchic levels are presented in a tree-like structure
within the Diagnostics section of the REXYGEN Studio program.

Warning: If the remote parameter is in a task other than the SETPx block, block
execution is delayed until the remote task is completed. It is necessary to avoid the
so-called race conditions and guarantee the correct value setting. Therefore, it is recom-
mended to include the SETPx block in a slower task (longer period/execution time) and
set parameter in a faster task (shorter period/execution time). In the opposite situation
(e.g. the SETPx block in a faster task), the GETPx block should be used in a slower task.

Note 1: When using multiple SETPx blocks, it is not guaranteed that all data will be
written to the remote task in the same tick. It is only guaranteed that the previous block
will set a value in the same or previous period as the next block. The execution order
can be seen in the REXYGEN Studio program diagnostics. To send multiple values in the
same period, it is needed to use the Inport and Outport blocks or the SETPA block.

Note 2: The SETPX and OUTCONN blocks can also be used for writing the value
remotely.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
P Desired parameter value Double (F64)
SET Input for initiating one-shot parameter write Bool
Parameter
sc String connection to the parameter String
SETF Set parameter only when forced to Bool
off ... Remote parameter is continuously updated
on One-shot mode
Output
y Parameter value Double (F64)
E Error indicator Bool
off ... No error

on An error occurred

385

SETPS — Block for remote string parameter setting

Block Symbol Licence: STANDARD

sp _ syp
SET Ep

SETPS

Function Description

The SETPS block has the same function as the SETPR, SETPI, and SETPB blocks, differing
only in that it sets a string parameter value.

Note: The SETPX and OUTCONN blocks can also be used to set the value of a remote
parameter.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

sp Desired parameter value String

SET Input for initiating one-shot parameter write Bool
Parameter

sc String connection to the parameter String

SETF Set parameter only when forced to Bool

nmax Allocated size of string Long (I32)
Output

sy Parameter value String

E Error indicator Bool

386 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SETPX — Block for remote parameter setting

Block Symbol Licence: STANDARD

P yp
SET EP

SETPX

Function Description

The SETPX block works on the same principle as the SETPB, SETPI, SETPR and SETPS
blocks. However, unlike these blocks, it is universal and can set parameters of all types
except array. The name of the remote parameter is entered in the sc parameter in the
same way as with the other blocks. The value type is set by the type parameter, and
the parameter setting mode is set by the SETF parameter. If the SETF parameter is set
to on, the block sets the parameter value only when requested at the SET input. If the
SETF parameter is set to off, the block sets the parameter value continuously.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
P Desired parameter value Any
SET Input for initiating one-shot parameter write Bool
Parameter
sc String connection to the parameter String
SETF Set parameter only when forced to Bool
off ... Remote parameter is continuously updated
on One-shot mode
type Data type of item ®8 Byte (U8)
1 ..., Bool
2 ... Byte (U8)
3 ... Short (I16)
4 ... Long (132)
5 ... Word (U16)
6 DWord (U32)
7o Float (F32)
8 Double (F64)
9 Time
10 Large (I64)
11 Error
12 String

13 Reference

Output
y Parameter value
E Error indicator

off ... No error
on An error occurred

Any
Bool

387

388 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SGSLP — Set, get, save and load parameters

Block Symbol Licence: ADVANCED

:
u

yo
IR
u4 y2
u5 3
ub 4
u7 ¥5
u8 e
u9 7
uto Y8
ult Yo
w2 Y
MERRA
utq Y12
uts Y13
ips y14
SET Y18
GeT E
SAVE
LOAD

Function Description

The SGSLP block is a special function block for manipulation with parameters of other
function blocks in the REXYGEN system configuration. It works also in the Matlab-
Simulink system but its scope is limited to the .mdl file it is included in.

The block can manage up to 16 parameter sets, which are numbered from 0 to 15. The
number of parameter sets is given by the nps parameter and the active set is defined by
the ips input. If the ips input remains unconnected, the active parameter set is ips = 0.
Each set contains up to 16 different parameters defined by the string parameters scO
to sc1b. Thus the SGSLP block can work with a maximum of 256 parameters of the
REXYGEN system. An empty sci string means that no parameter is specified, otherwise
one of the following syntaxes is used:

1. <block>:<param> — Specifies one function block named block and its parameter
param. The same block and parameter are used for all nps parameter sets in this
case.

2. <block>:<param><sep>...<block>:<param> — This syntax allows the parameters
to differ among the parameter sets. In general, each sci string can contain up to
16 items in the form <blok>:<param> separated by comma or semi-colon. E.g. the
third item of these is active for ips = 2. There should be exactly nps items in each
non-empty sct string. If there is less items than nps none of the below described
operations can be executed on the incomplete parameter set.

It is recommended not to use both syntaxes in one SGSLP block, all 16 sci strings should
have the same form. The first syntax is for example used when producing nps types of
goods, where many parameters must be changed for each type of production. The second
syntax is usually used for saving user-defined parameters to disk (see the SAVE operation

389

below). In that case it is desirable to arrange automated switching of the ips input (e.g.
using the ATMT block from the LOGIC library).

The broot parameter is suitable when all blocks whose parameters are to be con-
trolled by the SGSLP block reside in the same subsystem or deeper in the hierarchy. It
is inserted in front of each <block> substring in the sct parameters. The ’.’ character
stands for the subsystem where the SGSLP block is located. No quotation marks are
used to define the parameter, they are used here solely to highlight a single character.
If the broot parameter is an empty string, all <block> items must contain full path.
For example, to create a connection to the CNR block and its parameter ycn located in
the same subsystem as the SGSLP block, broot = . and sc0 = CNR:ycn must be set. Or
it is possible to leave the broot parameter empty and put the ’.’ character to the sc0O
string. See the GETPR or SETPR blocks description for more details about full paths in the
REXYGEN system.

The SGSLP block executes one of the below described operations when a rising edge
(off—on) occurs at the input of the same name. The operations are:

SET — Sets the parameters of the corresponding parameter set ips to the values of the
input signals ui. In case the parameter is successfully set, the same value is also
sent to the yi output.

GET — Gets the parameters of the corresponding parameter set ips. In case the parameter
is successfully read, its value is sent to the yi output.

SAVE — Saves the parameters of the corresponding parameter set ips to a file on the
target platform. The parameters of the procedure and the format of the resulting
file are described below.

LOAD - Loads the parameters of the corresponding parameter set ips from a file on
the target platform. This operation is executed also during the initialization of the
block but only when 0 < ipsO < nps — 1. The parameters of the procedure and
the format of the file are described below.

The LOAD and SAVE operations work with a file on the target platform. The name of
the file is given by the fname parameter and the following rules:

e If no extension is specified in the fname parameter, the .rxs (ReX Status file)
extension is added.

e A backup file is created when overwriting the file. The file name is preserved, only

the extension is modified by adding the ’ ’ character right after the ’.” (e.g. when
no extension is specified, the backup file has a . rxs extension.

e The path is relative to the folder where the archives of the REXYGEN system are
stored. The file should be located on a media which is not erased by system restart
(flash drive or hard drive, not RAM).

390 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

The SAVE operation stores the data in a text file. Two lines are added for each
parameter sci, ¢ = 0,...,m, where m < 16 defines the nonempty scm string with the
highest number. The lines have the form:

"<block>:<param>", ..., "<block>:<param>"
<value>, ..., <value>

There are nps individual items "<block>:<param>" which are separated by commas.
The second line contains the same number of <value> items which contain the value
of the parameter at the same position in the line above. Note that the format of the
file remains the same even for sci containing only one <block>:<param> item (see the
syntax no. 1 above). The "<block>:<param>" item is always listed nps-times in the file,
which allows seamless switching of the sci parameters syntax without modifying the file.
Consider using the SILO block if working with only a few values.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
u0..ulb Analog input of the block Double (F64)
ips Parameter set index Long (I32)
SET Set parameters Bool
GET Get parameters Bool
SAVE Save parameters Bool
LOAD Load parameters Bool
Parameter
nps Number of parameter sets J1 116 ®1 Long (I32)
ipsO Initial parameter set index J-1 115 Long (I32)
iprec Precision of parameters (number of digits) 12115 ®12 Long (I32)
icolw Column width in status file J0 122 Long (I32)
fname Name of persistent storage file Ostatus String
broot Root block in hierarchy ®. String
sc0..sc15 List of connected parameters String
Output
y0..y15 Analog output of the block Double (F64)
E Error indicator Bool

off ... No error
on An error occurred

iE Error or warning code
0 Operation successful
1..... Fatal error of the Matlab system
2 ..., LOAD operation error
3 ... SAVE operation error
4 ... Incorrect file format
5 The ips parameter set not found
6 Parameter not found, name mismatch
7T ... Unexpected end of file
8 ... Error writing to file (disk full?)
9 Parameter syntax error
10 . Only whitespace in the parameter name
11 . Error creating the backup file
12 . GET operation error
13 . SET operation error
14 . Timeout
15 . The specified parameter is read-only
16 . The ips parameter is out of range

391

Long (I32)

392 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SILO — Save input value, load output value

Block Symbol Licence: STANDARD

u y
SAVE E
LOAD lastErr

SILO

Function Description

The SILO block can be used to export or import a single value to/from a file. The value
is saved when a rising edge (off—on) occurs at the SAVE input and the value is also set
to the y output. The value is loaded at startup and when a rising edge (off—on) occurs
at the LOAD input.

The outputs E and lastErr indicate an error during disk operation. The E indicator is
reset on falling edge at the SAVE or LOAD input while the lastErr output holds the value
until another disk operation is invoked. If the error occurs during the LOAD operation, a
substitute value yerr is set to the y output.

Alternatively it is possible to write or read the value continuously if the corresponding
flag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter defines the location of the file on the target platform. The path
is relative to the data folder of the RexCore runtime module.

Use the SGSLP function block for advanced and complex operations.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input

u Input signal Double (F64)

SAVE Save value to file Bool

LOAD Load value from file Bool
Parameter

fname Name of persistent storage file String

CSF Continuous saving Bool

CLF Continuous loading Bool

yerr Substitute value for an error case Double (F64)

Output

lastErr

Output signal
Error indicator

off ... No error

on An error occurred
Result of last operation

393

Double (F64)
Bool

Long (I32)

394 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

SILOS — Save input string, load output string

Block Symbol Licence: STANDARD

Y|

Lo E

APPEND lastErr
SILOS

su
SAVE

Function Description

The SILOS block can be used to export or import a string to/from a file. The string is
saved when a rising edge (off—on) occurs at the SAVE input and the string is also set to
the sy output. The string is loaded at startup and when a rising edge (off—on) occurs
at the LOAD input.

If the APPEND input is set to on, the string from the input is appended to the end of
the file. This mode is suitable for logging events to text files. This entry has no effect on
loading from a file.

The LLO parameter is intended for choosing whether to load the entire file (off) or
its last line only (on).

The outputs E and lastErr indicate an error during disk operation. The E indicator
is reset on falling edge at the SAVE or LOAD input while the lastErr output holds the
value until another disk operation is invoked.

Alternatively it is possible to write or read the string continuously if the corresponding
flag (CSF, CLF) is set to on. The disk operation is then performed when the corresponding
input is set to on. Beware, in that case the disk operation is executed in each cycle, which
can cause excessive use of the storage medium. Thus it is necessary to use this feature
with caution.

The fname parameter defines the location of the file on the target platform. The path
is relative to the data folder of the RexCore runtime module.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
su String input of the block ®0 String
SAVE Save string to file Bool
LOAD Load string from file Bool
APPEND Append saved string to file Bool
Parameter

fname Name of persistent storage file String

CSF
CLF
LLO
nmax

Output

sy

lastErr

Continuous saving
Continuous loading
Last line only loading
Allocated size of string

String output of the block
Error indicator

off ... No error

on An error occurred

Result of last operation

10 165520

395

Bool
Bool
Bool
Long (I32)

String
Bool

Long (I32)

396 CHAPTER 12. PARAM - BLOCKS FOR PARAMETER HANDLING

Chapter 13

MODEL — Dynamic systems

simulation

Contents
CDELSSM — Continuous state space model with time delay 399
CSSM — Continuous state spacemodelo v v v 402
DDELSSM — Discrete state space model with time delay 405
DFIR — Discrete finite input response filter 407
DSSM — Discrete state space model . « + v v v v v v v v v v 0w e 408
EKF — Extended (nonlinear) Kalman filter 411
FOPDT — First order plus dead-time model 414
IPEN2, IPEN3 — N-link inverted pendulum on cart - Physical pa-
TAMeEters v v i it it e e e e e e e e e e e e e e e e e e e 415

IPEN2pu, IPEN3pu — N-link inverted pendulum on cart - Dynamic

PArameters . . v v v v v vttt e e e e e e e e e e e e e e e e e e 418
MDL — Processmodel« . v v v i v ittt 421
MDLI — Process model with input-defined parameters 422
MVD — Motorized valve drive 423
NSSM — Nonlinear State-Space Modelo v v v v v 424
NUREACT — Model of nuclear reactor 427
QCOPT — Model of quadrucopter v v v 428
SGEN — Synchronous generator model 430
SGENTX — Synchronous generator model 432
SOPDT — Second order plus dead-time model 434
STMGEN — Model of steam generator 436
STURB — Steam turbine model 438

397

398 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

The MODEL library is centered around system modeling and simulation. It includes
blocks like CSSM and DSSM for continuous and discrete state-space models, and DFIR for
digital finite impulse response filters. The library offers EKF for Extended Kalman Filter
implementations, and FOPDT, SOPDT for first and second order process time delay models.
Additionally, it provides FMUCS and FMUINFO for interfacing with Functional Mock-up
Units, and MDL, MDLI for generic model interfaces. Advanced functionalities are covered
by blocks like CDELSSM, DDELSSM for continuous and discrete state space models of a
linear system with time delay, and MVD for model variable delays, catering to a wide
range of modeling requirements in REXYGEN system.

399

CDELSSM — Continuous state space model with time delay

Block Symbol Licence: ADVANCED

RT

iE
oo
u2 y2
u3 y3
u4 v4
ub y5
ué 6
u7 7
u8 v8
u9 y9
uto Y10
w1 Y1
w2 Y12
uwiz Y18
utg Y14
uts Y19
ute V16

CDELSSM

Function Description

The CDELSSM block (Continuous State Space Model with time DELay) simulates behavior
of a linear system with time delay del:

() _
o Acx(t) + Beu(t — del), x(0) =20

y(t) = ch(t)—l-Dcu(t),

where z(t) € R"™ is the state vector, z0 € R™ is the initial value of the state vector,
u(t) € R™ is the input vector, y(t) € RP is the output vector. The matrix A, € R™*" is
the system dynamics matrix, B, € R™*™ is the input matrix, C. € RP*™ is the output
matrix and D, € RP*™ is the direct transmission (feedthrough) matrix. If UD=o0ff, the
matrix D, is not used during simulation (it behaves as if it were zero).

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The 20 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is first converted to the discrete (discretized) state space model:

x((k+1)T) = Agz(kT)+ Bpu((k—d)T) + Bgu((k —d+ 1)T), z(0) = 20
y(kT) = Cex(kT)+ Deu(kT),

where k € {1,2,...} is the simulation step, 7" is the execution period of the block in
seconds and d is a delay in simulation step such that (d—1)T" < del < d.T'. The period T
is not entered in the block, it is determined automatically as a period of the task (TASK,
QTASK nebo IOTASK) containing the block.

Inputs of the simulated system ul..ul6 represent the input vector u(t). For a given
simulation, the first m inputs are used, where m is the number of columns of the matrix
Be. If the input wu(t) is changed only in the moments of sampling and between two

400 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

consecutive sampling instants is constant, i.e. u(t) = u(kT) for t € [kT, (k + 1)T), then
the matrices Ay, Bg1 and Bgo are determined by:

Ag = et

A
By = eAC(T_A)/ AT B.dr
0
T—-A
Bg = / ee™ B.dr,
0

where A = del — (d — 1)T.

Computation of discrete matrices Ay, Bg1 and Bgo is based on a method described
in [7], which uses Padé approximations of matrix exponential and its integral and scaling
technique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Outputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the first p
outputs are used, where p is the number of rows of the matrix Cc.

The output iE is an integer and contains information about the simulation progress:

e 0: everything is OK, the block simulates correctly
e -213: incompatibility of the dimensions of the state space model matrices

e -510: the task is ill-conditioned (one of the working matrices is singular or close
to a singular matrix)

e xxx: error code xxx of the REXYGENsystem, see more in Appendix C

This block propagates the signal quality. More information can be found in the 1.4

section.
Input
R1 Block reset Bool
HLD Hold current model state Bool
ul..ulé Analog input of the block Double (F64)
Parameter
UD Matrix Dc usage Bool
del Model delay [s] 10.0 Double (F64)
is Pade approximation order 4014 ®2 Long (I32)
eps Approximation accuracy J0.011.0 ®le-15 Double (F64)
Ac Matrix A of the continuous model Double (F64)

®[-0.36 -1.24 -0.18; 1 0 0; 0 1 0]
Bc Matrix B of the continuous model ©®[0.5; 0; 0] Double (F64)

Cc
Dc
x0

Output
iE
yl..y16

Matrix C of the continuous model
Matrix D of the continuous model
Initial value of the state x

Error code
Analog output of the block

®[0.12 0.48 0.36]
e[o]
®[0; 0; 0]

Double
Double
Double

Error
Double

401

(F64)
(F64)
(F64)

(F64)

402 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

CSSM — Continuous state space model

Block Symbol Licence: ADVANCED
RT
Ho B
ul Y
u2 y2
u3 3
a4
u5 5
ué e
u7 7
u8 8
u9 y9
uto Y10
a4
a2 Y12
u13 13
utg Y14
u15s y15
ute Y16

Function Description

The CSSM block (Continuous State Space Model) simulates behavior of a linear system:

dflit) = Acx(t) + Beu(t), x(0) = 20
y(t) = ch(t) + Dcu(t)a

where z(t) € R" is the state vector, x0 € R" is the initial value of the state vector,
u(t) € R™ is the input vector, y(t) € RP is the output vector. The matrix A, € R"*" is
the system dynamics matrix, B, € R"*™ is the input matrix, C. € RP*™ is the output
matrix and D, € RP*™ is the direct transmission (feedthrough) matrix. If UD=off, the
matrix D, is not used during simulation (it behaves as if it were zero).

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The z0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

The simulated system is first converted to the discrete (discretized) state space model:

e((k+1)T) = Agz(kT) + Bau(kT), z(0) = 20
y(kT) = Coa(kT)+ Deu(kT),

where k € {1,2,...} is the simulation step, T is the execution period of the block in
seconds. The period T is not entered in the block, it is determined automatically as a
period of the task (TASK, QTASK nebo IOTASK) containing the block.

If the input u(t) is changed only in the moments of sampling and between two con-
secutive sampling instants is constant, i.e. u(t) = w(kT) for t € [kT, (k + 1)T'), then the

403

matrices Ag and By are determined by:
Ay = eACT

T
By = / e” B.dr
0

Computation of discrete matrices Ag and By is based on a method described in [7],
which uses Padé approximations of matrix exponential and its integral and scaling tech-
nique.

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Qutputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the first p
outputs are used, where p is the number of rows of the matrix Cc.

The output iE is an integer and contains information about the simulation progress:

e 0: everything is OK, the block simulates correctly
e -213: incompatibility of the dimensions of the state space model matrices

e -510: the task is ill-conditioned (one of the working matrices is singular or close
to a singular matrix)

e xxx: error code xxx of the REXYGENsystem, see more in Appendix C

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
R1 Block reset Bool
HLD Hold current model state Bool
ul..ulé Analog input of the block Double (F64)
Parameter
UD Matrix Dc usage Bool
is Pade approximation order J0 14 ®2 Long (I32)
eps Approximation accuracy J0.011.0 ®le-15 Double (F64)
Ac Matrix A of the continuous model Double (F64)
®[-0.36 -1.24 -0.18; 1 0 0; 0 1 0]
Bc Matrix B of the continuous model ®[0.5; 0; 0] Double (F64)
Cc Matrix C of the continuous model ®[0.12 0.48 0.36] Double (F64)
Dc Matrix D of the continuous model ®[0] Double (F64)

x0 Initial value of the state x ®[0; 0; 01 Double (F64)

404 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Output

iE Error code Error
yl..y16 Analog output of the block Double (F64)

405

DDELSSM — Discrete state space model with time delay

Block Symbol Licence: ADVANCED
RT
HD B
u1 y
u2 y2
u3 3
u4 y4
u5 5
u6 y8
u7 yr
u8 v8
u9 y9
uto V10
at Y11
ut2 Y12
w3 V13
uts Y14
uts Y12
ute Y16

DDELSSM

Function Description

The DDELSSM block (Discrete State Space Model with time DELay) simulates behavior
of a linear system with time delay del:

z(k+1) = Agx(k)+ Bau(k —d), x(0) =20
y(k) = Cax(k) + Dgu(k),

where k is the simulation step, z(k) € R™ is the state vector, 0 € R™ is the initial
value of the state vector, u(k) € R™ is the input vector, y(k) € RP is the output vector.
The matrix Ay € R™™ is the system dynamics matrix, By € R™*™ is the input matrix,
Cy € RPX™ ig the output matrix and Dy € RP*™ is the direct transmission (feedthrough)
matrix. If UD=o0ff, the matrix Dy is not used during simulation (it behaves as if it were
zero). Number of steps of the delay d is the largest integer such that d.T" < del, where T
is the block execution period.

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The z0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Qutputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the first p
outputs are used, where p is the number of rows of the matrix Cd.

The output iE is an integer and contains information about the simulation progress:

e 0: everything is OK, the block simulates correctly
e -213: incompatibility of the dimensions of the state space model matrices

o xxx: error code xxx of the REXYGENsystem, see more in Appendix C

406 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
R1 Block reset Bool
HLD Hold current model state Bool
ul..ul6 Analog input of the block Double (F64)
Parameter
UuD Matrix Dd usage Bool
del Model delay [s] 10.0 Double (F64)
Ad Matrix A of the discrete model Double (F64)
®[0.235700090 -0.904208075 -0.120785644; 0.671031354 0.477271377 -0.072129196;
Bd Matrix B of the discrete model Double (F64)
®[0.335515677; 0.200358878; 0.071773902]
cd Matrix C of the discrete model ®[0.12 0.48 0.36] Double (F64)
Dd Matrix D of the discrete model ®[0] Double (F64)
x0 Initial value of the state x ®[0; 0; 0] Double (F64)
Output
iE Error code Error

yl..y16 Analog output of the block Double (F64)

407

DFIR — Discrete finite input response filter

Block Symbol Licence: ADVANCED

u

HLD
w0 RDY

DFIR

Function Description

The DFIR block is a filter whose impulse response (or response to any finite length input)
is of finite duration, because it settles to zero in finite time. The calculation takes place
in the form of a convolutional integral (sum) - the impulse characteristic is entered in
the hk field already in discretized form for the correct period.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input

RST Block reset Bool

HLD Hold Bool

u0 Initial input value (fill buffer) Double (F64)
Parameter

nmax Allocated size of array 410 110000000 ©®100 Long (I32)

hk Discrete impulse response ©®[0.6 0.3 0.1] Double (F64)
Output

y Analog output of the block Double (F64)

RDY Outputs valid (ready flag) Bool

408 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

DSSM — Discrete state space model

Block Symbol Licence: ADVANCED

RT .

iE
Yo
u2 y2
u3 3
u4 va
u5 5
ub e
u7 yr
u8 v8
u9 9
uto Y10
a1 Y11
a2 Y12
w13 Y13
utq Y14
uts Y15
ute Y16

Function Description

The DSSM block (Discrete State Space Model) simulates behavior of a linear system:

z(k+1) = Ajz(k)+ Bau(k), z(0) = 20
y(k) = Cax(k) + Dau(k),

where k is the simulation step, z(k) € R™ is the state vector, 0 € R™ is the initial
value of the state vector, u(k) € R™ is the input vector, y(k) € RP is the output vector.
The matrix Ay € R™*" is the system dynamics matrix, Bg € R™™ is the input matrix,
Cq € RP*™ ig the output matrix and Dy € RP*™ is the direct transmission (feedthrough)
matrix. If UD=o0ff, the matrix Dy is not used during simulation (it behaves as if it were
7Z€ero).

All matrices are specified in the same format as in Matlab, i.e. the whole matrix is
placed in brackets, elements are entered by rows, elements of a row are separated by
spaces (blanks), rows are separated by semicolons. The z0 vector is a column, therefore
the elements are separated by semicolons (each element is in a separate row).

During the real-time simulation, single simulation step of the above discrete state
space model is computed in each execution time instant. Outputs of the simulated system
y1..y16 represent the state of the system x(t) and for a given simulation, the first p
outputs are used, where p is the number of rows of the matrix Cd.

The output iE is an integer and contains information about the simulation progress:

e 0: everything is OK, the block simulates correctly
e -213: incompatibility of the dimensions of the state space model matrices

e xxx: error code xxx of the REXYGENsystem, see more in Appendix C

409

This block propagates the signal quality. More information can be found in the 1.4
section.

410 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

Input
R1 Block reset Bool
HLD Hold current model state Bool
ul..ulé Analog input of the block Double (F64)
u Analog input of the block Double (F64)
Parameter
UuD Matrix Dd usage Bool
Ad Matrix A of the discrete model Double (F64)
®[0.235700090 -0.904208075 -0.120785644; 0.671031354 0.477271377 -0.072129196;
Bd Matrix B of the discrete model Double (F64)
®[0.335515677; 0.200358878; 0.071773902]
Cd Matrix C of the discrete model ®[0.12 0.48 0.36] Double (F64)
Dd Matrix D of the discrete model ®[0] Double (F64)
x0 Initial value of the state x ®[0; 0; 0] Double (F64)
Output
iE Error code Error

yl..y16 Analog output of the block Double (F64)

411

EKF — Extended (nonlinear) Kalman filter

Block Symbol Licence: MODEL
funcRef X
; P
nz trP
SE cmd
RST f
o
PO err

EKF

Function Description

The block implements a nonlinear state estimator known as Extended Kalman filter.
The goal is to provide estimates of unmeasurable state quantities of a nonlinear dynamic
system described by a state space model in the form

dz/dt = f(x,u) + w(t),y = h(z,u) + v(t)
for a continuous-time case and
w(k+1) = f(x(k), u(k)) + w(k),y(k) = h(z(k), u(k)) + v(k)

for the case of a discrete-time system. The variables w, v are the process and observation
noises which are both assumed to be zero mean multivariate Gaussian processes with
covariance) and R specified in the block parameters. The Extended Kalman filter is the
nonlinear version of the Kalman filter which linearizes the state and output equations
about the current working point. It is a predictor-corrector type algorithm which switches
between open-loop prediction using the state equation and correction of the estimates
by directly measured output quantities. The measurements can be supplied to the filter
non-equidistantly in an arbitrary execution period of the block.

The prediction step is run in each execution period and solves the state equation
by numerical integration, starting from an initial value z0 and initial covariance PO.
Various numerical methods, chosen by the user specified parameter solver, are available
to perform the integration of the vector state differential equation. A special choice of
solver = 1 signalizes the discrete-time system case for which the numerical integration
reduces to simple evaluation of the recursive formula given by the first-order difference
equation in z(k + 1) = f(x(k),u(k)). Apart from the state vector, also its covariance
matrix P is propagated in time, capturing the uncertainty of the estimates in the form of
their (co)variances. Please refer to the documentation of the NSSM block for more details
about the available numerical integration algorithms.

The filtering correction step takes place whenever the input of the block is set to
nz > 0. This signalizes that new vector of measurements is available at the z input and

412 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

it is used to correct the state and its covariance estimates from the prediction step. Mul-
tiple right sides of the output equation can be implemented in the cooperating REXLANG
block. This may be useful e.g. for systems equipped with various sensors providing their
data asynchronously to each other (and with respect to the block execution times) with
different sampling periods. For the setting nz = 0, the user algorithm signalizes no out-
put data available in the current execution period, forcing the filter to extrapolate the
state estimates by performing the prediction step only.

The Extended Kalman filter is generally not an optimal filter in the sense of mini-
mization of the mean-squared error of the obtained state estimates. However, it provides
modest performance for sufficiently smooth nonlinear systems and is considered to be a
de facto standard solution for nonlinear estimation. A special case is obtained by setting
linear state and output equations in the cooperating REXLANG block. This case leads to
standard linear Kalman filter which is stochastically optimal for the formulated state
estimation problem.

This block does not propagate the signal quality. More information can be found in the
1.4 section.

Input
funcRef Cooperating REXLANG block reference Reference
u Input vector of the model Reference
z Output (measurement) vector of the model Reference
nz Index of the actual output vector set J1 Long (I32)
Qk State noise covariance matrix Reference
Rk Output noise covariance matrix Reference
RST Block reset Bool
HLD Hold Bool
x0 Initial state vector Reference
PO Initial covariance matrix Reference
Parameter
nmax Allocated size of output matrix (total number of items) Long (I32)

15 110000 20

solver

Output

trP
cmd

df
err

Numeric integration method ®2
1 Discrete equation
2 ... Euler (1st order)
3 ... 2nd order Adams-Bashforth
4 3rd order Adams-Bashforth
5 4th order Adams-Bashforth
6 5th order Adams-Bashforth
7T ... 4th order Runge-Kutha
8 implicit Euler
9 implicit Euler(more iteration)
10 2nd order Adams-Multon implicit
11 2nd order Adams-Multon implicit (more iteration)
12 3rd order Adams-Multon implicit
13 3nd order Adams-Multon implicit (more iteration)
14 2nd order RadaullA implicit
15 2nd order RadaullA implicit (more iteration)
16 —
17 ... —
18 ... —
19 ... —

Model state vector

Model state covariance matrix

Trace of model state covariance matrix

Cooperating REXLANG block requested function
Vector reference set by cooperating REXLANG block
Matrix reference set by cooperating REXLANG block
Error code (0 is OK, see SystemLog for details)

413

Long (I32)

Reference
Reference
Reference
Long (I32)
Reference
Reference
Long (I32)

414 CHAPTER 13. MODEL - DYNAMIC SYSTEMS SIMULATION

FOPDT — First order plus dead-time model

Block Symbol Licence: STANDARD
[u yp

FOPDT

Function Description

The FOPDT block is a discrete simulator of a first order continuous-time system with time
delay, which can be described by the transfer function below:

kO . efdel-s

Pls) = (tau-s+1)

The exact discretization at the sampling instants is used for discretization of the P(s)
transfer function. The sampling period used for discretization is equivalent to the exe-
cution period of the FOPDT block.

This block propagates the signal quality. More information can be found in the 1.4
section.

Input
u Analog input of the block Double (F64)
Parameter
kO Static gain ©®1.0 Double (F64)
del Dead time [g] Double (F64)
tau Time constant ®1.0 Double (F64)
nmax Allocated size of array 410 710000000 ©1000 Long (I32)
Output

y Analog output of the block Double (F64)

415

IPEN2, IPEN3 — N-link inverted pendulum on cart - Physical
parameters

Block Symbols Licence: MODEL
d1
d2
d1 u d3
d2 X
X dd1
dd1 dd2
ri R19R
E E
IPEN2 IPEN3

Function Description

The IPEN2 and IPEN3 blocks simulate the dynamics of double and triple inverted pen-
dulums on a cart, respectively. These models enable users to conduct experiments with
various control strategies, making them suitable for both educational and research pur-
poses.

The primary input to the models is an analog signal u, interpreted based on the TACC
parameter setting:

e for TACC=on, the input u is assumed to be a force acting on the cart [N],
e for IACC=off, the models assume the input represents speed [m/s].

The R1 signal is used to reset each model to its initial configuration.

Both models can be precisely configured with a series of parameters that reflect the
system’s physical characteristics. These include the relative center of gravity positions a,
moments of inertia J, lengths 1, and masses of the pendulums m, as well as damping coef-
ficients b and the initial state of the system (positions d_0, velocities dd_0). A schematic
representation of the system with parameters is shown below. The parameters are intu-
it